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Abstract

A general bienzymatic cyclic system including two autocatalytic loops is studied and used as a basic design principle

for modelling extracellular matrix turnover. Using classical enzyme kinetic rates, the model is described by a set of four

ordinary differential equations and numerically studied by bifurcation diagrams and Poincar�ee sections. We observe

limit-cycle oscillations and chaotic behaviors arising from period-doubling cascades or intermittency. Chaotic oscil-

lations originate from distinct strange attractors that undergo boundary and internal crisis. For some parameter values,

the system presents several bistable areas, where a limit cycle coexists with another one or with a strange attractor. The

dynamics are qualitatively modified when the weight of the autocatalytic loops on the system varies, resulting in the

change in the number of attractors.

� 2003 Elsevier Science Ltd. All rights reserved.
1. Introduction

A bienzymatic cycle consists of two enzyme reactions organized in an anti-parallel fashion, in which the substrate A

of the first enzyme is transformed into a product B, that is, in turn, converted back into A by the second one. These

metabolic organizations are widespread in some cell molecular processes, such as reversible covalent modifications. An

important example of such mechanisms consists of phosphorylation/dephosphorylation events that are predominantly

observed in signal transmission inside cells. Several theoretical models of cyclically-organized biological reactions have

previously been studied. In the absence of regulation (feedback loops), the only dynamical behavior accessible is

monostability, although switch-like properties can be observed through zero-order ultrasensitivity [1–3]. When self-

regulation is included, bistability and limit cycle oscillations may be obtained [4–9], as well as more complex dynamics if

several bienzymatic cycles are themselves organized in a cyclic fashion [10]. Many of the theoretical predictions of these

models have been confirmed experimentally [11–13].

Recently, we proposed a bienzymatic cycle regulated by an autocatalytic positive feedback loop, for modelling

extracellular matrix degradation balance [14]. This model evidenced bistability and limit-cycle oscillation dynamics. In

the present paper, we introduce a second autocatalytic loop in this bienzymatic cycle. The resulting doubly-regulated

cyclic model is used as a basic design principle for a model of extracellular matrix turnover that takes transglutaminase

regulation by the surrounding cells into account.

The extracellular matrix is an insoluble, gel-like mesh of various structural and functional macromolecules that

forms connective tissues and basement membranes in animals. It constitutes both a barrier separating organisms into

tissue compartments and a substratum for cell adhesion [15]. Besides this structural role, the extracellular matrix is an

essential regulator of cell physiology, predominantly implicated in morphogenesis, cell survival, cell cycle and migration
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and tumorigenesis [16,17]. During normal maintenance or pathological modifications, the extracellular matrix under-

goes intense cell-controlled turnover, involving both extracellular matrix degradation and synthesis. Regulation of

extracellular matrix mass-balance is involved in many physiological processes such as embryogenesis [18], immune cell

activation [19], reproductive cycles [20], wound healing [21], or pathological ones such as tumor dissemination [22].

The main focus in this paper is on the oscillatory behaviors displayed by the modelled system, and the diversity of

the accessible oscillation modes. In Section 2, we introduce the ordinary differential equations describing the model, and

study it in Section 3 through bifurcation diagrams and Poincar�ee sections. The dynamics display chaotic behaviors, as

well as bistability and hysteresis when periodic limit-cycle oscillations coexist with a chaotic attractor. Finally, Section 4

presents some conclusions.
2. The model

The enzymatic system studied consists of two cyclically-organized enzyme reactions (Fig. 1, inset) interconverting

compounds A and B via two antagonist enzymes E1 and E2. Two autocatalytic loops are introduced through the in-

fluence of B on the activity of both enzymes. B increases the rate of its formation (positive feedback loop) as well as that

of its consumption (positive forward loop). We illustrate this basic design principle in the case of extracellular matrix

degradation balance (Fig. 1).

Unsoluble extracellular matrix proteins (m) are degraded by protein-cleaving enzymes called proteinases (p) into

soluble proteolysis fragments (f ) while these fragments can be cross-linked by transglutaminase (g) or other inter-

molecular protein-cross-linking enzyme to yield back new unsoluble extracellular matrix proteins m. Thus the two

antagonist enzymes consist here of proteinases (p) and transglutaminases (g), that interconvert extracellular matrix

proteins (m) and soluble proteolysis fragments (f ). The autocatalytic loops are due to f influence on p and g synthesis

rate by the surrounding cells. In vivo, cells identify the characteristics of the surrounding extracellular matrix using

several membrane receptors that specifically recognize extracellular matrix elements. These receptors provide cells with
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Fig. 1. Scheme of the bienzymatic cyclic model studied and exemplified in the case of extracellular matrix degradation balance. The

inset shows the basic cyclic scheme. Two molecules A and B are interconverted by two antagonist enzymes (E1 and E2), forming a

bienzymatic cycle. The compound B auto-catalytically increases the rate of its own formation and that of its consumption (auto-

catalytic loops, dashed arrows). This basic scheme is further implemented in the case of extracellular matrix degradation. Unsoluble

extracellular matrix proteins (m) are produced by cells at constant rate rim and degraded by proteinases (p) into soluble proteolysis

fragments (f ). Fragments can be cross-linked by transglutaminase (g) to yield back new unsoluble ECM proteins m. Fragments are

subject to proteolysis from p and interact with cells to increase both proteinase and transglutaminase synthesis rates. Both enzymes

undergo p-catalyzed proteolysis.
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responses to extracellular matrix physical and chemical changes by modulating signal-transduction cascades into

the cells [23,24]. For instance, in fibroblasts, proteolysis fragments of fibronectin (an extracellular matrix protein) in-

duce expression and secretion into the extracellular matrix of neo-synthesized proteinases, whereas the entire fibro-

nectin molecule does not [25]. Thus, f increases proteinase quantity, which, in turn increases f formation rate in a

first autocatalytic loop. Similarly, transglutaminase expression and secretion by the cells can be regulated by the

quantity of surrounding extracellular matrix [26]. We thus introduce a second autocatalytic loop, assuming the pos-

sibility of g up-regulation by the cells in response to f quantity. Besides the basic bienzymatic organization, other

biologically-relevant processes must be taken into account. Extracellular matrix proteins m are produced by sur-

rounding cells (taken here as a constant rate rim). Moreover, each protein (whether m, f , g, or p) itself is subject to

p-catalyzed degradation.

The equations describing this scheme (Eqs. (1)–(4)) are based on the classical Michaelis–Menten formalism [27] for

every enzyme reaction, except for p autoproteolysis, which is modelled here as a simple second-order rate. Unlike most

of the previously-published models of bienzymatic cycles, the autocatalytic loops do not act directly on enzyme activity,

but control p and g cell-synthesis. We describe both autocatalytic loops as f -induced g or p cell-synthesis rates, rg or rp,
respectively, and model them formally as sigmoid Hill-functions of f :
rx ¼
c1f nH

cnH

2 þ f nH
where x is g or p. c1 is the maximal rate (obtained for f � c2) and represents the strength or level of the autocatalytic

loop. c2 is f concentration at half-maximal rate (often called ‘‘threshold’’ constant). The exponent nH (Hill-number)

controls the form of rx: the higher nH, the more rx is a switch-like function of f . Note that cell quantity is assumed to be

constant here, so that rg and rp only depend on f . A more detailed justification of the biological grounds as well as the

form of the kinetic terms used in the equations can be found in [14].

m variation rate is described by Eq. (1):
dm
dt

¼ kgg
f

KG þ f
� kpp

m
KP þ m

þ rim ð1Þ
In the right-hand side of Eq. (1), the first term represents m production from f and g (with kg and KG, the corresponding

catalytic and Michaelis constants, respectively), the second term is m consumption by proteolysis (with kp and KP , the

corresponding catalytic and Michaelis constants, respectively), and the last one represents constant m synthesis by the

cells. f variation is modelled by Eq. (2):
df
dt

¼ �kgg
f

KG þ f
þ kpp

m
KP þ m

� kpp
f

KP þ f
ð2Þ
The first two terms in this equation are identical to the corresponding terms in Eq. (1), and the last one represents f
proteolysis by p, which is assumed, for simplicity, to occur with the same kinetic constants as m proteolysis. Eq. (3)

describes p variation rate:
dp
dt

¼ a
f n

Kn
R þ f n

� kap2 ð3Þ
The first term in the right-hand side of Eq. (3) corresponds to the first autocatalytic loop (rp), with a the level of this

loop, KR the threshold constant and n the Hill-number. The second term represents p autoproteolysis (second-order rate

constant ka). Eqs. (1)–(3) describe upregulation of proteinase synthesis by the fragments and is the model studied in [14].

In the present study, we add upregulation of transglutaminase concentration by surrounding cells:
dg
dt

¼ b
f l

Kl
S þ f l

� kdegp
g

Kdeg þ g
ð4Þ
As in Eq. (3), the first term describes the second autocatalytic loop (rg), with b as the level of the loop, KS the threshold

constant and l the Hill-number. The second term models transglutaminase (g) proteolysis as a Michaelis–Menten rate,

with kdeg and Kdeg, the corresponding catalytic and Michaelis constants, respectively.

We then non-dimensionalize the system (Eqs. (1)–(4)) by normalizing each variable (p, g, m and f ) by KP and time by

(1=kp), and obtain the dimensionless system Eqs. (5)–(8):
dm
dt

¼ kg
f g

KG þ f
� mp

1 þ m
þ rim ð5Þ
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df
dt

¼ �kg
f g

KG þ f
þ mp

1 þ m
� f p

1 þ f
ð6Þ

dp
dt

¼ a
f n

Kn
R þ f n

� kap2 ð7Þ

dg
dt

¼ b
f l

Kl
S þ f l

� kdeg

gp
Kdeg þ g

ð8Þ
where concentrations (m, f , p, g, KG, KR, KS and Kdeg) are normalized by KP ; first-order rate constants (kg and kdeg) are

normalized by kp; ka by kp=KP ; rates (rim, a and b) by kp � KP ; and time by (1=kp).
Thanks to the adimensionalization, the system Eqs. (5)–(8) has two parameter less than the original dimensional one.

Furthermore, realistic values for the parameters do not need to be known as absolute values, but only with respect to KP

and/or kp. Examination of the available data in the literature allow to define realistic values for some of them [14].

Hence, in this paper, we fix (normalized values): KG ¼ 0.1; Kdeg ¼ 1.1; kg ¼ kdeg ¼ 0:05, and ka ¼ kdeg=Kdeg ¼ 0:0455.

Moreover, for simplicity, we set n ¼ l. Note that m and f concentrations evolve under the action of existing enzymes,

whereas p and g are brought into the system through cell synthesis. Thus we assume that the rates for enzyme synthesis

are slower than m and f turnover rates. As a consequence, a and b will be smaller than the enzyme catalytic constants kg
and kp.

We focus here on the case KR > KS , i.e. where the half-maximal rate for g synthesis by the cells is obtained for

slightly lower f values than for p. Specifically, we set KR ¼ 4.5 and KS ¼ 1. Note however, that the dynamics described

below can be observed with many other parameter values, i.e. in other parts of the parameter space. Finally, a limitation

in the variation ranges of the parameters is implicitly contained in the use of the Michaelis–Menten formalism for

enzyme rates, which is valid only for enzyme concentrations lower than the corresponding substrate [28]. In other

words, the model is valid only for parameters yielding m > p, f > g and f > p. Unfortunately, to our knowledge, valid

kinetic expressions for enzyme rates do not exist outside this limitation.
3. Results

3.1. Low autocatalytic levels

We first study the case where maximal enzyme-synthesis rates (a and b) by the cells are low, i.e. where both aut-

ocatalytic influences of f are low. Fig. 2(A) shows for illustration p and g autocatalytic loop rates (rp and rg, respec-

tively) for a¼ 0.026 and b¼ 7.5� 10�4. Whereas rg is higher than rp at low f values, rp is higher for f > 2. Under these

conditions, the dynamics of the system become chaotic for n ¼ lP 3. Fig. 2 shows a projection in the m–f plane of the

strange attractor (B) and the corresponding time-courses of f , p and g in Log-linear coordinates (C) for n ¼ l ¼ 4. The

average ‘‘orbit’’ of the strange attractor, i.e. the time needed to cover one average ‘‘turn’’ over the attractor is long

(�5� 103 time units). The chaotic nature of the dynamics are first illustrated by the inspection of the power spectrum

(Fig. 2(D)). The power spectrum is dense, with a great level of noise, which is generally a mark of chaotic behavior.

Moreover, sensibility to initial conditions is apparent from the value of the maximal Lyapunov exponent, kmax.

Maximal Lyapunov exponent were calculated according to [29]. For the strange attractor of Fig. 2(B), we obtain

kmax ¼ ð0:947 	 0:014Þ � 10�4 bits/time unit. This value is low because the average orbital period is long, but is not zero.

To compare with classical chaotic systems, it must be related to the duration of an average orbit. One then yields

kmax ¼ 0:473 	 0:007 bits/orbit. This value is of the same order than that obtained for the R€oossler system (kmax ¼ 0:13

bits/s or 0.78 bits/orbits), but lower than that of the Lorenz system (kmax ¼ 2:2 bits/s or 1.36 bits/orbits) [29].

We further study the dynamics with bifurcation diagrams and Poincar�ee sections. Fig. 3 shows a bifurcation diagram

with a¼ 0.026, b¼ 7.5� 10�4 and rim as the bifurcation and parameter. For rim < 7:7764 � 10�3, the system possesses

an unique stable fixed point that becomes unstable at rim ¼ 7.7764� 10�3 through a Hopf bifurcation. The evolution of

the maxima of p with rim in the resulting period-1 stable limit cycle are seen in the bifurcation diagram for rim < 0:00909.

The dynamics go through a period-doubling cascade, yielding period-2k limit cycles. The chaotic dynamics can then be

studied with Poincar�ee sections. We compute these sections at maxima of p, i.e. we define Poincar�ee sections P as:
P ¼ fðmi; fi; giÞ 2 R3j _ppi ¼ 0; €ppi < 0g
First-return maps of the sections are shown in Fig. 4 for increasing values of rim in the chaotic region. The maps are all

unidimensional, as expected for chaotic dynamics. At rim ¼ 0.00962, i.e. just after the period-doubling accumulation
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Fig. 2. (A) g (full line) and p (dashed line) cell-synthesis rates in response to f for KR ¼ 4.5, KS ¼ 1, a¼ 0.026, b¼ 7.5� 10�4 and
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point, the map consists in four disjoint segments. This means that the chaotic oscillations are restrained in the

neighborhood of a period-4 limit cycle. These first steps in the development of the chaotic dynamics are often

called ‘‘noisy’’ orbits [30]. When rim increases (rim ¼ 0.00970 in Fig. 4), two neighboring segments merge and the map

forms a period-2 noisy orbit. This period-halving cascade goes on until the map becomes continuous (rim ¼ 0.00980 in

Fig. 4).

The bifurcation diagram also shows that a saddle-node bifurcation occurs at rim ¼ 0.00986, giving rise to a stable and

an unstable period-3 limit cycle (Fig. 3). Thus for 0:009866 rim 6 0:00994, the strange attractor coexists with the stable

period-3 orbit, each one having its own basin of attraction. At rim ¼ 0.00994, the unstable period-3 limit cycle (plus signs

in the bifurcation diagram) collides with the basin of attraction of the strange attractor. This collision abruptly destroys

the strange attractor in a boundary crisis [31]. The coexistence of the strange attractor and the stable limit cycle is a

cause of bistability and hysteresis in this region. This is exemplified in Fig. 5. At rim ¼ 0.00985, i.e. before the saddle-

node bifurcation, the only stable element is the strange attractor so that the system settles down onto it. When rim is

then increased to 0.00990, the system remains on the strange attractor and the dynamics are chaotic (Fig. 5(A) and (C)).

If rim is further increased beyond the boundary crisis (to 0.00995, for instance), the system settles down onto the period-

3 limit cycle and remains on it if rim is then decreased back to 0.00990 (Fig. 5(B) and (D)). Thus, at rim ¼ 0.00990, the

system can either be periodic or chaotic, depending on its past history. Of course, the transition between the strange

attractor and the limit cycle can also be obtained at a fixed rim value, by the perturbation of the initial conditions. The

final state then depends on the location of the initial conditions with respect to the basins of attraction of the limit cycle

and the strange attractor.



Fig. 3. Bifurcation diagram along rim. The other parameters are those of Fig. 2. The plus (+) signs represent unstable orbits. The

dashed arrows indicate rim values of: 0.00985, 0.00990 and 0.00995.
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After the boundary crisis, the stable period-3 limit cycle undergoes at its turn a cascade of period-doubling bifur-

cations, creating period-3 � 2k limit cycles and leading to a new strange attractor. As observed for the first attractor,

just after the accumulation point (Fig. 4, rim ¼ 0.0100), first-return maps evidence period-3 noisy orbits. However in this

case, the strange attractor abruptly expands at rim ¼ 0.01002, as the unstable period-3 limit cycle derived from the

saddle-node bifurcation collides inside its basin of attraction (internal crisis). The sensibility to initial conditions of this

attractor is comparable to that of the first one (kmax ¼ 0:547 	 0:014 bits/average orbit at rim ¼ 0.0103). Finally, the

strange attractor collapses according to the same scenario as the one that created it, but occurring now along decreasing

rim values. A saddle-node bifurcation occurring at rim ¼ 0.01374 (not shown in Fig. 3) brings about an unstable and a

stable period-3 limit cycle that develop along decreasing rim values. The collision of the unstable orbit with the basin of

attraction of the strange attractor gives rise to an internal crisis at rim ¼ 0.01068 that greatly reduces the strange at-

tractor. As rim then increases, noisy orbits (see Fig. 4, rim ¼ 0.010715) are replaced by stable period-3 � 2k limit cycles

that finally reduce, through period-halving bifurcations, to the stable period-3 limit cycle arisen from the saddle-node

bifurcation at rim ¼ 0.01374.

Many other crises inside the chaotic regions provoke alternations of chaotic and periodic dynamics. We exemplify

this with the order window around rim ¼ 0.0105 in the bifurcation diagram of Fig. 3. For 0:010465 < rim < 0:010480, a

stable period-12 limit cycle breaks off the chaotic dynamics. Just before the onset of this limit cycle, the dynamics

evidence intermittency (Fig. 6). The system presents most of the time a periodic behavior based on the period-12 limit

cycle, but from time to time (for 0:5 � 106 < t < 0:9 � 106 in Fig. 6) a chaotic burst interrupts the periodic oscillations.

Intermittency is due to the onset of a tangent bifurcation in the return map associated with a saddle-node bifurcation

[32]. However, due to the high period of the limit cycle (period-12), the corresponding bifurcation could not be studied.

Setting rim ¼ 0.01030, a bifurcation diagram can be obtained with b as the bifurcation parameter (Fig. 7). The di-

agram is qualitatively very close to that obtained with rim as bifurcation parameter. A stable period-1 limit cycle arisen

from a Hopf bifurcation goes to chaos through the period-doubling route. A saddle-node bifurcation occurs at

b¼ 7.459� 10�4, provokes a boundary crisis at b¼ 7.468� 10�4, and causes bistability in between. Here again, the

related stable limit cycle goes to chaos through period-doubling, expands then reduces through internal crises, and

finally collapse in another (inverted) period-doubling cascade. Note that the dynamics are complex for b > 7:640 � 10�4

(not shown in Fig. 7), including another chaotic period, so that we could not identify the unstable orbit that brings

about the internal crisis at b¼ 7.557� 10�4. However, another kind of bistability is observed after the collapse of the

strange attractor, around b¼ 7.59� 10�4. Two stable period-3 limit cycles coexist and are separated by an unstable one.

The ‘‘upper’’ stable limit cycle merges with the unstable one and disappears in a first saddle-node bifurcation at

b¼ 7.585� 10�4, while the ‘‘lower’’ one disappears through a second saddle-node bifurcation with the same unstable
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limit cycle at b¼ 7.592� 10�4. Hence, the two stable period-3 limit cycles coexist for 7:585 � 10�4 < b < 7:592 � 10�4.

This bistable property as usual gives rise to hysteresis, as exemplified in Fig. 8: at b¼ 7.589� 10�4, two different period-

3 periodic oscillations are accessible to the system, depending on the initial conditions.

3.2. Higher autocatalytic levels

We exemplify the dynamics at higher autocatalytic levels with the case a¼ 0.2 and rim ¼ 0.04. Note that for higher

values, transglutaminase concentrations exceed those of the fragments in the oscillatory domains. As for low auto-

catalytic levels, the dynamics present an unique stable fixed point as b increases, that becomes unstable through Hopf

bifurcation, leading to a period-1 limit cycle. However, the b value at the Hopf bifurcation is much higher

(3.447� 10�3). The evolution of the system is presented as bifurcation diagram in Fig. 9, with b the bifurcation
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parameter. The first strange attractor (obtained for 0:00445 < b < 0:00448) is qualitatively similar to the first attractor

observed at lower autocatalytic levels (see Fig. 7, 0:000743 < b < 0:000747). The sensibility to initial conditions is

higher in time units (kmax ¼ ð5:83 	 0:048Þ � 10�4 bits/time unit at b¼ 004475). However, due to its lower orbital period

(circa 900 time unit), the attractor observed at high autocatalytic levels shows kmax values that are similar to that

observed at low autocatalytic levels, if kmax is expressed with respect to one average orbit (kmax ¼ 0:525 	 0:004 bits/

average orbit). As with low a, a saddle-node bifurcation appears at b¼ 0.004366, creating a stable as well as and

unstable (not shown in Fig. 9) period-4 limit cycle. Nevertheless, oscillation amplitudes on the stable limit cycle are

much higher at high autocatalytic levels, so that, for clarity, the bifurcation diagram of Fig. 9 presents LogðpÞ (rather

than p) values as a function of b.

The period-4 stable limit cycle goes through one period-doubling bifurcation, but, unlike the low a case, this bi-

furcation does not lead to a doubling cascade. The resulting period-8 limit cycle undergoes at its turn a period-halving

bifurcation so that the saddle-node bifurcation does not give rise to the second strange attractor observed with low

autocatalytic levels (see Fig. 7, 0:000747 < b < 0:000759). Inasmuch as the saddle-node bifurcation occurs at a b value

lower than the beginning of the strange attractor, hysteresis is also observed: periodic and chaotic oscillations coexist

for 0:00445 < b < 0:00448. The shape of the stable limit cycle arisen from the saddle-node bifurcation is unusual, as

shown in Fig. 10 for b¼ 0.00446. In the phase space (see the projection in the f –p plane, Fig. 10(A)) the limit cycle is

tightly folded at low f and p values. The trajectories alternate between large-amplitude and small-amplitude orbits. As a

result, time-variations (Fig. 10(B)) show abrupt and sharp peaks separated by periods of relative quiescence (smaller

amplitude oscillations). Presumably because of these features, the unstable limit cycle born of the saddle-node bifur-

cation could not be traced, avoiding the identification of the crises that modify the strange attractor. However we
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hypothesize its destruction at b¼ 0.00448 to be the result of a boundary crisis with the unstable limit cycle, as observed

in the low a case.

Another chaotic zone exists at higher b values (0:004619 < b < 0:004685, Fig. 9). The corresponding strange at-

tractor is very different from the preceding ones (Fig. 11(A)). First, it displays the same kind of abrupt peaks than the



Fig. 9. Log-linear plot for the bifurcation diagram of p as a function of b for a¼ 0.20 and rim ¼ 0.040. The other parameters are those

of Fig. 2.
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period-4 stable limit cycle from which it derives (Fig. 11(B)). Then, it is more sensible to initial conditions. The average

orbital period varies from 3000 to 5000 time units, so that the average information loss due to chaos can be estimated

between kmax ¼ 1:135 	 0:037 and 1:514 	 0:061 bits/orbit at b¼ 0.00466 (i.e. kmax ¼ ð3:786 	 0:122Þ � 10�4 bits/time

units). In both cases, this value is much higher than for the R€oossler system, and equivalent to that of Lorenz. Fur-

thermore, the route towards this strange attractor is also different. Decreasing b from high values (b > 0:0048), it

originates from a period-3 limit cycle that goes through a period-doubling cascade. Because of the sharpness of the

peaks during the chaotic oscillations, precise determination of their maxima demand intensive calculations. Hence,

Poincar�ee sections for this attractor were computed here at p minima (Fig. 12). Just after the period-doubling cascade

(Fig. 12, b¼ 0.004682), first-return maps evidence period-6 noisy orbits, in agreement with the period-doubling route.

The route to the strange attractor from low b values is build on the period-4 stable limit cycle, but does not consist of a

period doubling cascade. Fig. 12 shows the fourth-return map of a Poincar�ee section for b at the limit between the
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periodic and chaotic region (b¼ 0.004619). Although the map is very ‘‘noisy’’ and contains many spurious points or

branches, it is clear from this figure that some branches of the map are tangent to the first diagonal. This represents a

tangent bifurcation and is associated with the intermittency route to chaos [32]. In agreement with this conclusion, Fig.

13 evidences intermittency at b¼ 0.004619. The dynamics most of the time consist of periodic oscillations, with in-

terruptions by a first long chaotic burst (for 1:4 � 105 < t < 2:7 � 105) and another, shorter one, between t¼ 3.1� 105

and 3.4� 105.
4. Conclusion

We have analyzed the dynamics of a bienzymatic cyclic model with two autocatalytic loops as applied to extra-

cellular matrix turnover. When the influences of the loops are low, the system presents limit-cycle oscillations that give

rise to successive chaotic behaviors through period-doubling cascades. The succession of the corresponding strange

attractors is dictated by boundary and internal crisis. With higher autocatalytic levels, one of the strange attractor is

lost, because the corresponding period-doubling cascade does not occur, while another strange attractor arises through

intermittency. In both case, the system displays bistability properties, when a limit cycle coexists with another one or

with a strange attractor.

Complex or chaotic dynamics have previously been observed in a number of biological models. Although the most

abundant literature concerns population (ecological) models (see, for example, [33–35] for recent studies), models for all

biological organization scales have also evidenced chaotic behaviors, including physiology [36–38] and biochemistry

[39–41]. However, while evidenced during in vitro laboratory experiments [42–44], univocal proofs of chaotic behaviors

in real biological systems are still missing. Despite this uncertainty, chaotic dynamics are attractive to biologists, be-

cause they could provide biological systems with a wide richness of behaviors to explain biological oscillations and

rhythms [45,46].

Decroly and Goldbeter [47] studied a biochemical model that is closely related to our model. They addressed the

dynamics of two allosteric enzymes activated by their respective product and coupled in series. The main difference with

our model lies in its linear arrangement which is replaced in our case by a cyclic organization. Furthermore, the two

autocatalytic loops originate in our model from enzyme synthesis by the cells, not from direct regulation of the enzyme

activity by the reaction products. However, both models exhibit complex oscillatory behaviors, including chaos and bi-



H. Berry / Chaos, Solitons and Fractals 18 (2003) 1001–1014 1013
(or multi-)stability properties, although each one presents specific characteristic. For instance, we did not find the

bursting dynamics (spike-like oscillations separated by periods of moderate variations) that arise in Decroly and

Goldbeter�s model via the coupling of two oscillatory mechanisms of different time-scales.

In our model, complex behaviors appear only if the autocatalytic loops thresholds are different, namely if KR > KS . If

this condition is not fulfilled, the system only presents stable steady-states. One explanation could possibly reside in the

highly nonlinear characteristics of the system in the case KR > KS . Indeed, in this case, the kprp=kgrg ratio (representing

the ratio between both enzyme activity synthesis by the cells) is almost constant up to f � KS and increases nonlinearly

for higher f concentrations. Hence, whenever f > KS , fragments indirectly amplify their own increase. For KR 6KS , the

kprp=kgrg ratio decreases when f > KS , and f variations are damped by the system.

Our previous study suggested the possibility of periodic oscillations during extracellular matrix turnover [14]. The

present paper shows that the presence of a second autocatalytic loop could greatly enlarge the variety of the oscillatory

behaviors, including smooth or sharp, periodic or chaotic evolutions, as well as bistable areas between some of these

behaviors. However, this greater variety comes with a substantial increase of the average period. In the present paper,

(average) orbital periods range from 900 to 5� 103 dimensionless time units. This roughly corresponds to periods of the

order of 10 h (with kp ranging from 50 to 500/h [48]), whereas oscillation periods with a single autocatalytic loop fall in

the range of minutes. Hence, experimental testing of the theoretical results should be accessible to conventional cellular

biology methods.
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