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Abstract

In the framework of the ORCCAD system, periodic and multi-rate control laws are implemented
in terms of a set of computing tasks to be executed under a real-time operating system. Sim-
ulations and experiments demonstrate that partially synchronizing such tasks can improve the
practical performance of the implementation. However, using synchronizations may lead to dead-
locks or temporal inconsistencies. In this paper, we examine the consequences of introducing such
synchronization in terms of structural and temporal problems which may occur and how they may
be detected using Petri net modeling and analysis. We conclude with some guidelines about how to
add such synchronization to design deadlock-free and efficient implementations of real-time periodic
control laws.
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1 Introduction

ORCCAD is a set of design, programming and verification tools aimed to ease the development of
efficient and safe robotic tasks and applications! [28]. It is based on a bottom-up approach, where
a basic assumption is that many complex robotic actions can be stated and efficiently solved using
Automatic Control theory, e.g. the Task function approach [23|. Therefore, the first items to be
designed and verified are the so-called Robot-Tasks (RT), i.e. closed-loop control laws encapsulated
in a reactive logical behavior. These RTs are then logically and temporally composed to build more
complex actions and full robotic missions as explained in a complementary paper [9].

Usually, the design of control laws for non-linear systems like robots is made in continuous time
and allows for checking mainly qualitative properties like stability. At run time, these control laws are
generally implemented as multi-tasks programs controlled by a Real Time Operating System (RTOS)
on a single or multiprocessors target. Multi-tasks programs permits modular programming, software
reusability and design of multi-rate controllers. This last feature is useful when the plant exhibits
subsystems with different dynamics [29], when feed-forward paths are used to update some parameters
of the controller or when measurements come from sensors of different kind running at different rates
[19]. Also, it can be useful to optimize computing resources, e.g. for un-tethered underwater vehicles
or planetary rovers where both on-board space and energy are strongly limited.

Actual control laws must meet end-users’ requirements like the maximum value of tracking errors,
time of response and perturbation rejection. Besides the algorithm in use, these quantitative per-
formance indices strongly depends on the actual implementation and in particular on sampling rates
and computing latencies. Unfortunately, non-linear systems control theory do not provide tools to
analyze or synthesize such sampled control laws with respect to output performance indices. On the
other hand, research on real-time operating systems deals with important issues like schedulability,
fault tolerance or liveness but do not measure the impact of the organization of the controller on the
controlled process. In fact, rather few such work is reported.

In [6], Chen et al make a first attempt to analyze the impact of synchronization between concurrent
control tasks on the tracking accuracy of an industrial manipulator. In a further report [1] Armstrong
computes the average latency in a two tasks controller and concludes that the way they must be syn-
chronized depends on the ratio between their respective durations. In [14] Khosla reports experiments
on a direct driven arm while varying the sampling rate of single loop controllers and shows that higher
sampling rates allows for using higher gains with respect to stability. Whitcomb et al [30] computes
the cross latency matrix of a multi-variable control system for a robot arm implemented on a network
of Transputers where both asynchronous and handshaking communications are available between the
processors. In a more recent paper [26], Shin et al refers to delay and loss problems according to the
respective values of the sampling rate and of the latency and computes upper bounds for the values of
the gains of the controller of a robot arm.

In this paper we report some results about the liveness of sets of synchronized real-time tasks in
the framework of the ORCCAD system. In the next section we define the main entities of the lower
level of our system, i.e. tasks and synchronization protocols together with the temporal properties we
want to check. In section 3 we design a Petri net model of the network of communicating tasks and
show in section 4 how it can be used to verify deadlocks freedom. Extending the model in section 5
allows to check for some kind of temporal inconsistency. A synthesis method to build deadlock free,
partially synchronized control laws is given in section 6. Further possible improvements are outlined
in the conclusion.

"http://www.inrialpes.fr /iramr /pub/Orccad /orccad-eng.html



2 From control laws to multi-tasks programs

2.1 Robot-tasks and Module-tasks

The Robot-Task (RT) in ORCCAD is the minimal granularity seen by the end-user at the application
level, and the maximum granularity considered by the control systems engineer at the control level. It
characterizes in a structured way continuous time closed loop control laws, along with their temporal
features related to implementation and the management of associated events. More formally, a RT is
the entire parameterized specification of:

e an elementary servo-control task, i.e. the activation of a control scheme structurally invariant
along the task duration;

e a logical behavior associated with a set of signals (events) which may occur before or during the
task execution.

The translation of the continuous-time specification into a description taking into account imple-
mentation aspects is made by adding temporal properties, i.e. discretization of the time, durations
of computations, communication and synchronization between the involved processes. This is done
by defining each RT in terms of communicating real-time computing tasks called Module-Tasks (MT)
which each implement an elementary part of the control law.

Most of the MTs are periodic tasks: some perform the calculations involved in the computation of
the control algorithm, e.g. the task Jacobian matrix or the control torque. Others, called observers,
monitor conditions like reaching a joint limit or a Jacobian singularity. These observers may trigger
events which are classified into preconditions, postconditions and exceptions and participate in the
reactive management of the RT. The non-periodic reactive behavior of the RT is handled by a special
MT called the Robot-task Automaton (RTA) which may be awakened by events coming from the RT
itself or from an embedding Procedure. These events represent the external view of the RT and are
further used to logically and temporally compose RTs into more complex Procedures up-to the mission
level [9].

Since we expect that in most cases, the MTs will be distributed over a multiprocessor target archi-
tecture, ORCCAD makes available various message passing mechanisms over typed ports. Moreover, in
order to ease the automatic code generation from the dedicated Graphical User Interface (GUI), the
structure of the periodic MTs is as shown in Figure 1. Such a structure clearly separates calculations,
related to control algorithms issues, and communications, related to implementation aspects and calls
to the underlying operating system.

The temporal attributes of a MT are:

e its (nominal or worst case) duration d;, which mainly depends upon the algorithm, the program-
ming language used to encode it (generally C or C++), and the target microprocessor. It is
estimated for simulation and schedulability analysis purpose.

e its activation period 7; (the reciprocal of sampling rate measured in Hz).

e the set of input and output ports of the MT and their associated communication protocols.
e their priority, allowing them to be scheduled at run-time by the operating system

e their assigned processor in case of a multiprocessors target

Note that the ports of each MT (except the RT Automaton) are read or written in the order they are
declared.
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Figure 1: Basic structure of a periodic Module-Task

2.2 Performance versus synchronization

In complex robotic control systems, there are often closed loops (in the sense of control laws)
executing at different sampling rates. For example, the data associated with feedback paths may be
updated more frequently than data associated with feed-forward paths. Indeed, controller performance
may also be influenced by how tightly cooperative tasks are coupled together, according to their
respective durations ([1] [6] [30]).

Simulation and experiments are the only way to estimate the quantitative performance of a non-
linear system controlled by a multi-tasks system. We show now some simulation results using the
GUI of ORCCAD and its underlying simulation software SIMPARC [2], an hybrid simulator able to run
concurrently a numerical integration of the dynamics of the plant and the execution of the control
code, including the temporal features of the MTs.

The first example deals with the control of a robot arm for trajectory tracking in the joint space.
Two algorithms were compared. The first one uses simple fixed gains Proportional-Integral-Derivative
(PID) decoupled control. The second one is more elaborated and is known as computed torque control:
in fact, it uses the additional MOD.DYN MT to compute in real-time estimates of M, the inertia
matrix of the arm and N, the vector of Coriolis, centrifugal and gravity forces. The corresponding
Temporal-Constrained Specification (TCS) is given by Figure 2 and simulation results are shown by
Figure 3. The TCS combines the control block-diagram to which are added the periodicity, duration
and synchronization constraints?, excluding the description of implementation on a target architecture:
thus it may be simulated on an arbitrarily fast fictitious execution machine for control investigation
purpose.

Figure 3a shows the tracking error for the first joint, using the PID control law with different
sampling periods for the control computation task. As expected from sampling theory, we can see that
decreasing the computing period leads to decrease the tracking error, even if the gains remain constant.

More interesting is the comparison between these two control laws given by Figure 3b. As hoped,
using an explicit model of the arm dynamics allows to strongly decrease the tracking error at high
speed while using smaller gains, thus allowing for a reduction of the control noise. We can also check
an old assumption: the computation of the dynamic model of the arm can be run at a period slower
than the one of the main loop of the control law, with small effects on the global performance. This
way, we can optimize the use of the computing power but obviously, as the periods are different, this
task must not synchronize with the others.

?Due to the lack of an underlying control theory, finding convenient values for these temporal attributes remains art
work based on experience and simulations.



Figure 2: TCS block-diagrams a) PID control b) Computed torque control with the additional
MOD.DYN MT
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Figure 3: Tracking errors: a) PID control with different sampling rates — b) Computed torque control
vs. PID control

At first glance, the simplest way to run the control algorithm should be to not synchronize the MTs,
using for example a client/server mechanism e.g. like in [10]. In fact, if we only use asynchronous
communication between MTs having the same priority, the RTOS’s scheduler will trigger them in an
arbitrary order, e.g. the order MTs were drawn through the GUI, without respect to data and time
dependencies. For example, in the upper part of Figure 4 we design a pipe-line of four MTs we expect
to run according to the sequence {MT1, MT2, MT3, MT4} at each period of the RT. Actually, since
they have the same priority and are not synchronized, the RTOS is left to schedule them according
to some hidden internal mechanism. The worst case is shown by the lower part of Figure 4 where
the execution order of the computing path is completely reversed, with MT4 running first and MT1
running last : although control outputs are sampled at the expected rate, the latency between the k*?
measure of sensor ¢ and the instant when this measure is used in the corresponding output Ulg(k)]
is several time larger than the sampling period. It may also cause initialization problems during the
execution of the first loops. Conversely, using adequate synchronization can enforce a MTs execution
ordering compatible with data and time dependencies between algorithmic modules.
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Figure 4: Reverse ordering in a MTs pipe-line: top: Computing path design bottom: Actual execution

Another example given in Figure 6 shows simulation results concerning a trajectory tracking algo-



rithm in SE3, the 6-dimensional space of frames (i.e. the operational space for the arm’s tip), which
TCS is given by Figure 5. In the first case (siml), the tasks were not synchronized leading to large
latencies, e.g. due to reverse pipe-line execution, and thus large tracking errors and unstability. In the
second case, some tasks were synchronized (thick lines), leading to far better performance. It is worth
noting that we only changed the organization of the implementation while both simulations used the
same gains and the same amount of simulated computing power [5].
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Figure 6: Tracking errors: a) tip position vs. time b) tip position in the y-z plane

2.3 Message passing and synchronization

ORCCAD makes available different communication and synchronization mechanisms to link pairs of
MTs via their typed ports. In the sequel, we shall be concerned with the following four [17]:

o ASYN-ASYN: Each task is running freely and the communication does not add synchronization.
e SYN-SYN: The first task to reach the rendez-vous is blocked until the second one is ready.

o ASYN-SYN: The writer is running freely and posts messages on its output ports at each period.
The reader either reads the message if a new one is available or is blocked until the next message
is posted.

e SYN-ASYN: A symmetrical of the previous one. The reader runs freely, the writer is blocked up
to the next request except if a new one was posted since the last reading.

Since we are mainly concerned with closed-loop control, we shall often consider that the best data
is either the last or the next available one. Thus, these protocols do not provide data queuing and



generally allows loss of data, with exceptions for those which are used to send signals to the Robot-task
and application automata to manage the logical behavior of control laws.

In any case, we will now focus only on the periodic behavior of the set of MTs used to perform the
algorithmic part of the RTs.

2.4 Temporal behavior

The practical efficiency of a closed-loop control algorithm is essentially determined by its imple-
mentation. The two major items to be considered are the sampling rate of the control law and the
latency between a sensor measurement and its effective use in the control applied to the robotic system.
Increasing the sampling rate and decreasing the latency makes it possible to increase control gains,
without creating unstability. Thus, the performance of the control as measured by tracking accuracy
and robustness with respect to modeling errors can be improved e.g. [23] [13].

Clearly, the overall temporal behavior of a RT depends upon the temporal attributes of its MTs
and how they communicate (how they are synchronized). Since this is of critical importance for RT
performance, some temporal analysis must be performed. In addition, certain kinds of analysis will
also later facilitate the assignment of MTs to processors, by identifying those MTs which, for example,
never execute at the very same time.

While simulations using Simparc [2] provide information useful for tuning, for example, control pa-
rameters such as the minimum period 7 required for a control loop, simulation results are somewhat
difficult to examine and more formal methods can provide complementary kinds of analysis. Verifica-
tions are carried out using the synchronization skeleton of the RT, i.e. a description of the temporal
and synchronization constraints existing inside the set of MTs. This description takes into account
the MTs period and duration, the ordered list of associated communication ports and the kind of
synchronization associated to connected ports.

At the very least, we suggest there are two temporal aspects to RT behavior which must be checked:

e Compatibility between a task duration and its activation period.

e Deadlock avoidance and consistency of temporal constraints in the resulting synchronization
skeleton.

The first one is easy to check at the GUI level for a MT with an explicit period: we must have a
necessary condition d; < 7;. But whenever a MT engages in synchronous communication, it necessarily
binds its real-time behavior to other MTs and therefore other activation periods. For MTs whose period
is implicitly defined in terms of synchronization with other MTs, this value must be recovered from
the synchronization skeleton. Finally, a necessary schedulability condition for a control path where all
the MTs are run in sequence is 7 > > i, d;.

Design inconsistencies may arise in several ways. Structural deadlocks are due to the synchroniza-
tion structure itself whatever are the numerical values of temporal attributes. In addition, badly
chosen numerical values of temporal attributes like tasks period and duration may lead to temporal
inconsistencies and unsafe (e.g. non-periodic) behavior of the RT, even if it is free from structural
dead-locks.

Structural deadlocks may be associated with circularity in inter-MT communication. For the exam-
ple shown in Figure 7 on the left, each of the three MTs is blocked while waiting to “read”. Others
structural deadlocks are more subtle and emerge when the order in which a MT communicates over
multiple ports is incorrectly specified. In the example shown in Figure 7 on the right, MT2 blocks
while waiting to “read” from MT3 which blocks MT1 from “writing” which in turn blocks MT3 from
“reading”. Clearly, this structural deadlock may be eliminated simply by having MT2 “reading” first
from MT1 and then from MT3, but identifying such deadlock on the GUI screen is usually difficult
because of the complexity of some control laws where many synchronizing links are interleaved as
shown in the TCS depicted by Figure 5.

Therefore, we need modeling and analysis tools to automatically check for deadlock avoidance in
the network of synchronized MTs. While several methods and associated computing tools have been
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investigated, like model checking on Timed Graphs [16] and on data flow synchronous programs encoded
with Signal [15], Petri nets theory provided a simple and efficient way to carry out this task.

In the next section, we introduce a Petri net (PN) model of the MTs behavior which makes it possible
to address such structural analysis in a formal way and in particular, verify that the RT as defined by
the control systems engineer in terms of communicating MTs is deadlock-free.

3 Modeling MTs and synchronization using Petri Nets

Petri Net (PN) theory [18] is gaining increasing importance in the robotics literature for the discrete
event modeling and analysis of robotic systems e.g. [11], since it offers a convenient way of expressing
system behavior which is both parallel, asynchronous and distributed. In addition to the precedence
constraints among robotic actions, looser couplings associated with shared resources can also be directly
expressed, as well as the repetition of certain actions (or sequences of actions). Besides modeling
capabilities and perhaps most importantly for our concern, the PN can be analyzed in a formal way
to obtain information about the dynamic behavior of the modeled system.

In this section, we shall develop a particular kind of PN suitable for the modeling of MT behavior
which is periodic, and then demonstrate how the PN model of a RT composed of communicating MTs
may be analyzed for the presence of deadlock. Our presentation throughout will be rather informal
and uses existing results taken from [7] and [18].

3.1 A PN model of periodic MTs

The simplest PN model associates events with transitions and conditions (which may be true or
false) with places. Places and transitions are linked by directed edges called arcs. The presence of a
token in a place indicates that the corresponding condition is true. The marking therefore describes
the state of the PN in terms of conditions which are true and those which are false. When all of the
input places of a transition become marked (have a token), the transition ‘fires’, i.e. the event occurs;
the firing removes a token from each of the input places (making the pre-conditions false) and deposits
a token in each of the output places (making the post-conditions true).

As shown in Figure 8, the sequential behavior of the simplest periodic MT (reading an input port,
performing a calculation, writing to an output port) may be modeled by a condition/event PN with
three transitions. (Of course, when a MT has multiple input and output ports, we must be careful to
associate a distinct transition with each read and each write.) A fourth transition is required to activate
the MT subject to the periodic awakening associated with a real time clock (RTC), also modeled by a
PN. As we shall be further concerned with temporal analysis we may add some temporal properties to
the model to obtain a timed Petri net, i.e. a PN where durations are associated with some transitions
or places. Following [21] and [22], we have elected to associate the duration [d] of the MT with the
calculation step transition, and thereby assume that reading and writing are instantaneous events, i.e.
events of zero duration. A crossing time [tau| is also assigned to the transition associated with the
RTC (Transitions associated with non zero duration are drawn with thick lines).



Since each place has just one input transition and one output transition, each associated condition
may only become true in one way and can only have one consequence. The MT behavior is therefore
deterministic, and the resulting PN is a so-called connected® marked graph. Properties of marked
graphs shall be of particular importance when we turn to the question of deadlock analysis.
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Real-Time Clock

Waiting for clock

Ready to Read

Read input port [0]

P6 End of Reading
T5 Perform all
—— internal calculations  [d]
P7
<> Ready to write
T6

Write on output port [0]

N\ J

Figure 8: A Petri net model of a periodic Module-Task.

ASYN/SYN communication between two MTs is modeled as shown in Figure 9 on the left and
SYN/SYN communication is modeled as shown in Figure 9 on the right. Note that the transition
associated with the periodic awakening of MT2 is no longer present, since the temporal behavior of
MT2 is bound to that of MT1. Once again, the combination of the two PNs is a connected marked
graph.

Note that ASYN/ASYN communication do not add synchronization constraints and thus have no
model in this synchronization skeleton, i.e. MTs communicating using this protocol have disconnected
models.

142)

]

Figure 9: PN models for ASYN/SYN and SYN/SYN communications

Using these PN models for the MTs and synchronization protocols, we are now able to define the

3A PN is connected if there exists a non-directed path between any two elements (place or transition) of the PN. It
is strongly connected if these paths are directed, i.e. respect the direction of the arcs



PN model of the set of synchronized MTs of Figure 7b. This model is shown by Figure 10.
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Figure 10: A Petri net model of the three MTs with deadlock.

4 Structural analysis

A basic property we want to check is structural dead-lock freedom. More precisely, we would like to
ensure that given any sensible initial marking, deadlock cannot occur. This is important because we are
interested in modeling repetitive behavior of periodic control laws. This property has corresponding
definitions in the PN and marked graph theory [18].

Definition 1 A PN is live (L) with respect to an initial marking My if from any marking in [My],
there exists for each transition a legal firing sequence leading to a marking in which that transition is
(necessarily) enabled.

As deadlock arise when nothing happens, i.e. no transition can be longer enabled, liveness implies
deadlock freedom and allows to use two important theorems:

Theorem 1 For a marked graph, the token count in a directed circuit is invariant under any firing,
i.e. M(C) = My(C) for each directed circuit C' and for any M in R(My), where M(C) denotes the
total number of tokens on C and R(My) is the set of markings reachable from M.

And therefore:

Theorem 2 A marked graph (G, My) is live if and only if My places at least one token on each directed
circuit in G.

For example, the directed circuits of the marked graph shown in Figure 9 on the left are s; = {p1,p2},
so = {p4, ps, s, p7} and s3 = {pg, P10, P11, P12}. Therefore, any marking which assigns at least one token
to each of s1, 89, s3 is live. Moreover, given a live initial marking, the firing behavior of a marked graph
is repetitive. In other words, in a deadlock free network of MTs, every directed circuit of its model is
assigned at least one token in the initial marking. But identifying all of the simple cycles in a more
complicated marked graph such as the one shown in Figure 10 cannot be done by visual inspection.

Rather than finding circuits on the graphical representation of PNs we check liveness using invariant
structural properties of the net. Informally, invariants are properties of the logical structure of a PN,

10



and therefore characterize in some way all possible system behaviors. Invariants associated with places
are usually called (in the English literature) p-invariants and represent unchanging truths about sets
of conditions, such as mutual exclusion. Typically, we are most interested in the sets of minimal
linearly independent positive invariants which are characteristic vectors, i.e. whose entries are all 0
or 1. When the PN is a marked graph, it is well known e.g. [18] that the set of arcs in a directed
circuit is a support for a minimal p-invariant and therefore an initial marking is live when each minimal
p-invariant is assigned at least one token.

We now present a mathematical representation of PNs allowing an automatic search of the p-
invariants. For a p places and ¢ transitions PN, its incidence matrix W (p,t) is a pxlines and ¢ x columns
matrix where:

e W;; = 0 if there is no arc between place P; and transition T}
e W;; = 1if P; is an output place of T}
e W;; = -1if P; is an input place of Tj

The marking vector M is a p dimension vector, describing the marking of the PN during its
evolution. The value n of M; denotes the number of token that place F; owns at a given instant.
The initial marking vector My is of prime importance for deadlocks checking. It is worth noting that,
thanks to the structure of our MTs, tokens in the initial marking are always in the starting place of
the PN, i.e. the task is ready to read its first input port. For example, the elementary PN described
by Figure 8 is also described by the following incidence matrix and initial marking vector:

(-1 1. 0 0 0 O 1
1 -10 0 0 O 0
1 0-10 0 O 0
Wpt)=| 0 0 -1 0 0 1 My= |1
0 01 -10 O 0
0 0 01 -10 0
00 0 0 1 —1] 0]
Let us now consider the following equation:
Wt . X = 0 M

where W (p, ) is the transpose of the incidence matrix and X a p-dimension vector, and assume that
X = V is one of its solution. According to [7], it can be shown that the form V! . M; is constant for
every accessible marking, and in particular for the initial marking My. In consequence, the p-invariants
are the solution of:

p
Vt . M1 = Zvi . Mo(B), Vt = [’Ui,’UQ,...,’Up] (2)
=1

A simple algorithm using linear programming with integers, also given in [7], allows to compute the
p-invariants, and therefore to conclude about the liveness of the PN model of the set of MTs. This
algorithm has been encoded inside a C package allowing to automatically build the PN model from
the GUI of ORCCAD, search the p-invariants and perform the liveness analysis. The complexity of this
algorithm is polynomial in the number of elements of the net [27]. For a medium set of MTs like the
one given Figure 5 the whole process runs in less than 0.2 seconds on a Sparc 5 workstation.

Using this package, the minimal p-invariants of Figure 10 may be identified as follows:

51 = {p1,P2,P3,P4,P16,P5}, 52 = {P6,P7,P8,P17,P9,P10}, 53 = {P11, P12, P13, P14}, and

sg = {p15,P13, P14, P18, P8, P16, P5}- 1f we consider the initial marking corresponding to all three MTs
waiting for activation (places pi,ps, p11 marked), the reader may verify that s4 (in doted line) has no
token and therefore the marking is not live.

4there is no loss of information if the PN is pure, i.e. no place have a same transition as both input and output.
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By modifying Figure 10 so that MT2 reads from MT1 first and then from MT3, we obtain the
marked graph model as shown in Figure 11. P-invariants s, s9,s3 are as before but now s4 =
{p1s, P13, P14, P18, P9, P10, D6, P7, P16, D5 }- The reader may verify that the initial marking {p1,ps,p11}

is now live as required, since pg appears in sy.
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Figure 11: A deadlock-free Petri net model of the three MTs.

5 Temporal analysis

Temporal inconsistencies can occur in complex networks of MTs, where the interleaving of computing
paths can hide, for example, multiple synchronization. As a result, the beginning of execution of a MT
can be delayed at each activation of the control law, leading to a temporal mismatch and a possible
system crash.

Figure 12 shows such an incoherent specification due to a double synchronization of task MT2, one
by a synchronizing reading on the output of MT1 and the other one by an explicit period declaration.
After its third execution, the operating system tries to awake it while the previous execution was not

finished and the system goes down.

RT duration = 120 ms L e e e

0

act= 20 ms act= 15 ms -l

exec=2ms TiPa  T2Pa| exec=lms mz| L }
L

5 \

|

i

MT2

mTL asyn-syn

'Temporal

Figure 12: Temporal specification inconsistency due to double synchronization

To detect such situation, we added additional places and transitions to the previous Petri net model,
as depicted by Figure 13. In fact, these places are only added to explicitly periodic tasks, using a
synchronizing input port connected to a physical clock.

These additional places and transitions allows to catch tokens in a sink place in case of the afore-
mentioned failing behavior, i.e. the clock tries to restart a task which did not achieve its computations.
Looking at the model of MT2 in Figure 13, we see that the first transition Tj is triggered when the
real-time clock (RTC) deposits a token in Pjy while the task is ready to start (token in Pj1). Thus,
these two token are removed, and one is added in Pj7, allowing to fire the very last transition of MT2
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compute
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Figure 13: Extended model of module-tasks with additional sink places P16 and P18

before its starting place. In case of temporal inconsistency, this token will be still there at the next
clock tick: 713 will be fired, a token will be locked in the sink place Pig and MT2 will never restart
since 117 cannot be longer enabled.

Such situation can be checked by observing the evolution of the reachability graph (RG) of the PN
until either the normal completion of the Robot-Task or the occurrence of such a deadlock. Unfortu-
nately, enumerating all the states of the marking can be very expensive and time consuming, especially
if the PN is complex and the nominal duration of the RT is long. In fact, a connected timed PN will
reach a steady state (periodic) behavior after a finite time [7]: thus the PN model of a consistent RT
will reach this periodic behavior before being trapped in a sink place. Searching for this steady state
behavior consists in going through the reachability graph until a marking already visited is once again
reached. This operation is usually faster than a systematic exploration of the RG up to the completion
of the RT. Figure 14 shows such a RG where the repetitive behavior is reached after 75ms (most often
the duration of the transient phase before reaching a periodic behavior is not equal to the steady state
period). These new models and analysis methods have been integrated in our aforementioned software.
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Figure 14: Reachability Graph with a Periodic Steady State Behavior
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6 Sufficient conditions to design deadlock-free Robot-tasks

Many lessons have been learned from extensive mathematical modeling, analysis, simulations and
experiments in ORCCAD about the design of computing architectures for implementing multi-rate
closed loop control laws. Hereafter we present sufficient (but not necessary) conditions about a syn-
chronization scheme that can be adopted by the control engineer for ensuring that the RT is deadlock
free. Moreover the organization of M'Ts we propose allows to minimize computing latencies in order to
improve the control performance.

First we begin by summarizing key aspects of the “translation” of control algorithms (closed loop
control laws) into computing tasks.

e As we deal with control of physical processes, data always flow from sensors to actuators along
several, and sometimes cross-coupled, control paths. It is assumed that data are always available
from the sensor device drivers and can be posted at any time to actuators, i.e. communication
with the physical plant never blocks.

e It is often the case that all parts of the control algorithms need not be computed at the same
rate. In particular, feed-forward paths and parameter adjustments are typically executed more
slowly (less frequently) than feedback error computations. Using multi-rate sampling can also
optimize computing power. Stated more simply, control algorithms can often be decomposed
into groups of cooperating tasks running in sequence and executing with the same period.

e In order to implement (robotic) control laws efficiently, it is desirable to impose a certain ordering
on the execution of sequential groups of tasks along the various control paths, i.e. synchronization
among data-dependent MTs. Just using asynchronous (ASYN/ASYN) communication can lead
to an unexpected (and undesirable) ordering of tasks at run-time by the operating system.

e Using MTs to design RTs promotes a modular approach and reuse of previously encoded functions
and models. However, mapping each MT to a thread (or tasks in the RTOS terminology) at run-
time increases operating system overhead due to numerous context switches and inter-process
communication. Thus, assigning MT groups which may be sequentially executed to threads by
adding a certain amount of synchronization is desirable in order to reduce such overhead and use
CPU resources more efficiently. As ASYN/ASYN communication between groups does not add
synchronization constraints the synchronization skeleton of the RT is not changed.

e The control engineer’s requirements are usually expressed as performance indices about the out-
puts of the physical system, e.g. maximum permissible tracking error. The synchronization
constraints added to the specification of the control block-diagram to better organize the ex-
ecution of the control algorithm are just a mechanism for better achieving such performance
requirements. Decreasing the computing latencies may be addressed at design time through
these mechanisms.

e Increasing the number of instances of synchronization increases the risk of deadlock and temporal
inconsistency. Given the kinds of control laws typically found in a robotics context, we have found
that few strong synchronization using SYN/SYN mechanisms are necessary and must be avoided
as far as possible.

e Temporal inconsistencies arise when multiple synchronizations are in conflict. In fact, in most
cases it is meaningless to assign a task an explicit period (using synchronization with a clock) and
at the same time binding its temporal behavior through synchronization to other tasks. Looking
at the previous example given Figure 12, even the notion of period for MT2 is questionable
in such a case. The system of tasks must behave in a deterministic manner for schedulability
analysis and run-time safety purpose.
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Given such a context, we now turn to guidelines about the design of multi-tasking computing archi-
tectures which exhibit no deadlocks, no temporal inconsistency and tend to minimize the computing
latencies.

While our PN model may be used to check for deadlocks in the inter-task communication, we
suggested in a recent work [4] how the communication ports of each MT might be systematically
reordered until we either obtain a deadlock-free network of tasks or we exhaust all possible choices
and conclude that the control specifications are in error. A drawback of this method is that it may
be unsuccessful if too many synchronizations were used in the design. Another one is its exponential
complexity, even if in practice the sizes of problems to be solved are not enormous. More importantly,
this approach fails to take into account the constraints associated with performance optimization, i.e.
reducing the latency between measurements and corresponding changes to control set-points.

Therefore, under these assumptions we suggest the following sufficient (but not necessary) conditions
useful for systematically designing multi-tasking computing architectures (networks of communicating
MTs) which are free from deadlock and temporal inconsistency and fit closed-loop control requirements
as well as possible.

e Rule 1: Use one and only one synchronization for each MT, i.e. there is just one synchronizing
communication port, either connected to another MT or to a physical clock (when an explicit
activation period is specified).

e Rule 2: Synchronize cooperating MTs with ASYN/SYN and SYN/ASYN connections to impose
execution order (such synchronized MTs will belong to a synchronized group).

e Rule 3: There should be one and only one synchronization with a physical clock for each group
of synchronized MTs.

e Rule 4:Assuming that the real-time operating system uses a preemptive and fixed priority sched-
uler, assign the same priority to every task in a synchronized group and different priorities to
different synchronized groups.

To illustrate these conditions in practice, we present in Figures 15 and 16 the computing architecture
previously described in Figure 2b, this time synchronized following these guidelines, along with the
corresponding PN description (restricted to the structural analysis part)®.

CLK1(5n5)
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exec=2483us

act=5ms
exec=150us
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MOD.DYN

N
asyn/asyn a4
asyn/asyn
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exec=100us exec=343us

TFE.TT.JS COo.Js

ee
asyn/syn

q.q
u asyn/asyn
asyn/asyn

alarm
asyn/syn

Figure 15: Correctly Synchronized Computed Torque Control Diagram

Since ASYN/ASYN communication does not add connectivity to the PN model, the global PN is
now split into several connected components, each corresponding to distinct groups of cooperative MTs
bound by synchronized computing paths.

5There is no PN model for the PR.MAN block which is not a MT but represents either the actual robot or its
simulated model.
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Figure 16: Petri net model of the Synchronized Computed Torque RT

Following the 1°¢ rule, no MT has multiple synchronizations, and thus the computing architecture
may admit no temporal inconsistency. In that way, each MT has a well defined period inherited from
the synchronizing clock of its connected component, which thus can be easily computed®.

Following the 2" rule, communication inside every connected component only use SYN/ASYN and
ASYN/SYN mechanisms. These communication mechanisms add PN connectivity in just one direction
(from the asynchronous port to the synchronous port). On the other hand and according to rule 3,
assigning a physical clock to the unique synchronizing port of one of the MTs prevents the set of M'Ts
to loop itself. Thus, it avoids deadlocks due to synchronization circularity like the one depicted by
Figure 7a. It must be remarked that, conversely to MTs, the clock cannot be preempted nor blocked”
and in any case regularly delivers ticks to awake the set of MTs.

Therefore, using the first three rules implies that the synchronization constraints cannot add any
directed circuit (and thus no blocking circuit) to the synchronization skeleton. In that way the only
remaining minimal p-invariants correspond to the basic structure of the MTs. Since each one is
assigned exactly one token in the initial marking, each connected component is live and the computing
architecture is deadlock free.

These rules define sufficient but not necessary conditions to design a deadlock free RT since a
counter-example can be found looking back at Figure 7b: if we reorder the input ports of MT2 we get
a deadlock free set of MTs while violating the rules. In fact, these rules may not apply to all real-time
applications but are efficient in the ORCCAD approach where the behavior of the RTs is dominated by
the periodic execution of closed-loop control while reactivity to asynchronous events (often leading to
switch the current RT to another one e.g. for graceful degradation) is handled by the RT automaton
which therefore acts as a scheduling supervisor [8].

Due to asynchronous communication between the different connected components, these synchro-
nization constraints are not sufficient to completely define the temporal behavior of the set of MTs.
Choosing an adequate scheduling policy, based on priority assignment according to rule 4, allows to
completely define this temporal behavior at design time.

Assigning one and only one physical clock to each connected component ensures that all threads are
synchronized (no one is free running) and allows us to compute their common period. This is a key
point for further schedulability analysis according to a chosen scheduling policy. A scheduling policy
may be derived from the rate monotonic one [24], i.e. higher priority is given to threads running at
higher sampling rates, which is optimal for single processors using preemption and fixed priorities.

Assigning the same priority for all the threads associated with a same connected component ensures
that this synchronized group will be entirely computed before the next one, which is assigned a lower
priority, is started. In fact, we must be careful to give different priorities to different groups running
with the same period or to branches of a connected component which has forked to avoid undesirable
switches of activity between these computing paths. Also, we must give the highest priority in the

8In practice, the synchronizing port will be either the first reading or the last posting one so that the MT computes
with the last available data as inputs.
"In some cases, this clock might be an interrupt signal coming from sensor data processing [20].
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network of threads to the RT automaton which manages the set of MTs’ reactive behavior. According
to such a policy, the timing diagram of the control law becomes predictable at specification time for a
single board implementation.

In a tightly coupled multi-processor context, as we do not intend to perform dynamic task migration
and thanks to the static kind of the RTs the structure of which is invariant along their duration, pools
of threads will be statically assigned to processors and scheduled according to the same policy [25].

Figure 17 shows the timing diagram of a single CPU implementation of the computing architecture
given by Figure 15, assuming that the three clocks have a common starting instant® and that the
synchronizing port of each task is the first reading one. According to the rate monotonic policy, a high
priority is given to the OBS.JL MT, a medium one to the {TG.JS,TF.TT.JS,CO.JS} set and a low one
to MOD.DYN. The highest priority is assigned to the RTA which is awakened under interrupt upon
occurrence of events on its input port.

Before the occurrence of the first clock tick all threads are locked on their synchronizing input port.
Then, OBS.JL is unlocked upon occurrence of the first clock tick, runs to completion and possibly
triggers the RTA, for which provision is given in the timing diagram. The set of medium priority
tasks then run in sequence in the right order. Finally, MOD.DYN is started, is further temporarily
suspended by the next execution of the higher priority OBS.JL observer and finishes execution during
the second basic cycle of the RT. As shown by the timing diagram, this threads system is predictable
and schedulable. Moreover a schedulability condition may be easily derived.

TG.IS [ | [ | [ | [ |
TETT.JS 1 1 1 1
coss l preemption I l preemption l
cssa | (N I B [
RTA \ \ \ \ \ \

[ 5 10 15 time(ms)

Figure 17: Timing diagram for the Synchronized Computed Torque RT

Each MT now has a well defined period which is the one associated with its connected component.
Let n; be the number of MTs in the 44, connected component, m the number of connected components
in the Robot-Task, d; ; the worst case duration of the 7;;, MT in the j;, connected component, 7; and
D; respectively the period and worst case duration of the j;, connected component and T' the base
period (or Hyperperiod [12]) of the RT, i.e. the smaller common multiple of the 7;.

The schedulability condition for a connected component is simply computed as 7; > E;LZI d;; while
the schedulability condition for a set of connected components running on a given processor is:

m
T

S D~ < T

4 Ti

=1

where % represents the number of execution of the ¢;, connected component during a base period of
the RT. (If a connected component is split over several processors only the modules running on the
processor under analysis must appear in the computation of D).

Finally, it becomes obvious that the MTs belonging to a given connected component like the set
{TG.JS,TF.TT.JS,CO.JS} in Figure 17 (in fact those which are implemented on a same processor) can
be collapsed in a single real-time thread at compile time, thus cancelling useless calls to the RTOS due
to context switches and communication while preserving the global structure of the synchronization
skeleton.

8if the subnets are synchronized by the system clock the global timed PN still will have a steady-state periodic
behavior even if it is not fully connected
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7 Conclusions

In this paper, we have addressed some problems related to the execution of periodic control laws
implemented as multi-tasking programs, with robotics as a privileged application field. Simulations
and experiments have shown that using multi-rate sampling and partial synchronization of real-time
computing tasks called “module tasks” (MTs) which collectively form “robot tasks” (RTs), can improve
the practical efficiency of the controller. Unfortunately, multiple synchronization can lead to deadlocks
or temporal inconsistencies. Therefore, we developed Petri Net (PN) models of the periodic behavior
of the set of synchronized tasks, and then used this model to perform the formal verification of their
temporal behavior. Finally, under some assumptions usually met by robotic control laws we proposed
a synthesis method insuring both deadlock avoidance and latency minimization in order to obtain
safe and efficient multi-tasking implementations whose runtime behavior is defined using both partial
synchronization and the prioritized scheduling provided by the underlying real-time operating system.

In this work, we limited our focus to the periodic behavior of control tasks, without addressing
the initialization of the multi-tasking implementation. As a result, liveness and deadlock freedom are
equivalent properties and basic PN theorems and simple algorithms are used to perform the temporal
analysis. More precisely, we have simply assumed that the marking associated with the initialization
state (all MTs waiting for their first execution) is reachable. Clearly, the case of tasks with “memory”
e.g. recursive filters which must execute several times before producing their first outputs, deserves
special attention. In fact, since during initialization these kinds of tasks read their input ports just
once and then perform the same calculation several times before posting their results at their output
ports, the structure of the PN model (i.e., of the synchronization skeleton) remains unchanged and thus
our structural dead-lock analysis remains valid. Insofar as initialization is concerned, the first usable
output is simply delayed in time, increasing the duration of the transient behavior before reaching the
steady state periodic behavior.

While structural analysis of our PN model makes it possible to systematically detect structural dead-
locks, the temporal analysis presented in section 5 only addresses one kind of temporal inconsistency.
Moreover, this method relies upon the exploration of the reachability graph of the extended PN model
for which the analytical “overhead” cannot be predicted (since it is dependent upon the value of
temporal attributes) and and may be high. As an alternative, we note that algebraic methods to
analyze timed PNs are now emerging e.g. algebra on the (max,+) semi-ring [3]. Indeed, since our basic
PN models are timed event graphs, they can be translated into a linear model in the (max,+) algebra,
thus allowing us to exploit the (max,+) counterparts of classical concepts in system theory such as
state-space recursive equations, transfer functions or feed-back loops. In this way, it would be possible
to analyze both the transient and asymptotic behavior of our multi-tasking controller implementations
within the framework of discrete event dynamic systems, and to evaluate their performance e.g. as
expressed by token production rate. We are currently pursuing such research and we expect that the
temporal properties of interest to us, associated with both the transient and steady-state periodic
behaviors of the RT, will be analyzable in polynomial time, and that taking into account the effects of
priority-based thread preemption at runtime will be tractable.

In the work described in this paper, we have also assumed that the control law implementation was
designed for a mono-processor target platform e.g. a single board computer. Of course, controlling
complex systems often requires multiprocessor implementations. In particular, when there are loosely
coupled elements, the assumption that the overhead associated with inter-task message passing is
negligible, may no longer be valid. This, in turn, raises the issue of how best to distribute the set of MTs,
RTs, and reactive elements of the controller over multiple processors so as to minimize such overhead.
A related problem is how to optimize computing resources when several RTs (e.g. corresponding to
different control modes) are scheduled to carry out a complex mission. We are currently studying this
topic [9] using a synchronous programming language to specify the reactive behavior associated with
changing RTs as part of our experimental work with an underwater vehicle equipped with a robot
arm [29]. New developments such as a new graphical user interface, automatic means to verify RT
properties, and code generators for both simulation and real-time target platforms, are currently being
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incorporated into the ORCCAD toolbox.
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