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Abstract

Software reliability is a major issue in the design of control architecture for robots operating
in hostile or poorly known environments.

The ORCCAD control architecture gathers control laws in continuous time at the low levels
and discrete time logical aspects at higher levels. While some performances can be checked using
simulations, crucial properties such as dead-lock avoidance, safety and liveness can be formally
verified at both levels, using in particular some advantages of synchronous programming and
associated tools. In the framework of the Union project, the underlying programming style
using mission composition from basic actions and formal verification is illustrated by the design
of an underwater structure inspection mission simulation using a ROV fitted with a manipulator.
Since the physical system is not yet ready ounly realistic simulation results are provided, but it
is expected that they will be rather easy to transfer on the real plant.

1 Introduction

A mobile robot aimed to operate in an hazardous environment, like a long range AUV or a plan-
etary rover, is a typical example of critical system. We mean here that, for such a system, like for
a satellite, any repairing or recovery operation, even a mission reconfiguration, which would involve
the intervention of a human operator is always costly, often difficult and sometimes impossible. This
is why such systems should be at least provided with capacities of on-line adaptation, like self re-
planning or sensor-based control. However, this is not sufficient and we have to be sure, as far as
possible, that the system will behave correctly, before launching. More precisely, once a mission has
been defined, we would like to verify that:

e its specifications are correct, i.e. that they correspond to the desired goals,
e its programming conforms to specifications,
e the constraints induced by real-time and implementation issues do not disturb its behavior.

Therefore, and assuming that the hardware structure (mechanics, sensors, computer architecture)
is given, this points out the necessity of validating all the algorithmic and software issues, from
the point of view of their implementation as well as from that of their functionalities. This mainly
concerns two aspects, which should not be considered independently: the control issues, modeled
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through discrete- or continuous-time differential equations, and the logical ones, represented by
discrete events. If we now adopt the user’s point of view, it appears that his main interest is in
the specification of complex missions or applications in an easy and safe way. For that purpose it is
necessary to define properly what are the activities he should handle and how to compose them in
order to meet his requirements.

In classical robot controllers, activities are mainly defined as motion control, i.e. following a
predefined trajectory either in joint or operational space. Using exteroceptive sensors, when allowed,
is difficult and usually limited to the definition of guarded commands. Besides, modern control
theories like the Task-function approach ([Samson91]|) allows to specify and design more efficient
actions in different spaces. In particular, it promotes the use of exteroceptive sensors to design
sensor-based control laws like visual servoing ([Espiau92|) or force-feedback control ([Espiau90]).
Hybrid tasks main be defined, where some directions of space are controlled in position or velocity
while others are controlled using force-feedback, e.g. to perform automatic contour following of an
unknown object. Finally, redundant tasks, i.e. when the dimension of the primary goal is smaller
than the dimension of the physical system, can be designed in the same framework by adding a
secondary cost function: such a task is detailed in section 5.1. Such different control laws are used
in the design of basic actions of the robot and are then scheduled and synchronized, according to the
context, to perform a more complete mission. For example, to perform an assembly operation, we
may use first trajectory tracking until discovering the socket with a camera, switch to visual-servoing
for fine approach and finally switch to force-feedback control to perform an assembly operation after
contact detection.

From the verification side, the compositionality principles must preserve the coherence between
underlying mathematical models, in order to be able to perform formal computations at any level. As
an example, the use of a single synchronous reactive language as a target for automatic translation
is a way of preserving a logical structure whatever the complexity of the application. A consequence
of this point of view is that the basic entities have to be carefully studied and also that composition
operators should have a proper semantics.

The ORCCAD architecture is aimed to provide users with a set of coherent structures and tools to
develop robotic applications in this framework. Continuing a previous work (|Simon94|), we show
in this paper how concepts and validation tools are currently tested in the framework of the Union
project [Rigaud95|, where canonical missions have been defined for a hybrid underwater platform,
i.e. the Ifremer’s Vortex vehicle fitted with a PA10 arm.

This paper is organized as follows: in the next section we present the main concepts we designed
inside the ORCCAD architecture. In section 3 we briefly review some available formal verification
methods. Section 4 describes a mission scenario for the Vortex/Pal0 system. Some of the structures
we use to design this mission are detailed in sections 5 and 6 where simulations results are provided.
Guidelines for the future are given in the conclusion of the paper.

2 ORCCAD: an Hybrid Systems-Oriented Architecture

ORCCAD ([Simon93)) is a development environment for specification, validation by formal methods
and by simulation, and implementation of robotic applications.

The formal definition of a robotic action is a key point in the ORCCAD framework. It is based on
the following basic principles:

e in general, physical tasks to be achieved by robots can be stated as automatic control problems
which can be efficiently solved in real-time by using adequate feedback control loops. In this frame-
work, let us mention that the Task-Function approach ([Samson91|) was specifically developed for
robotic systems;



e the characterization of the physical action is not sufficient for fully defining a robotic action:
starting and stopping times must be considered, as well as reactions to significant events observed
during the task execution;

e since the overall performance of the system relies on the existence of efficient real-time mech-
anisms at the execution level, particular attention must be paid to their specification and their
verification.

A robotic application should therefore handle all these aspects coherently. Its specification must
be modular, structured and accessible to users with different expertise. The end-user concerned
with a particular application should be provided with high level formalisms allowing to focus on
specification and verification issues; the control systems engineer needs an environment with efficient
design, programming and simulation tools to express the control laws which then are encapsulated
for the end-user.

In ORCCAD, two entities are defined in order to fulfill these requirements. The Robot-Task (RT)
models basic robotic actions where control aspects are predominants. The Robot-Procedure (RP)
are used to logically and hierarchically compose RTs and RPs in structures of increasing complexity
from basic actions upto a full mission specification.

The RT characterizes in a structured way continuous time closed loop control laws, along with
their temporal features related to implementation and the management of associated events. More
formally, a RT is the entire parameterized specification of:

e an elementary servo-control task, i.e. the activation of a control scheme structurally invariant along
the task duration;

e a logical behavior associated with a set of signals (events) which are expected before or during the
task execution.

These events may be pre-conditions, post-conditions and exceptions which are themselves classified
in type 1 (weak), type 2 (strong) and type 3 (fatal) exceptions.

This characterization of the interface of a RT with its environment in a clear way, using typed
input/output events, allows to compose them in an easy way in order to construct more complex ac-
tions, the RPs: briefly speaking, they specify in a structured way a logical and temporal arrangement
of RTs in order to achieve an objective in a context dependent and reliable way, providing predefined
corrective actions in the case of unsuccessful execution of RTs. More formally a RP is the complete
specification of
e a main programme, characterizing the nominal execution of the action, composed by RTs, RPs
and conditions,

e a set of triplets (exception event, processing, assertion), which specifies the processing to apply to
handle the exception and the information to transmit to the planification level (if provided), and
e a local behavior defining the logical co-ordination of the previously considered items.

Figure 1 summarizes the exceptions processing organization in ORCCAD. Type 1 events are locally
processed in the RT, e.g. by parameters or gains modification. Type 2 exceptions are treated in the
RP leading to switch to a different RT in nominal conditions and to a new RP in case of failure. Type
3 exceptions lead to a mission abortion through a safety behavior which may be context dependent
([Kapellos94]).

These well defined structures allows to systematize and thus automatize formal verification on the
expected controller behavior. This is also a key to design automatic code generators.

Using robust control-laws and tuning the gains and parameters with a simulation tool like STM-
PARC (|Astraudo92|) ensures the stability of the physical system during RTs execution with specified
performance. On the other hand the logical behavior of the RT is verified to be correct to ensure
critical properties of liveness and safety.

From the discrete event systems point of view, the RP ensures a robust control of the physical
system seen as a collection of RTs. Here, verification mainly concerns the correctness of the logical



decisionnal level

(Mission)
replanning reques

O

new procedure

control level
(Procedures)

functionnal level
(Robot-tasks)

Figure 1: Reactivity and exception handling

and temporal behavior, by proving critical properties and conformity with application’s requirements.
These aspects will be illustrated by examples in the last sections of the paper.

3 Formal Verification: an Overview

Programme verification is a research topic which is almost as old as computer science itself. Among
the existing possibilities, the model checking approach is widely used when problems can be repre-
sented under the form of certain classes of transition systems. In the case of reactive systems, which
is the most relevant for robotics applications, an idea consists in expressing programmes in a language
with a well-defined operational semantics, like in the synchronous approach. Then, the comparison
to specifications can be performed, either by expressing global properties in temporal logics, or by ex-
pressing the specification as a transition system and verifying its equivalence with the whole system.
There exists tools for this approach, like EMC (|Clarke83|) or AUTO (|de Simone89]), both of them
are friendly interfaced with the ESTEREL ([Berry92|) synchronous language. Generally, the user can
either build abstract views and observe the resulting behavior on a reduced automaton, which is easy
when this last is small, or express the property to be checked under the form of a regular criterion and
verify its satisfaction by bisimulation, a technique which may prove that the programme augmented
with the regular criterion exhibits the same behaviour than the original specification ([Sangiorgi95]).

It is also possible to extend this approach from boolean automata to timed ones. The idea consists
in introducing timed states, that is to say states which include implicit counters. Among the existing
tools, let us mention that a time extension to ARGOS (|[Maraninchi92|) allows the use of the temporal
prover KRONOS (|Henziger92|). Finally hybrid systems have been a topic of growing interest in the
recent years. Their study comes from the fact that physical systems are never purely continuous-time
ones nor only finite state machines, but really combine intimately discrete issues and continuous
components. Nevertheless current methods only concerns linear hybrid automata where variables
change at constant rate and thus available tools are not suited to analyse non-linear systems like
robots. In ORCCAD the verification methods we use are summarized in figure 2. See for example
[Espiau95]| for an extended review of possible approaches of formal verification for robotics.
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An important field where formal verification is required is the one of underwater vehicles or robots.
However, only a few works, like [Coste-Maniere95| or [Simon95b|, verify explicitly some properties.
The interested reader may also consult [Kalavanis e.a.95|, where several approaches of control archi-
tecture are described, some of them allowing potentially to perform different types of verification.

4 Experimental Plant and Mission Scenario

Let us now focus to the case study which will be considered in the following. In the framework of
the Union project [Rigaud95| we plan to assess the design and verification methods of Orccad with
an underwater testbed application. The mission will take place in a pool, using the Vortex vehicle
fitted with a manipulator.

Vortex is a R.O.V. designed by Ifremer as a testbed for control laws and control architectures. Up
to now it is equipped with six screw propellers, four in the horizontal plane and two in the vertical
one. Two vertical thrusters will be added so that the vehicle will be actively controllable along and
around all its three motion axis.

The vehicle is fitted with a traditional sensing set such as compass, inclinometers, depth-meter
and gyro-meters allowing to measure most of its internal state. A video camera is used for target
tracking tasks and a belt with eight ultrasonic sounders allows to perform positioning and wall
following tasks. Control algorithms are computed on an external VME backplane running Pirat,
a C++ library of objects used for control design. At a higher level, i.e. control laws and mission
management, ESTEREL is used to design Robot-tasks and Procedures, consistently with the ORCCAD
approach.

Vortex is currently being equipped with an electric powered Mitsubischi Pal0 arm with 7 degrees
of freedom, fixed under the vehicle on its z axis. Control algorithms for the arm are run on a second,
modified, Pirat controller. Up to now the two controllers only have a low bandwidth communication
capability, therefore control laws for Vortex and the Pal0 arm will run independently, and only short
synchronization messages will be exchanged on the communication link. We use this system, depicted
in figure 3 to test the programming style and verification process induced by the RT and RP concepts
given the following mission scenario.

The mission simulates the inspection of an underwater structure i.e. a vertical pipe (figure 4).

Starting from the initial position, Vortex is set in station keeping mode while the arm is folded
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Figure 4: Mission description

from its initial extended position to its parking position. The arm is then locked using the brakes,
while Vortex swims ahead at a defined heading angle up to detection of a wall at a defined distance.
The control law is then switched to the wall following mode up to reaching a corner, where the vehicle
is locked in station keeping mode.

A second phase is then started to work with the arm while the vehicle is stabilized. The arm is
first driven in teleoperated mode to point to some locations in the workspace, then it is operated in
robot mode to track again the stored locations. During this phase, Vortex can be stabilized in two
ways, using target tracking with the camera or using the sounders belt. Once the arm operation is
finished an operator call sets it again in parking position while the vehicle comes back to its initial
position under the crank.

The system operator also defined several general exceptions and recovery behaviours. At any time,
the detection of a water leak or of an hardware failure must lead to abort the mission and to leave
the system in a situation as safe as possible, i.e. setting an alarm and emergency surfacing with the
arm locked in folded position. The vehicle must never cross a depth limit so that the arm cannot hit
the bottom of the pool. It is worth noting that these recovery behaviours are mission- and context-
dependent, i.e. even if a water leak should be a fatal exception for any underwater vehicle the defined
recovery procedure here assumes that the surface is free and could not be used e.g. during under-ice
exploration. Other exceptions more specific to a given system or control algorithms are also defined
inside the subtasks involved in the mission.



Following the ORCCAD approach we designed the necessary RTs and RPs given by figure 5. Al-
though this mission still remains rather simple compared with real operation at sea, the overall
complexity and interleaving of exceptions, recovery behaviours and parallel activities justify that
properties important for the system safety must be checked during mission design and before execu-
tion. The global resulting automaton is impossible to be understood by human beings and even too
big to be displayed. In the next section we focus on the way we designed and validate some of the
control laws and RTs needed to implement the mission scenario.

Procedures Sub-Proc. and Tasks Main Events Comments
InitCruiseConfig X . . -
Vortex: StationKeeping Using absolute position
Pal0: GoToPark Parked Arm folded and locked
ReachWorkingArea | Vortex: SwimAhead WallDetected Navigation
WallFollowing | ComerDetected Using US sensors
Pal0: GoToPark
Dolnspection ilization i
Vortex: KeepStableBase| StopKeepStable Stabilization in workspace
Pal0: Pal0_Working Operator’s calls Inspection with arm tip
Pal0BrakesOff s Brakes are released
GoHome
Vortex: GoToPoint WayPointReached Come back to initial position
Pal0: GoToPark
[ Emergency Hardware failure Emergency recovery behaviour
Vortex: GoUp Water leak
Pal0:  GotoPark Operator’s interrupt
KeepStableBase \Vortex:KeepStableCamera)  TargetFound Visual servoing )
KeepStableUS TargetLost Distance towalls servoing
al0_Working Pal0: Pal0_TT_JS o Traj. tracking in joint space
Pal0_TT_SE3 | JointLimits Traj. track. in operationnal space
Pal0_Teleop Operator’s calls Teleoperation mode
GoToPark
Pal0: Pal0_TT JS ParkPosReached Arm folded
Pal0BrakesOn | ArmLocked Arm locked by brakes

Figure 5: Summary of tasks and procedures

5 Design and Analysis of Robot-tasks

5.1 Trajectory Tracking of the PA10

5.1.1 Control of Redundant Tasks

The control law which is used for the PA10 manipulator belongs to the class of decoupling/feedback
linearization in a dedicated task space. Its general expression is given in (3). The goal assigned to
the manipulator is defined as the regulation to zero of an n—dimensional output function e(q,t),
where q is a vector of generalized coordinates, aimed to represent in a clever way the user’s objective.
In the present case, the output function includes the tracking by the arm tip of a trajectory in the
6-dimensional space of frames (SE(3)). Since the robot has 7 joints, one degree of freedom is available
for achieving simultaneously a secondary task, which can be expressed as the minimization of a scalar
cost hs(q). Classical secondary goals of that kind are the avoidance of kinematic singularities or of
joint limits, the minimization of the velocity norm, etc.... The two tasks are finally gathered into a
single one through the expression:

Oh,
dq

e=Jler+ alls — JJy) (1)

where e; expresses the trajectory tracking task:

_ [ P(g) — P*(1)
‘= ( A(q,t) ) ®



A being a parameterization of the attitude error, P the position of the tip and « a positive weighting
factor. J; = %—‘2 is the jacobian matrix of e;.

The final control law is given below.

~ [ Oe Oe Oe - ~ [ Oe

T=—kM|=— Det+ —g+ = |+ N— M| =
Here, T" is the array of control actuator torques, M and N gather the Lagrangian dynamics, and
k, pu, G, D are tuning parameters. The “hats” indicate that more or less complex models of the
concerned terms can be used. In fact, it should be emphasized that the RT designer may select

easily the adequate models and tuning parameters in ORCCAD, since they belong to some predefined
classes in an object-oriented description of the control.

~,

(3)

5.1.2 Design of a Robot-task

Action Description The reference trajectory is defined in the SE3 space with respect to the
vehicle coordinates system. It will be used to drive the end effector to inspection positions and,
with slight modifications, to control the tip position in teleoperated mode using a master-arm with
a different kinematics. The Modified-Denavit-Hartenberg (MDH) parameters, working range and
main dynamic parameters of the PA10 are listed in table 1.

Prior to any motion, correctness of the initial conditions and software initializations must be
checked. The action must be aborted if a joint limit is reached. The servoing task duration is the
one of the reference trajectory.

Link | o ! d | 6 T Limits(rad)
1 0 0 0 |q1]0.315| —2.352.35
2 0 /2 0| g 0 —1.64 1.64
3 0 | —7/2| 0 | g3 |0.450 || —2.352.35
4 0| 7/2 | 0 |qsa]| 0.0 —2.35 2.35
5 0 | —7/2| 0 | g5 | 0.50 —2.35 2.35
6 0 /2 0 |¢g | 0.0 —3.14 3.14
7 0 | —7/2| 0 | g7 | 0.080 || mno limits

Link | Masses Inertia Moments

1 9.78 0.3646, 0.3738, 0.3673 | —1.632

2 8.41 0.0851, 0.894, 0.0851 .532

3 3.51 0.0502, 0.0588, 0.0529 —.314

4 4.31 0.0291, 0.0321, 0.0291 .199

5 3.45 0.1173, 0.1206, 0.1221 —.568

6 1.46 0.0016, 0.0078, 0.0016 —.044

7 0.24 0.002, 0.0002, 0.0002 —.007

Table 1: Denavit-Hartenberg and dynamic parameters of the PA10 arm (in air)

Specification in Continuous Time On the basis of these informations and requirements, a set
of objects defined in the RT modeling [Kapellos94|) can now be instantiated by setting adequate
numerical values. The resulting specification defines the action from a continuous time point of
view, i.e independently of time discretization and other implementation related aspects which are
considered in a next design step. A graphical representation of the RT designed using the RT editor
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of the ORCCAD system is given figure 6. Some of these objects are now described and the reader is
referred to [Kapellos95b| for a complete description of a similar RT.

TGPA10 computes on line the reference trajectory Ry(t) = [Pa(t), Aa(t)] in the SE(3) space. The
initial position Rjni; = [Pinit, Ainit] i considered to be the current one, while the final position
Ryin = [Pfin, Afin], as well as the trajectory duration T are given by the parameters of the Robot-
task. Velocity and acceleration profiles of the trajectory are fixed by choosing the following r(t)

function:
Py(t) = Pinir + 7(t)[Prin — Pinit] @)
Ad(t) = AinitA(U’a T‘(t)@), le [Oa T]

where u is the vector of the axis of the rotation and © is the value of the rotation angle.
For simulation purposes, the PA10 object models the dynamics of the arm using the state repre-

sentation: .
X = f(XaUat): Y:g(X)7 X = [(h:qz:/t: 1777]

where the dynamics (including hydrodynamics and hydrostatic forces) f is computed using Dy-
namechs (|[McMillan95]) and the direct kinematics g is computed using the Symoro software ([Dombre88|).

KINPA10 computes the attitude of the frame linked to the end effector of the arm from the values
of the MDH parameters given in table 1. This attitude is expressed in the frame linked to the binding
point of the arm on the vehicle.

TFRT computes the task function e(q,t) given by equations 1 and 2. The choice of the attitude
error parameterization, of the secondary objective to minimize and the value of the weighting be-
tween the primary and secondary task functions are left to the designer. In this case the axis/angle
parameterization is used for rotations while the avoidance of joint limits using Greville’s algorithm
is selected as a secondary objective.

CORED computes the control vector I' to be sent to the actuators. Further simulations and
experiments allow to tune the values of the gains k£, u, G and D.

The discrete event behaviour of the RT is specified by the instantiation of three objects. More
precisely,

-OBSPREC tests the conditions to start the action (initializations, ...) and sends the “start” event
to the discrete event controller.

-BUTPA10 detects a joint limit hit and reports it to the discrete event controller by emitting the
event “joint_lim”. “Software” limits are computed using the values of table 1 together with a user’s
defined threshold.

ATR computes the RT desired behaviour: it is driven by the observed input events and it emits
output ones. The designer has to specify the processing type for the declared exceptions. In our
case, accordingly to the action description, the T2 type is associated to “joint_lim” event. Thanks
to the strong typing of events, the corresponding ESTEREL code is automatically generated through
the Graphical User Interface (GUI) and is proven to be correct in any case ([Kapellos94]).

5.1.3 Time-constrained Specification

The passage from the above continuous time specification to a description taking into account im-
plementation aspects is done by specifying temporal properties, i.e. sampling periods, duration of
computations, communications and synchronizations between the processes. It is also finally neces-
sary to enter the localization of data processing codes.

At this stage of specification the basic entities are Module-tasks, i.e. real-time tasks, usually pe-
riodic, which implement an elemental functional module of the RT. Since MTs may, possibly, be
distributed over a multi-processor target architecture they communicate using typed ports and spe-
cific synchronization mechanisms. Each MT owns one input (output) port for each data it consumes
(resp. produces).
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Figure 6: Graphical Representation of the Robot-task Specifying a Trajectory Tracking Action in
the Frame Space

Let us describe explicitly some aspects concerning the particular RT design. The TGPA10 module
owns two output ports, out Rd, out dRd, which transmits at every period R, and its differential
dRd to TFRT (fig. 6). Since no data is needed by the TGPA10 module, no input port is specified.

Three different types of synchronization are associated to establish communications. CORED and
PA10 communicate in an Asynchronous/Synchronous way so that the control outputs sent to the
actuators are the last computed. The Event type is used for the communications between observers
and the ATR module, which is the one ensuring the safe and ordered transmission of the events, and
Asynchronous/Asynchronous type is adopted for other communications.

It is finally necessary to associate sampling periods with the modules. For the TGPA10, it is set to
15ms and its code execution duration is estimated at 90us, while for the CORED module the period
is fixed at 10ms. The names of the files where are located the initialization and computation codes
are indicated as well.

5.1.4 Analysis of a Robot-task

Prior to the real-time code generation we analyse the Robot-task specification in order to ensure
safety properties of the network of modules like dead-lock avoidance and temporal consistency using
Petri net modelling and analysis ([Simon97]). Besides, validation of the control performance can be
checked through realistic simulations, taking into account both the plant model and the controller’s
timed behaviour. As an illustration of the last point we present a few simulation results. Figure 7
plots the evolution of the x and z coordinates of the origin of the end-effector frame in SE(3) (left
part) together with the values of the joint variables during a 3ss motion. The Simparc simulation
programme was automatically generated from the GUI and allows to tune control gains and temporal
attributes upto matching the end user’s requirements e.g. expressed as a maximum allowable value
for the tracking error.

5.2 Vortex control: Wall following and stabilization

There are two main tasks involving vehicle control during the phases of workspace reaching and
inspection. The first one is the wall following and corner stabilization using the U.S. sensors belt
and the second is the stabilization in front of a known target, here a vertical pipe, with the camera.
This last one is designed from slight modifications of a pipe following task described in [Rives96].
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Several kinds of wall following and stabilization tasks can be performed according to the sensors
configuration and value of set points. In [Simon94| sensors were located in the corners of the vehicle,
thus allowing a “spiral” task in the pool with automatic crossing of the corners and obstacle avoidance.
For locking in a pool corner, a “square” configuration like the one depicted in figure 8 is more adequate.

uss us4

us6 us3
— P1 P5 P2 |_>

us7 \< % V us2

us8 usl

. horizontal vertical
mm acoustic sensor thruster thruster

Figure 8: Vortex configuration (top view)

Although 3 sensors would be enough to control motions along the x and y axis and around the
yaw axis, we can use four of them in order to improve reliability and decoupling. Sensors number
4,5,6 and 7 are here used to perform left wall following and docking. According to the task-function
approach ([Samson91]), we can design the following first sensor-based task-function to be servoed to
zero in order to control the x, y and yaw motions (assuming that the pool angle is a square angle):

(usd + usb) — 2 x x4 N dist.
e = (us6 + us7) — 2 x yq = 0 y dist. (5)
(usd — usd) + (us7 — us6) yaw

A second task-function uses the internal sensors to control the depth of the vehicle and its roll and
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pitch angles:

(z — zq) depth
ey = (gﬁ — gzﬁd) é 0 roll (6)
(0 —06,) pitch

From this 6 dimensional hybrid task-function we are now able to compute the elementary forces
and torques along and around the axes of the vehicle using simple PID controllers with fixed gains.
These elementary forces and torques are finally gathered to compute the total desired force screw
applied to the vehicle using its set of thrusters through a mapping and anti wind-up function.

Control laws for the vehicle and the arm were tested and tuned using the realistic simulations
provided by Simparc ([Astraudo92]). Some classes of the Dynamechs library ([McMillan95]) were
integrated in the former model of Vortex to compute the arm dynamics and the interaction between
the two subsystems. Simparc allows to set many temporal features of the system and of the con-
trollers. Figure 9 shows the front sensors signals during the last seconds of the docking phase. The
used numerical values are the ones we expect to use in real experiments, i.e. sampling rates for the
PA10 and Vortex controllers of 10 ms and 100 ms respectively. The US sensors synthesized by ray
tracing are triggered every 360 ms with a 90 ms shift between two successive sounders. The logical
behavior of this Robot-task is not detailed here but follows the general structure described in the
previous section.

Once we have designed and validate all the necessary RT's we may logically en temporally compose
them to design and verify more increasingly complex actions upto reaching the mission level as shown
in the next section.

front sensors measures

initia error on x: 1m

3.896154.26703

initial error on psi: 0.7 rad

noise on sensors: +/- 0.1m

simulation duration: 10 sec.

2.89615 3.39615
\ \

2.39615
\

1.89615

o] 200 400 600 936

Figure 9: Outputs of Front Sensors During Docking

6 Design and Analysis of Procedures

The user-oriented description of the mission given section 4 naturally guided us to design the
four principal procedures which are described below. They will be used afterwards to compose the
application.
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e INITCRUISECONFIG consists in preparing the vehicle for cruising. It is composed of the STA-
TIONKEEPING and PA10TTJS tasks which are launched concurrently to stabilize the platform
while the arm is driven to its parking configuration. The ArmLocked event is a post-condition
of the procedure and stops it.

e REACHWORKINGAREA is used to navigate in the pool until the vehicle reaches the inspection
place as described in section 4. The PAIOBRAKESON task is active all along the procedure
duration to keep the arm motionless and folded. The SWIMAHEAD task drives the vehicle in
the pool up to a wall detection (WallDetected event) and is followed by the WALLFOLLOWING
task active up to reaching a corner of the pool. According to our previous knowledge of
the environment the corresponding (CornerDetected) event can be built using US sensors and
absolute positioning information to be sure that we are locked in the right corner (the one
where there is a pipe).

e DOINSPECTION is used to coordinate actions of the platform and of the arm in order to ac-
complish the main task which is inspecting the pipe. Points of the target may be learn by
teleoperation or recovered using predefined locations. This procedure is extensively detailed in
the following paragraph.

e GOHOME is in charge of driving the vehicle to its homing position and preparing it to be pulled
out. It uses GOTOPOINT and STATIONKEEPING tasks which concerns the platform activity
and PATIOBRAKESON and PA10TTJS tasks which concerns the one of the arm.

We now detail the specific procedure DOINSPECTION. It is complex enough to enlighten the
specification and analysis process we propose in the framework of the ORCCAD approach.

6.1 The DoINSPECTION Procedure: Specification and Analysis

DOINSPECTION procedure aims at performing manipulation operations with the arm while ensur-
ing the stability of the base. Since the base and the arm are controlled separately despite of mutual
disturbances, an important requirement is that the arm can only move when the base is stable enough
and stops its motion otherwise. Motions of the arm can be performed again after recovering platform
stability. It is clear that the need to handle concurrency, preemption and synchronization is very
strong in this procedure as well as the stability of the overall physical system; these reasons justify
our choice to present it in detail.

More precisely, the procedure can begin when the vehicle has reached the working area, i.e. it is
positioned in front of the cylinder to be inspected within a predefined threshold (see fig. 13). During
arm operations the vehicle is controlled using the KEEPSTABLECAMERA RP. The presence of the
camera signal is monitored all along the procedure. Loosing this signal, e.g. due to an uncontrolled
motion of the vehicles, raises a TargetLost signal switching to the KEEPSTABLEUS task up to stability
and video signal recovery (TargetFound).

Once the vehicle is stable in front of its target the actions concerning the arm can be run con-
currently with the platform stabilization on the second controller. The PAI0TELEOP may begin
under control of predefined signals coming from the operator’s interface and keyboard to touch some
locations on the target and store their coordinates. Upon an operator’s command, the arm controller
is set in the mode of automatic trajectory tracking in operational space PA10TTSES3 to point again
the visited locations. As explained in section 5.1 several secondary task-functions, like joint-limits
and singularities avoidance, can be switched according to the operation context. In both modes,
a platform unstability temporary blocks the arm motions (PAIO0BRAKESON task) up to recovering
vehicle control.
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Let us now see how we progressively specify and analyse this procedure by hierarchically com-
posing actions of increasing complexity. In particular we detail in the following paragraphs two
(sub)procedures: the first one concerns the stabilization of the base while the second deals with
‘safe’ motions of the arm. At each step of the specification validation by formal methods and simu-
lations are proposed.

6.1.1 The KEEPSTABLEBASE Procedure

Since the camera sampling rate is about ten times faster than the U.S. sensors, it is expected that
the first one will be more robust with respect to the disturbances coming from the arm motions.
However, if the camera looses the target, we can switch to sounders stabilization until being able
to recover the target visual tracking mode, centered facing the pipe. Thus, several different actions
may be concurrently used in a context dependent way to achieve a common goal. This redundancy
is useful to increase the safety and efficiency of the system and such a situation where several RT's
are exceptions of each other is a typical structure in our procedures.

Thus this procedure is composed by the KEEPSTABLECAMERA and KEEPSTABLEUS RTs. The
first one is the main programme while the second one is a recovery programme associated with the
TargetLost type 2 exception issue from the KEEPSTABLECAMERA task. In the case of the recovery
programme execution, the end of the procedure is achieved either by reception of the TargetFound
event giving the possibility to come back to the main programme, or by the StopKeepStable event
awaited all along the evolution of the procedure. Thus, using knowledge about the geometry of the
pool, this action is able to achieve stability of the mobile base even in the case of video tracking
failure. This specification is depicted in figure 10.

Name : KEEPSTABLEBASE
Pre-cond:OkInit[30ms|, SignallsValid[30ms]
Main programme:

KeepStableCamera
T2 exceptions: TargetLost

do

KeepStableUs

until targetFound
T3 exceptions: WaterLeak, ...
Post-cond : StopKeepStable [10ss]

Figure 10: KEEPSTABLEBASE RP specification

Assuming that the individual Robot-tasks were previously validated, the analysis process now
mainly concerns the verification of the logical behaviour of the discrete event controller given by the
translation of the RP specification into the ESTEREL language. Nevertheless, the logical correctness
of the programme does not guarantee that all possible sequences of tasks are compatible, correctly
parameterized and finally that switching is smooth enough to avoid undesired transient behaviours.
As pointed in section 3 the state of the art in verification of hybrid systems does not provides usable
methods to prove assertions related to continuous time varying variables of the system’s state. Thus
simulation remains a complementary method to be used for a complete verification of our procedure.

Logical Behaviour Verification Firstly, the satisfaction of crucial properties is checked. Con-
cerning the safety property (any fatal exception must always be correctly handled) we proceed as
follows. Knowing the user’s specification defining the fatal exceptions and the associated processing,
we build a criterion defined by abstract actions like:
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“Error = |[Water_Leak? and not [Accent!”.

The abstraction of the global procedure automaton with respect to this criterion is then computed.
The absence of the “Error” action in the resulting automaton proves that the safety property is
verified.

The liveness property (the RP always reaches its goal in a nominal execution) is proved in a
similar way. The “Success” signal is emitted at the end of all successful achievements of a RP. The
abstraction of the procedure automaton crossed with an adequate criterion built with this signal
must be equivalent by bisimulation to a one state automaton with a single action, the “Success” one.

Conflicts detection : We are interesting here to check that during the RP evolution it does not exist
instants where two different RTs are competing for using a same resource of the system. We consider
the physical resources controlled by the RTs (the arm and the vehicle) as well as the software
resources used by the controllers (real-time tasks). For example, we want to verify that the RTs
KEEPSTABLECAMERA and KEEPSTABLEUS never compete to apply different desired force screws
to Vortex thrusters during all the RP evolution. We reduce the global automaton (fig. 11) to the only
interesting signals STARTSERVOINGVORTEX and STOPPEDSERVOINGVORTEX. Thus we can check
that these two signals alternate during the RP life insuring that a control law can be started only
after confirmation that the previous one is stopped. This transition happens in an atomic reaction
of the automaton thus minimizing the delay during which the vehicle is not controlled (typically one
sampling period according to the real implementation).

The conformity of the RP behaviour with respect to the requirements must be also verified. For
example, we proved that the loss of the visual signal is always handled by switching to the KEEP-
STABLEUS task by observing the global automaton with respect to the TargetLost event (specified
as a type 2 exception) and the StartServoingUs signal (fig. 11).

Finally, in order to help the user during the phase of RPs specification we use abstract views
by switching the body of a non-atomic behavioural activity into a single one at a relevant level of
abstraction. Actually, every mismatch in the behaviour’s specification is reflected in the resulting
automaton. Figure 11 illustrates the nominal execution of the overall mission at the level of abstrac-
tion of an RT; only starting and final instants of RTs are considered making abstraction of their
internal evolution.

Validation of Smooth Switching After the verification of the logical behaviour of the procedure
we focus now on a particular phase of the system’s evolution: the transition between the two control
tasks. Logical analysis provides no information about the transient behaviour of the physical system
during RT switching. Up to now the ORCCAD environment is able to simulate individual Robot-
tasks. In the context of this work we developed structures to simulate RP as sequences of RTs. What
is characteristic is that the discrete event controller is the same as the one which will be used for
execution in real world([Pissard95|,[Kapellos95]).

Figure 11 illustrates results of a 10 sec simulation. The transition from KEEPSTABLECAMERA task
to the KEEPSTABLEUS, triggered by the TargetLost exception, is done smoothly as it is indicated
by the evolution of the x and y coordinates of Vortex. We must point out that the generated RTA
automatically handles the management of the switching mechanism at the level of the Real-time
Operating System (RTOS) i.e. creation, suspension, resumption and deletion of real-time processes
together with checking for preconditions completion.

6.1.2 PA10SAFEMOVESE3 Procedure

We now briefly present the SAFEMOVESES3 procedure related to motion control of the arm in op-
erational space. It uses the PA1I0TTSE3 task for trajectory tracking. Upon reception of a type 2
exception stating that the vehicle is unstable the arm is stopped using PAIOBRAKESON to help re-
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Figure 11: KEEPSTABLEBASE procedure: abstract view and simulation
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covering stability. Once it is done PA1I0TTSES is reactivated up to the end of the desired trajectory
receiving the PosAtteined post-condition. As this specification is slightly more complex that the one
of the KEEPSTABLEBASE procedure we only show its abstract view and simulation results where we
can see a motion interrupt while the base tries to stabilize again (see figure 12 and the lowest plot
figure 13).

©oc1

START_RTPalOTTSe3

0oc2

?BE_RTPal0TTSe3.
IBF_controle_prr

?BaselnStable.
Abort rt Pal0TTSe3.
ISTART _RTPal0BrakesOn

. 713 RTPalOTTSe3.
?BaseStahilised . 1T3%C 3
[Abort 1t PalOBrakesOn . HT3xcontrole py
ISTART RTPalOTTSe3

oc3 0oCo

?T3_RTPalOBrakesOn .
T3 controle_prr

Figure 12: Abstract view of the PAIOSAFEMOVESE3 procedure

6.1.3 DOINSPECTION Specification

At this stage we can ensure that, for the KEEPSTABLEBASE and PA10SAFEMOVESE3 procedures,
the logical behaviour of the controller is correct and that the simulated sequencing of tasks works cor-
rectly. We are ready now to compose these actions with the other ones to obtain the DOINSPECTION
procedure.

Its main programme consists of two parallel branches concerning the arm and the base. Respec-
tively, they are specified as follows:

SEQ(do
Pal0OBrakesOn
until BaseStabilized;
repeat 2 times
PalOSafeMovelJsS;
PalOSafeMoveSe3;
end repeat
do
PalOSafeMovels
until ParkingPositionReached
emit InpectionOK

This specification states that the Pal0 actuators are blocked until the base is stable. A soon as
this condition is satisfied the arm is driven to inspect two locations in two steps: a motion in the
joint space drives the arm in the region of interest and sequently a new motion in the tip frame space
moves the end-effector in front of the inspection point. We remark that the meaning of ‘safe’ motion
is that the base and the arm do not move concurrently. Finally, the arm reaches the parking position
and signals that the inspection is finished.

The second parallel branch of the main programme concerns the base of the vehicle and it is
specified as follows:
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SEQ(do
loop
BaseSearchTarget;
emitBaseStabilized
KeepStableBase;
end loop
until (InpectionOK)

It states that the base is situated in front of the target such that the axis of the cylinder is exactly
in the center of the camera’s image with the right appearance. Sequently, it signals that the base
is in a motionless position and keeps it using KEEPSTABLEBASE. We remind that this procedure
handles the loss of the video signal and that the ‘loop’ instruction aims precisely to come back to the
vision based control. InspectionOK signal, emitted by the branch of the parallel instruction handling
the Pal0 activity interrupts the stabilization of the base and the procedure terminates.

6.1.4 DOINSPECTION Analysis

Verification of the Logical Behaviour The crucial properties of safety, liveness and absence
of conflicts are verified, like for all the previous procedures. Interesting properties to be proved
here concerns the conformity of the specification with respect to the mission requirements and in
particular the right synchronizations between tasks. Let us now present a few results.

We want to certify that the arm is motionless when the platform is recovering stabilization using
the ultra-sonic sensors. The actions involved in this property are KEEPSTABLEUS and PA10TTSE3
and therefore the signals in respect of which we observe and reduce the global automaton are START-
KeepStableUs, BFKeepStableUs, STARTPal0ttse3, BFPal0ttse3 and AbortPal0ttse3. The result is
given by the top plot of figure 13. We remark that the two tasks always run in sequence: from the
state ‘0C3’ either KEEPSTABLEUS is executed (state ‘0C4’) or PAIOTTSE3 (state ‘OC5’). In partic-
ular, if KEEPSTABLEUS run from state ‘OC5’ the PA10TTSES3 task is aborted and only re-activated
after the end of the KEEPSTABLEUS task. The automaton given by the top plot of figure 13 is a
more detailed abstract view of the procedure at the RT level and was used to check the right ordering
of actions during tasks switching.

Smooth Switching Validation We must recall that the base and the arm are separately con-
trolled so that the stability of the whole system cannot be formally insured. The procedures previ-
ously presented only concerns every sub-system.

Besides, in this procedure, coordinated activities are specified. Of course, from the logical point
of view we proved that an image loss, probably due to the arm’s motion, is correctly handled but
the only way we have to test that their mutual disturbances permits the realization of the mission
remains simulation.

Figure 13 presents a 15 sec simulation of the DOINSPECTION procedure. The two plots at the
top of the figure illustrate the evolution of the x and y coordinates of the base, while the lowest
plot represents the evolution of the x coordinate of the origin of the end-effector frame of the arm.
Vertical lines indicate the instants of detection of the mentioned events which imply a Robot-task
switching in the procedure. The results appear to be satisfactory : the motion of the vehicle during
tasks switching is smooth enough to allow for the video signal recovery and recentering of the camera
in front of the pipe. Moreover, the motions of the arm are correctly synchronized with the motions of
the vehicle, i.e. the arm is always motionless except when the pipe’s image is stabilized and centered
in the vision’s system window. It must be point out that the simulated discrete event controller,
managing the arm and vehicle motion tasks, is the same that theone to be downloaded on the actual
controller thus improving the confidence we may have in the final system’s behaviour.
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Figure 13: DOINSPECTION procedure: a) abstract view at RT level b) simulation of an evolution
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Finally, following the same programming methodology all the RPs, RTs and recovery handlers
necessary to the execution of the mission are gathered in the embedding INSPECTION procedure as
outlined in figure 14. At the mission level most internal details are hidden to the end-user as shown
in figure 15 depicting the foreseen run-time operator’s interface.
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Figure 14: Outline of the MISSION procedure

7 Concluding remarks

We have described in this paper a methodology for mission programming using actions composition,
and for its formal verification. It is currently applied to the simulation of an underwater inspection
operation in the framework of the UNION project. It has been proved that the logical behaviour
of a class of elementary tasks is correct in a generic way, i.e whatever the size of the problem
([Kapellos94]). The absence of deadlocks and the right working of the recovery procedures were
checked. Several views of reduced behaviours were also produced. Finally, the verification approach
was used to perform some optimization in the handling of real-time tasks.

Since tools for the verification of temporal features and hybrid systems are not mature enough,
we only verify the logical behaviours of robotic actions involved in the application. Thus, realistic
simulations remains useful to check numerical properties, i.e. tasks synchronization delays or control
law performance. Previous experiences shown that this kind of simulation is helpful to prepare
experiments and to save time on the real site. We hope that this statement will be confirmed by the
experiments planned by the end of the UNION project.
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Figure 15: Operator’s interface

Although the mission we describe in this paper looks simple compared with a real operation at
sea, the interleaving of events and activities of the full mission automaton justifies our hierarchical
design and verification process, where we design complex actions from already validated ones lying
at a lower level. As an illustration of the complexity, let us mention that the overall automaton of
the application has 715 states and 8,597 transitions, which clearly excludes to build it by hand or to
verify it visually. This size is a consequence of the existence of a true parallelism between arm and
vehicle controls all along the operation.

Despite its success, we consider that this work still leaves several questions open. Among them,

we can distinguish three main classes of problems which should be solved for ensuring the widest
possible applicability of the proposed approach.

1. Specification. Clearly, the coding of the elementary behaviours “by hand” remains rather messy
and error prone. As we did for the robot-tasks, the automatic translation of a specifica-
tion stated in a “natural” end-user’s language into ESTEREL programmes is a first necessity
(|[Espiau96|). Another requirement is that the connection to a possible planning level should

be ensured properly. In that ultimate case, the specification under the form of synchronized
procedures would be produced automatically.

Verification and Diagnosis. The available tools for logical aspects seem to have reached a quality
level which is high enough for our applications. Even the size seems not to be a problem thanks
to new verification techniques using Binary Decision Diagrams, a compact form of storage state
space encoded with booleans (|Bryant92]). However, in the critical applications we address,
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logical aspects are obviously not sufficient for understanding the behaviour of the application.
At least, considering timed aspects is necessary. Some tools, based on timed transition systems,
begin now to be available in the academic world. However they still suffer of various problems:
mainly, expressing the properties to check is difficult, and the diagnosis provided by a temporal
prover is generally understandable by an expert only. A great effort should therefore be done
for making these techniques really utilizable.

3. Handling of Symbolic Information. Again, in practice, logics is necessary but not sufficient.
Clearly, an end-user has to specify some issues under the form of symbolic (or linguistic)
variables, and to understand messages from the system with the same semantics. This points
out the necessity for a system like ORCCAD to handle symbolic aspects (inputs, outputs and
computations) with the same rigor as it does for events or continuous variables. Is it not a
challenge?
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