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Abstract

This paper addresses the problem of specification and formal verification of complezr applications in advanced
robotics systems. In a first part, the need for such studies is presented, and a state-of-the-art in the field is given,
ranging from computer science to robotics. Then, the key features used in the paper are presented. They are called
the Robot Task and the Robot Procedure respectively, and allow to specify in a structured way all the elements
of robot controllers from the continuous and discrete time specification to implementation aspects. They are both
integrated in the ORCCAD design environment. In the following, verification issues are described in depth, from
the logical and temporal point of view. They are illustrated by a real example of automatic vehicle driving, in
which various properties are proved and abstract views are built. The conclusion gives an evaluation of the obtained
results, expresses some requirements and draws guidelines for the future. The interest of hybrid systems models is
particularly emphasized.



1 Introduction

A mobile robot aimed to operate in an hazardous environment, like a long range AUV or a planetary rover, is a
typical example of critical system. We mean here that for such a system any repairing or recovery operation, or even a
mission reconfiguration which would involve the intervention of a human operator is always costly, often difficult and
sometimes impossible. This is why such systems should be at least provided with capacities of on-line adaption, like
self replanning or sensor-based control. However, this is not sufficient and we have to be sure, as far as possible, that
the system will behave correctly, before launching. More precisely, once a mission has been defined, we would like to
verify that:
¢ its specifications are correct, i.e. that they correspond to the desired goals,

e its programming conforms to specifications,
e the constraints induced by real-time and implementation issues do not disturb its behavior.

Therefore, and once the system hardware structure is given, this points out the necessity of validating all the algo-
rithmic and software issues, from the point of view of their implementation as well as from that of their functionalities.
This mainly concerns two aspects, which should not be considered independently: the control issues, modeled through
discrete- or continuous-time differential equations, and the logical ones, represented by discrete events. The questions
raised by the first aspect (control issues) are addressed in [Simon98]. Concerning the second case, we are for example
led back to the need for verifying the logical aspects (absence of deadlocks, conformity of the results for various sce-
narii...), or checking some temporal characteristics (absence of temporal deadlocks, values of lower and upper bounds
on the duration of specific tasks...).

If we now adopt the user’s point of view, it appears that his main interest is in the specification of complex
missions or applications in an easy and safe way. For that purpose it is necessary to define properly what are the
activities he should handle and how to compose them in order to meet his requirements. From the verification side,
the compositionnality principles must preserve the coherence between underlying mathematical models in order to be
able to perform formal computations at any level. As an example, the use of a single synchronous reactive language as
a target for automatic translation is a way of preserving a logical structure whatever the complexity of the application.
A consequence of this point of view is that the basic entities have to be carefully studied and also that composition
operators should have a proper semantics.

The aim of this paper is to describe how and in what framework we address this class of problems, to present
concepts and tools and to comment various examples of logical and temporal verification taken from a real world
robotic application, the automatic driving of an electric car.

It is organized as follows. In section 2, we give a brief state-of-the-art of formal verification principles, firstly in
the computer science area, then by describing to some extent the use of such methods in robotics through a review of
the available literature. Then (section 3) we shortly present the software environment we use in all our applications,
we give some details about the basic entity we defined, the Robot Task, and describe how to compose them in order
to construct the so-called Robot Procedures. In the two next sections, verification issues are addressed, firstly from
a logical point of view, secondly by including temporal aspects. The paper ends with a critical analysis of the work
done and the proposition of some guidelines for the future.

2 Formal Verification: From Computer Science to Robotics
2.1 Reactive systems

The research area of program formal verification begins with the work of Floyd [Floyd67] and Hoare [Hoare69]
for sequential programs. They established the basis of the so-called deductive proof systems area, wherein VDM-
Z [Jones86], PVS [Owre92], COQ [Dowek91] are some famous representative tools. These theorem provers do not
perform fully automatic verification, but they discharge the user from tedious tasks and allow him to focus on the
essential structures of the proof.

These approaches inspired the community of reactive programming. In 1977, Pnueli [Pnueli77] proposed the use of
temporal logics as a basis for proving correctness of reactive systems. Temporal logic formulas express in a declarative
way the set of programs which satisfies the property. The verification process consists in testing that the program
belongs to this set. Behavioral methods are also proposed as a complementary approach [Milner80]. They differ from
the temporal logic based methods by the formalism which is used to express properties. Behavioral properties are
expressed in the same formalism as the program to verify. Then, the verification process consists in comparing the
program with the property by using, for instance, equivalence relations.

Axiomatizations of these two methods have been proposed, which made the formal verification of reactive programs
theoretically possible. Nevertheless, in most of cases their automation is not realizable in practice. A solution consists



in restricting the class of involved programs to the one of finite state programs. Automation becomes then possible
owing to the use of finite state machine (i.e automata) to represent programs. For this reason, the definition and the
efficient implementation of algorithms for automatic verification of finite state programs became an intense activity
during the eighties for both methods [Clarke86, Queille81]. For temporal-logic based methods, decision procedures are
known under the name of model-checking techniques.

These algorithms are implemented through several tools: CADP [Garavel97], Fc2tools [Bouali96], The Concurrency
WorkBench [Cleaveland89] for the behavioral approach ; EMC [Clarke83] and Xesar [Richier87] for the logic-based one.
The major technical drawback of these verification methods, which are based on automata as programs models, is due
to the model size. Indeed, this one increases exponentially with the number of parallel components of the program.
Some strategies have nevertheless been studied to overcome these problems : reduction of the size of the stored
models [Courcoubetis90, Bouajjani90] or symbolic methods of representation (mainly BDDs [Bryant86]) [Coudert90,
Fernandez93].

All the above-mentioned tools take automata as inputs. However, it is obvious that a complex system could not
be described directly by an automaton which is a too low-level formalism of description. For this reason, high-level
languages, the semantics of which are expressed in terms of automata, have been designed:

e The first class is the one of Synchronous Languages among them Esterel, Lustre and Signal (a presentation of
these three languages can be found in [Benveniste91]) are the most famous. They are used to program reactive
systems, since the automaton model of a program could be translated into executable code automatically. This
kind of languages makes the assumption that the outputs are simultaneous to the inputs that cause them. They
offer large programming environment with formal verification capabilities (for instance, owing to connections
with the above-mentioned tools), as well as simulating and debugging features. Argos [Maraninchi92] is an-
other synchronous language which has been recently designed and is inspired from the graphical formalism of
Statecharts [Harel84].

e A second category is the one of Asynchronous languages: Lotos [Bolognesi88], Electre [Perraud92], ..., which are
much known for protocol specification or real-time tasks scheduling. They also offer programming environments
with various possibilities.

2.2 Hybrid systems

Hybrid systems have been a topic of growing interest in the recent years. Their study comes from the fact that
physical systems are never purely continuous-time ones nor only finite state machines, but really combine intimately
discrete issues and continuous components. It is interesting to note that this idea was recognized by two distinct
communities (computer science and automatic control), although the approaches were very different. Engineers from
the automatic control side started from differential (continuous or discretized) dynamical systems, in which for example
stability, convergence or robustness issues are of considerable importance, and tried to progressively introduce in such
systems discrete events (switching modes, model changes...). Theoretical tools for studying such hybrid systems have
been proposed (see [Lu94] for example). Of course, the main complexity of these systems remains located in their
dynamical part, and the associated finite state machines are often of a rather low size. On the contrary, the computer
science community searches to extend his results with (discrete) finite state machines to hybrid systems modeled as
finite state automata, by adding progressively real-valued variables. A state represents a control location wherein
variables change continuously with time according to evolution laws. In that case, the complexity of the system is due
to the size of the underlying transition system, while the addressed dynamical issues remain rudimentary. A major
challenge of the next decades is to make these two approaches meeting.

We detail now the state-of-the-art from the computer science point of view. It is obvious that it is not possible
to take into account the whole class of possible hybrid systems for formal verification purposes. The first class of
hybrid systems for which the main theoretical results exist, so as formal verification tools, is timed-automata. In a
timed-automaton, each variable z is a “clock” the rate of change with time of which is always 1. Model-checking
algorithms have been studied in [Alur90, Henzinger92]. Kronos [Henzinger92] and HyTech [Alur69] are tools which
implement model-checking algorithms for timed-automata. After this first step about the formal analysis of hybrid
systems, other subclasses have been identified: integration timed automata [Kesten93] where all the variables have
rates 0 or 1, and linear hybrid automata where the variables change at constant rates. The two above-mentioned
tools have been extended in order to support the analysis of some of these subclasses [Alur95]. Some approaches
complementary to the model-checking one are also under study : approximate analysis [Halbwachs94],[Henzinger94]
and methods based on duration calculus [Bouajjani9s)].

Few high-level languages have been designed to support hybrid models. Timed Argos is a temporal extension of
the synchronous language Argos aimed to describe timed-automata. It is interfaced with the Kronos tool. Another
extension of Argos, named Hybrid Argos, allows attributes to be attached with states and transitions. These attributes
are propagated in the resulting automaton, and this is finally a way to describe hybrid systems. Electre ([Perraud92])



can also be used to model linear hybrid systems with specific properties. Specific verification methods have been
developed for this subclass inside the Electre environment [Roux95].

Finally, and as we will see later, the community of control of Discrete Event Systems also works on timed extensions
of the theory of supervisory control.

2.3 Use in Robotics

Robotics, as an area integrating mechanics, computer science, automatic control and sensor technology is a domain
where a natural reflex of the engineer is to re-use the basic techniques of the mother areas before developing specific
approaches when needed. This is true also in the domain of formal verification. Indeed, it would be more exact to speak
of formal verification and architecture design instead of verification alone, since these two issues are commonly strongly
linked in robotics. In fact, considering robots as true hybrid (continuous/discrete -time) systems and exploiting this
idea is a quite recent approach. This is why we will see that a review of the literature mainly exhausts the application
of rather classical methods. Researchers in robotics have in fact followed two main paths:

e The first one comes more or less from questions raised by the so-called area of Real-Time Artificial Intelligence,
and is also related to Intelligent Control. Here, the idea is to design functional architectures for the control
of complex robotics systems that allow to address several levels, from execution to planning, while being able
to cope with uncertainties, failures, etc... by on-line reasoning and reconfiguration. In that case, verification
aspects are usually focused on task coordination and mission reachability through reactive planning.

e A second point of view is based on the popular approach of DES (Discrete Event Systems). The underlying
idea is to try to build for such systems a theory aimed to be the analogous of the dynamics system theory in
continuous time, allowing in that way to address problems of design, optimization, identification, control, etc...
In the well-known approach of Ramadge and Wonham ([Ramadge89, Ramadge87]; see also [Kumar93] for a
similar approach), based on the theory of languages and automata, both the specification of a desired behavior
and the modeling of a process have the form of finite state machines. Then, owing to the definition of a set
of controllable events, a dedicated supervisory controller can be synthesized. Besides, let us mention that the
(maz,+) approach developed in parallel ([Gaubert93, Cohen89]) is able to address rather similar problems within
a nice mathematical framework which allows in supplement to consider quantitative issues or concepts from the
automatic control area, like asymptotic behavior, Lyapunov functions, etc... Let us also note the existence of
extensions to the RW’s approach, such as a timed extension in [Brandin92] or a temporal logics- based extension
in [Seow95].

Very well suited to the design of controllers for flexible manufacturing systems, this theory is also the most
largely used in the robotics literature.

We now give an overview of the existing approaches in robotics by taking the point of view of the application areas.
We will distinguish three main domains.

The first area deals is the one of flexible manufacturing systems. Indeed, this is the area where most of the references
can be found. The usual approach is the synthesis of a supervisory controller ¢ la RW, therefore with no major concern
about verification issues. Nevertheless, and to lie in the scope of the paper, let us mention that the timed extension
already cited ([Brandin92]) was applied to a simple work-cell where it could be proved that the duration of the nominal
production cycle was less than n time units. Another exception is the work reported in [Antoniotti95a, Antoniotti95b]
in which the DES and the model checking approaches are blended in order to be able to formally verify the logics of
the synthesized supervisor. In [Antoniotti95a], this is applied to a legged robot and in [Antoniotti95b] to a simple
work-cell. Let us end this short review by mentioning the work of [Rahimi91] where verification is done for industrial
robots.

A second domain of robotics in which formal verification is clearly necessary, although only sometimes used, is the
one of mobile autonomous robots. For example, in [Causse95], colored Petri Nets are used for the design and the
validation of the logical structure of a control architecture dedicated to a mobile robot with sensors. In [Musliner92],
an architecture allowing to merge Al-type reasoning and real-time behavior through a graph-based representation is
proposed. The approach integrates temporal aspects, and the structure of the transition system itself can be modified
on-line when necessary; here, the application is a toy mobile robot equipped with a sonar. Again in the framework
of reactive AI and planning, and even if not addressing exclusively the area of mobile robots, we find the approach
of [Lyons90, Lyons93]. There, a structure based on sensory-motor modules and modeled as a network of concurrent
communicating processes is defined. This allows to build and analyze plans including on-line reactivity. It is applied
to visually-guided grasping in [Murphy92]. Basic papers in this area are [Arkin89] (Schemas) and [Brockett90]. The
last proposes a formal language which handles differential equations and discrete events; it is applied in [Manikonda95]
to motion planning.



An another approach is reported in [Kosecka95]: the DES/RW theory is used (mainly owing to its compositionnality
properties) for synthesizing a controller handling a set of visual-based behaviors in a mobile robot. A very close
application is addressed in [Pissard95], but with more verification aspects. Note that this question of compositionnality
is strongly raised in the classical behavior-based models ([Brooks86]), where the need for a rich structure is obvious
since it cannot exist implicitly in such approaches. That is the origin of the work reported in [Kosecka95b, Kosecka96].
IXSn a similar problem of active vision, [Marchand97] proposes a different approach, based on the Signal synchronous
language.

An important field where formal verification is required is the one of underwater vehicles or robots. A few works, like
[Coste-Maniere95] or [Simon95b], verify explicitly some properties. However, the interested reader may also consult
[Kalavanis95], where several approaches of control architecture are described, some of them allowing potentially to
perform different types of verification.

Finally we cannot forget in this review the area of autonomous vehicles, which clearly demands high guarantees of
safety and is therefore a critical application domain for verification methods. Let us for example mention that such
requirements are expressed in [Deshpande95], in the Automated Highway project. See for example [Lynch97] , where
safety verification is performed in the case of platooning. Some interesting results may also be found in automatic
or aided car driving applications: for example, in [Lynch95], the correctness of the behavior of a decelerating vehicle
is formally proved; in [Kapellos95], as detailed later, some useful properties in automatic vehicle following are also
derived.

3 Specification in the OrRccAD Architecture

ORCCAD ([Simon93]) is a development environment for specification, validation by formal methods and by simula-
tion, and implementation of robotic applications!. Its design is based on the following basic principles:

e in general, physical tasks to be achieved by robots can be stated as automatic control problems which can be
efficiently solved in real-time by using adequate multi-rate and possibly distributed feedback control loops. In
this framework functional specification and analysis using approaches taken from the automatic control theory
toolbox, e.g. the Task-Function one ([Samson91]) specifically developed for robotic systems providing a robust
control laws specification methodology. Specific computational model for this type of sampled data control
systems must be developed in order to handle their implementation-dependent characteristics ([Simon98]).

e the characterization of the physical action is not sufficient for fully defining a robotic action: starting and
stopping times must be considered, as well as reactions to significant events observed during the task execution.
For the design of a robotic application parallelism, concurrency and preemption of actions must be specified,
verified and implemented. Reactive systems theory is quite relevant for these aspects.

It is worth noting that the state of the art excludes the use of an unified computational model to describe and
analyze all aspects of a robotic application, continuous, sampled and discrete-event one. The challenge posed in the
ORCCAD system is to propose to the users a development methodology and a set of tools handling coherently all these
aspects of a robotic application without worrying at each step of the design about the use of the adequate model
and its interface. The end-user concerned with a particular application should be provided with high level formalisms
allowing him to focus on specification and verification issues; the control systems engineer needs an environment
with efficient design, programming and simulation tools to express the control laws which then are encapsulated for
the end-user. Thus two computational models are merged: data-flow for the specification of the feedback control
loops and the computation model defined by the semantics of the synchronous languages for the specification of the
logical part of the application. It is obtained by the definition of two key entities: the Robot-task (RT), representing
an elementary robotic action, where automatic control aspects are predominant, encapsulated in a logical behavior
expressed in terms of input/output events. They constitute its interface with the environment and the other entities of
the ORCCAD system, the Robot-procedure (RP), where only behavioral aspects are considered through the composition
of previously defined TRs. Therefore, in ORCCAD, the proposed methodology to fully specify a robotic application
consists in the identification and specification of all the RTs needed by the application, and then by composing them
hierarchically in the form of RPs. These two entities will be described and illustrated in sections 3.2 and 3.3.

The resulting control architecture is organized in three levels (Figure 1b): in the functional level reside the RTs
executing the low level control laws; thanks to their event driven interface they are sequenced by the RPs which are
elements of the control level. Finally a decisional level (not yet existing) should be ideally added on the top of the
architecture to provide replanning capabilities, however without real-time features.

The ORCCAD system provides a graphical environment, a link with the SIMPARC simulation system ([Astraudo92])
and the generation of real-time code running under VXWORKS.

Lhttp://www.inrialpes.fr/iramr/pub/Orccad /orccad-eng.html



Figure 1: A train of virtually linked Praxicars

The approach has been already used with various robotics systems such as robot-arms ([Kapellos94, Simon98,
Kapellos97]), a wheeled mobile robot ([Pissard95]) or underwater vehicles or manipulation systems ([Coste-Maniere95,
Simon96]). The specification aspects and the formal verification capabilities provided by the ORCCAD will be demon-
strated using the following real-world experiment.

3.1 Automatic Vehicle Driving

An Automatic Vehicle Driving application has been specified and experimented in the framework of the PRAXITELE
Project ([Jourdan95],[Abdou97]). The system is made of two electric vehicles, the leader being driven by a human
being and the second having to automatically follow it as in a virtual train (Figure 1).

A set of infrared emitters is mounted on the back of the first car, while the second is equipped with a vision system.
Initially, the undriven car tries to catch the right signal in order to locate the first one. When done, the expected
nominal execution is that the undriven car follows the driven one until both are stopped by an operator intervention.
Every time the leading car imposes a strong deceleration, the undriven car’s brakes are must be activated so that a
minimal distance between the two cars is ensured. In addition, during the execution the video signal may be lost or
irrelevant. In this case a parking maneuver is started. The driven car is supposed to come back and the train to be
reformed.

The design of the application begins with the specification of all the RT's needed to achieve the automatic following
phase of the application and the phase of the parking maneuver. For the first phase three RTs are designed: two for
the driving and steering motors of the car using exteroceptive sensor information, which virtually links the driven
leader car to the non-driven following one (named SENSLOC and SENSDIR respectively); the third, (named BRAKE)
uses the foot-brake of the car in order to impose a desired deceleration. For the phase of the parking maneuver two
RTs are designed allowing the undriven car to track a reference trajectory on the basis of odometry information only
(respectively named CARTLOC and CARTDIR).

The design of the application is then completed with the specification of the RPs which logically composes the
pre-defined RTs in order to achieve the desired logical behavior as presented in section 3.3.

3.2 The Robot Task

The RT in ORCCAD is the minimal “granularity” seen by the end-user at the application level, and the maximum
granularity considered by the control systems engineer at the control level . It is described in details in [Simon93],
see also [Borrelly98] for recent improvements. Formally, a RT is defined as the parameterized specification of an
elementary control law, i.e. the activation of a control scheme structurally invariant along the task duration, and of
a logical behavior associated with a set of signals (events) which may occur just before, during and just after the task
execution.

From the control point of view, the specification of a RT requires to define the functions, the models and the
parameters which appear in the (continuous time) analytical expression of the control outputs to be applied to the
actuators in order to perform the desired physical action. Besides, the specification of the logical behavior is obtained
by setting the events to be considered and their exception handling. These events and the associated processings are
typed. We distinguish:

e the pre-conditions: their occurrence is required for starting the servoing task. Synchronization pre-conditions are
related to logical conditions, while measurement ones are usually obtained through sensors. A temporal watchdog can
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be associated with each measurement pre-condition.
e the exceptions: they are emitted during the execution of the servoing task and indicates a failure detection. Their
processing is as follows:

- type 1: the reaction to the received exception is limited to the modification of the value of at least one parameter
of the control scheme, e.g. setting a regularization parameter to smoothly cross a kinematic singularity;

- type 2: the exception requires the activation of new RTs. The reaction consists in killing the current one and
reporting the causes of the malfunction to the adequate level. The recovering process to activate is known and specified
in the RP to which the RT contributes. Switching to the parking maneuver RT in case of vision signal loss is such an
exception;

- type 3: the exception is considered as fatal. Type 3 exceptions lead to a mission abortion through a safety behavior
which may be context dependent. That way, the Praxicar uses the braking RT to quickly stop in case of hardware
failure.

e the post-conditions: often related to the environment, they are handled as conditions for a normal termination of
the RT. Watchdogs can be associated to their waiting.

Figure 2 summarizes the exceptions processing organization in ORCCAD. Type 1 events are locally processed in
the RT, e.g. by parameters or gains modification. Type 2 exceptions are treated in the RP, at the ‘control level’ of
the architecture, leading to switch to a different RT. Type 3 exceptions lead to a mission abortion through context
dependent operations.

Finally, a RT is completely specified by setting temporal properties, i.e. sampling times, durations of the computa-
tions, communication and synchronization between the involved processes. This is done by implementing each RT in
terms of communicating real-time computing “tasks”, called Module-tasks. Most of them are periodic and perform the
calculations involved in the computation of the control algorithm. Others, called observers, monitor conditions and
are therefore used to handle preconditions, exceptions and post-conditions. The non-periodic reactive behavior of the
RT is handled by a special Module-task called the Robot-task Automaton (RTA) which may be awakened by signals
coming from the RT itself through the outputs of the observers and is used to link the RT to the input/output signals
associated with the control level. Modeling and analysis of the Module-tasks network are presented in [Simon98].

Example of RT specification Among the various RTs required to implement the automatic car driving scenario
we focus now on the SENSLoOC RT. The required action is: starting, after having checked that the connection with
the driving motors is established and that the automatic mode is on. Then, controlling the undriven car using visual
information while checking for a possible change of mode (switch to manual mode), a possible defect in the system or
a video signal loss. Let us now detail some aspects of its specification:

The control input a. is the driving motors acceleration and is given by : a. = (+)Av + ;5(Az — hv) where v is
the velocity of the following car and h, Az, Av denote differences between the two cars, in time, position and speed
respectively. From the user point of view the RT is specified by assembling (connecting and synchronizing) a set
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Figure 3: Design of the SENSLoc RT through the GUI of Orccad

of re-usable modules implementing algorithmic and behavioral functionalities. The internal structure of this RT is
depicted in Figure 3 where:

— PC: interprets the results of the image processing in order to compute Az and Awv,

— EST: estimates the slopes,

— TG: computes the desired acceleration a,

— CO: converts the a. in current and send it to the digital-to-analog converter,

— VOIT: reads the car state (wheels position and speed)

Its logical behavior is specified through the EXC_OBS, OBS_PREC, RTA modules as follows: i) checking that the
connection with the motors is established and the automatic mode is on constitute the preconditions of the RT, ii)
loosing the video signal is a type 2 exception iii) hardware failures are specified as type 3 events leading to an emergency
stop of the vehicle.

Time constraints specification is achieved by assigning a sampling period of 10ms to all periodic tasks, except for co
which runs at 5ms. In addition, non-blocking message passing mechanisms are selected for inter-tasks communication.

3.3 The Robot Procedure

The characterization of the interface of a RT with its environment in a clear way, using typed input/output events,
allows to compose them easily in order to construct more complex actions, the so called Robot-procedures (RP). The
aim in designing this entity is to be able to define a representation of a robotic action that could fit any abstraction
level needed by the mission specification system. In its simplest expression, a RP coincides with a RT, while the most
complex one might represent the full mission. Briefly speaking, it specifies in a structured way a logical and temporal
arrangement of RTs in order to achieve an objective in a context-dependent and reliable way, providing predefined
corrective actions in the case of unsuccessful execution of RTs.

More formally a RP is the full specification of
e a main program, (nominal execution of the action), composed of RTs, RPs and conditions,

o a set of triplets {exception event, processing, assertion}, which specifies the processing to be applied for handling the
exception, and the information to transmit to the planning level (if any),
o a local behavior defining the logical coordination of the previously considered items.

The composition of RTs and RPs in the main program is obtained through operators ([Coste-Maniere92]) which
express sequence, parallelism, conditions, iterations, rendez-vous and various levels of preemption. The exception
events in the triplets are either type-2 exceptions detected by the participating RTs or ones specific to the RP.
These elements are coordinated in the same way as in a RT : the main program is activated after satisfaction of the
preconditions, and normally ends when the postconditions are satisfied. This nominal execution can be aborted to
process the exceptions. The semantics of the RP formalism is statically defined in [Kapellos94]. The operational one
is defined by a translation into the synchronous language Esterel [Berry92], since its semantics is compiled in terms of
automata.

The automatic control aspects of an application mission are therefore exclusively considered at the RT level. Here,
the verification issues mainly concerns the correctness of the logical and temporal behaviors. As seen in section 4, we
are in fact interested in proving critical properties and conformity with application requirements.



Name : FOLLOWME Name: GUARDEDFOLLOW
Pre-cond:OklInit[30ms],AutoMode[30ms],Start[5mn| Nominal execution

Main program: Parallel
Loop start (SENSLOC)
wait TargetFound [5mn] start (SENSDIR)
start (GUARDEDFOLLOW) Loop
EndLoop if MoreBrake then start (BRAKE)
T3 exceptions: Auto2man, MecFaill, ... EndLoop
Post-cond : Stop [60mn] EndParallel

T2 Exception: (SignalLost, start (PARKING))

Figure 4: Specification of FOLLOWME and GUARDEDFOLLOW RPs

Example of RP Specification The whole Automatic Vehicle Driving application is specified into a RP named
FoLLOWME (see fig. 4). Its nominal execution is described in the RP main program specified as an infinite loop
the body of which begins with the test of the external condition TargetFound which indicates that the driven car is
detected by the second one. Whenever it is satisfied within a specified elapsed time, a RP named GUARDEDFOLLOW,
detailed below, is activated to control the second car. Let us emphasize that the programming is structured, in the
sense that we can use a RP inside the definition of another one. Before starting the FOLLOWME nominal execution,
a set of three preconditions must be satisfied before the indicated delays; the initialization phase (motors, sensors, ...)
must have been achieved without detecting errors, the automatic mode must be activated and the “human” operator
has to give the start order. The nominal execution of this main RP is stopped in two cases: either the supervisor
gives a stop order, or the manual mode is activated. In the first case, the RP ends normally; in the second one it is
interrupted by a global type-3 exception.

The RP GUARDEDFOLLOW (see fig.4) is built from the parallel composition of three RTs : SENsLoc, SENSDIR
and BRAKE. The RT BRAKE is activated every time the leading car imposes strong decelerations, indicated by the
MoreBrake event. Let us note that the first two RTs may be forced to stop if the exception of type 2 concerning the
loss of the video signal between the two cars is detected (SignalLost event). The RP GUARDEDFOLLOW handles this
situation by starting a recovery program, the RP PARKING, the specification of which is analog to GUARDEDFOLLOW
RP; the difference is that this RT is based on odometry information rather than visual servoing.

Let us describe informally the evolution of a 10mn experiment in the INRIA domain. Some results of the initial part
of this experiment are in given figure 5.

Initially, the inter-car distance is 9m and the leading car is motionless. After a while the visual target is detected, thus
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Figure 5: (a) inter-car distance, (b) speed of the following car, (c) brakes pressure

the TargetFound condition is satisfied and therefore the SENSLOC and the SENSDIR RTs of the GUARDEDFoOLLOW
RP are activated while the MoreBrake event is awaited. Using the visual information, the undriven car reaches the
minimum inter-car distance (1.5m) to be virtually locked. Then it follows the driven one with a 30 km/h velocity at
a distance of 4m. At the third mn, the MoreBrake event is broadcasted due to a sudden deceleration of the leading
vehicle; the RT BRAKE is activated increasing the pressure in the brakes of the following vehicle thus decreasing its
speed (fig.5). This situation happens again later inducing the reactivation of the BRAKE RT.

In conclusion, the RP formalism allows an user to program at the “task-level”, without worrying about the coding
of tricky things like signal exchange between elementary tasks. A systematic translation into appropriate synchronous
languages is provided, minimizing in that way the risk of errors. However, the complexity of the programmed appli-
cations and their critical nature require using formal methods to ensure their correctness at the specification level as
it is shown in the next section.
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4 Formal Verification in the ORCCAD System

RP specification deals with the logical composition of typed events and actions as well as time dependent char-
acteristics, which usually express actions duration and timeouts. Their complete analysis requires both global and
temporal quantitative analysis of the specification. For the first global analysis, the most appropriate methods are
the behavioral ones, which need to make a logical abstraction of the action’s model in order to eliminate the delays
which appear in the specification (they are translated into logical time-out). For the temporal analysis, real-time
model-checking techniques are required, which are based on extended models where time is represented explicitly.

In order to perform behavioral verification, Esterel is used as a specification language ; it is interfaced with the
Fc2tools verification tool (section 4.1). For temporal verification, we use Timed-Argos as a specification language
together with the Kronos symbolic verification tool (section 5). This explains why the RP and RT formalisms are
both translated into Esterel and Timed-Argos according to the kind of properties we would like to check (see fig. 6).

4.1 Logical Verification

We consider here only the logical aspects of an application: time-related constraints are translated into logical
events triggered by the environment. In this framework, our first goal is to formally verify the largest possible set of
assertions about the logical behavior of the RTs and RPs. The systematization of the verification process requires :

e an adequate systematic translation of the specification into an automaton model preserving the information which
is pertinent for the verification methods, i.e. here into an ESTEREL program;

¢ the classification of the properties to be verified and the association of a dedicated verification method with every
class. Two main categories of properties are identified: the first ones are related to critical working issues while the
others are operational ones related to the completion of the desired objective. The generic safety and liveness properties
are examples from the first category, while those concerning the coherency of the specification with the requirements of
the application belong to the second one. In addition, verification methods are used to create adequate abstract views
aimed to help the user during the specification phase.

We present in the following the verification of the logical behavior of the RTs and the RPs respectively.

4.1.1 Logical Verification of Robot Tasks

Our objective here is to outline the general approach of the verification process which proves that, by definition, the
logical behavior of a RT is correct independently of a particular problem. For this the RT’s logical is translated into
an ESTEREL program.

ESTEREL is a synchronous language, with a precisely defined mathematical semantics, for programming determin-
istic reactive systems. Its programming model is the specification of components, or modules, that run in parallel;
modules can also have a hierarchical structure. They communicate with each other and the outside world via signals,
which are broadcasted and may carry values of arbitrary types.

The ESTEREL program is automatically implementation through the composition of several generic modules. For
example, figure 7a, shows the implementation of the coordinator module (language primitives are self-explanatory.)

In relation with an ESTEREL program, one can generate, simulate, execute and verify automata. In particular
Fc2TooLs, an automatic verification tool dedicated to analysis and transformation of finite automata, can be directly
linked to the ESTEREL compiler. Three kinds of operations can be performed:
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Figure 7: coordinator module a) implementation b) resulting automaton

e abstraction extracts new possible behaviors (the transitions of an automaton) from sequences of actual ones. Typical
simple abstractions are obtained by hiding several signals, while more elaborate may be realized using the syntax of
abstraction criteria ([Boudol90]) to specify new behaviors. Then the “body” of a non-atomic behavioral activity may
be replaced by a single one, at a different level of abstraction. Abstractions produce “abstracted automata”.

e reductions assimilate and collapse states with the same behaviors abilities. The equivalence of states is drawn from
bisimulation ([Milner80]) equivalences. Combining reductions after abstractions often lead to very small automata:
states are more often merged because the behaviors abilities were equated earlier.

e context filtering consists in observing the automaton through a context of possible activations. The result is an
automaton derived from the early one by removing transitions and states that may not be reached in that context.

The resulted automata can be visualized before or after transformation using the FC2T0OLS graphical interface
AUTOGRAPH.

Practically, owing to this environment the behavioral verification is performed in the following way: the global
automaton is reduced with respect to the behaviors which are considered as relevant for the property to check,
using the abstraction-reduction operations. The reduced automaton, when small, can be visually observed in order
to invalidate or confirm the required property. An alternative way is to compare the reduced automaton with the
specifications operationally provided in the form of an automaton. The property is verified when the reduced and the
specification automata satisfy the bisimulation equivalence.

Let us now analyze the RT logical behavior. We want to prove that it is non-blocking, and that it satisfies the
liveness property, i.e. a successful termination of the RT can be reached from any state of its evolution, and the safety
property, i.e any fatal exception is appropriately handled by emission of a specific signal leaving the system in a safe
situation.

In a first step, we proved that each module correctly implements its functionality and satisfies the required properties
(a complete analysis is given in [Kapellos94]). We present here only the coordinator module which reflects the RT
logical evolution. Its corresponding automaton is small enough to be analyzed visually (Figure 7b). We can therefore
establish that it is non-blocking, i.e. a successful termination of the RT can be reached from any state and that a type
3 exception is always followed by the emission of the adequate signal. Note that it is also possible to prove that after
the parallel composition of all the modules each of them still behaves as expected.

Since the automaton model of the RT behavior is considered independently of a specific instantiation of RT in-
put/output events we can conclude that, generically, the RT satisfies the required properties. The interest of this
result is twofold: firstly, when analyzing the behavior of a RP, we can abstract the local behavior of RTs and consider
it as an atomic action; secondly, from a software engineering point of view, the re-using of pieces of code proved correct
improves system reliability and programming efficiency.

4.1.2 Logical Verification of Robot Procedures

Like for the Robot-Task the Robot-Procedure behavior is translated into an ESTEREL program. However, the RP
definition does not give us the possibility to conclude that, by construction, it verifies properties analog to those
validated on the RT definition since most of them are application-dependent. Since the end-user is really involved in
RP verification, this operation should take place interactively during the phase of RP design.

We describe now the classes of properties to be checked after having defined a mission in the form of a set of RPs.
In the first paragraph we present properties which are independent of a given application; they are global and generic
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Figure 8: abstracted automaton according to signals related to starting and stopping of the servoing tasks

crucial properties the verification of which the end-user just have to ask for. Then, we focus on parts of the global
behavior indicating the evolution of the system in particular conditions specified by the user. The last paragraph
copes with the construction of views of the logical behavior at different levels of abstraction. This verification process
is accessed by the user of the ORCCAD system through the panel described in figure 9a. It offers a connection with
the FC2T0OOLS and ATG tools and allows automatic checking of generic properties, the construction of abstract views
and the interactive specification and checking of application-dependent properties.

Generic properties

o Safety property

For the verification of the safety property, knowing the user’s specification about fatal exceptions, abstract
criteria composed by a set of abstract actions of the form Bad; = /Type-3_exception;? and (not /Exc.T3!)
can be systematically produced. Such an abstract action indicates that receiving type-3 exceptions always drive
the system in the safe mission abortion process. Then, the abstraction of the RP automaton with respect to
this criterion is computed. The presence or absence in the resulting automaton of an action of the criterion
invalidates or confirms the safety property.

e Liveness property For proving the liveness property, we examine the equivalence by bisimulation of two au-
tomata. The first is derived by abstraction of the initial automaton with respect to the criterion
parse — criterion Viv = tau = (not /BF _rprl)x, BF = |BF rprl;
which renames as tau (invisible action) all the sequences of actions which do not indicate the good termination,
and as BF the remaining ones. The second is specified as an automaton with one state and one transition labeled
BF.

e Conflicts detection

We are interesting here to check that during the RP evolution there does not exist a time at which two different
RTs are competing for the use of a particular resource (physical or software) of the system. To verify that we
observe the global automaton with respect to the signals StartServoing and ServoingStop. Figure 8 shows the
resulting automaton. We can easily verify that the two signals appears alternatively.

Coherence with the Application Requirements The conformity of the RP behavior with respect to the mission
constraints can also be verified. These constraints have to be expressed in a generic way as relationships between
actions, events and actions or events themselves. In the verification process the user has to indicate the relevant set
of events and/or actions related to the constraint to be checked (fig. 9). The global automaton is then abstracted
and reduced by well-chosen signals among those considered in the translation of the RP into its automaton model via
ESTEREL. Let us illustrate that again through the example of the Praxicars.

12
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Figure 10: Abstracted automaton of the ‘follow me’ mission according to two events

e Action/Action The RTs which were designed to control the locomotion motors must be applied alternatively.
We want to check that our specification is conform to this requirement. The relevant actions to be observed, as
appearing in the specification, are SENSLOC and CARTLOC. The corresponding signals are those indicating the
starting, the nominal termination and the abortion instants (fig. 9); the resulting abstracted automaton clearly
indicates that the two tasks always run in sequence : initially the SENSLOC action is always launched and the
CARrrLoOC task is only activated after the abortion of the first one.

e Event/Action The mission specification requires that the brake should be activated every time the leading car
imposes strong decelerations. The involved elements in the expression of this constraint are the MoreBrake event
and the BRAKE action. The RP automaton is observed by MoreBrake and START _brake signals. The property
is verified since in the resulting automaton, figure 9, there exists a loop indicating that, as soon as MoreBrake
signal is received, the activation of the BRAKE action is asked for.

¢ Event/Event In the same example, the specification requires that the target is searched for each time it has been
lost. This is tested by specifying a behavioral property which involves the events SignalLost and TargetFound.
The resulting abstracted automaton in figure 10 clearly certifies it.

Abstract views Finally, we consider that verification methods are also a way of obtaining abstract views during
the phase of RPs specification, in order to help the user. Actually, every mismatch in the behavior specification is
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reflected by the resulting automaton. Thus, switching the body of a non-atomic behavioral activity to a single one
at a relevant level of abstraction allows for building useful views of the overall behavior; examples can be found in
[Kapellos94].

5 Temporal Verification

The approach based on ESTEREL is well-suited for specifying and verifying the logical behavior of a robotic applica-
tion. Nevertheless, it does not allow a user to take into account temporal aspects. For example, it is possible to prove
that an application always ends, but it is not possible to prove that its execution time is always lower than a given
constant time. The logical abstraction (delays are translated in logical timeout events) can also leads to inaccurate
analysis if these ones are time-dependent. Proving that two execution laws are never executed simultaneously without
taking into account the time parameters involved in the programs leads to approximate analysis only : the result is
true if, whatever the time parameters are, the two execution laws are sequential.

We propose in this section another approach based on a synchronous language named Timed Argos, which allows to
take into account the time parameters involved in a program during its formal analysis. As above-mentioned, Timed
Argos has a semantics in terms of Timed Automata. We therefore have to translate the controller specification into a
Timed Argos program, to use the Argos compiler to build the Timed automaton model of the program and finally to
use the verification tool Kronos to check some relevant time-dependent properties.

This section is organized as follows. We first present the Timed Argos language and the Kronos verification tool
(especially the real time temporal logic TCTL which is used by Kronos as the formalism to express properties). Then,
we present a classification of relevant time-dependent properties which gives an idea of the way we would like to
integrate this temporal verification inside ORCCAD. In a third subsection we give some experimental results and we
discuss some major concerns of the used method. Finally, we present another kind of experiment with the Hybrid
Argos language and the Polka tool the aim of which is to synthesize linear invariants on linear hybrid automata.

5.1 Timed-Argos and the Kronos tool

The Timed-Argos Language Timed Argos [Jourdan93] is an extension of the synchronous language Argos [Maraninchi92].
Argos was originally inspired by Statecharts. It provides the user with a set of operators that can be applied to el-
ementary automata components to build more complex systems. These operators include parallel and hierarchic
composition. The Argos semantics is expressed in terms of boolean automata.

Argos has been recently extended with a delay construction, leading therefore to Timed Argos, which allows to
express watchdogs and timeouts easily. The semantics of Timed Argos is expressed in terms of timed automata.
For this reason, Timed Argos is a high-level language to describe this kind of extended automata and Timed Argos
programs could support quantitative analysis. Until now, Timed Argos is more specifically interfaced with the Kronos
verification tool [Henzinger92)].

The first step to integrate quantitative timing analysis of the controller specification into ORCCAD is to translate
it into a Timed Argos program. The translation is structurally defined : the Robot Tasks involved in the Robot
Procedure which specifies the controller are first translated into Timed Argos subprograms; then the structure of
the Robot Procedure is taken into account in order to derive the main program. Since this translation is detailed
in [Jourdan95], we only illustrate it here by an example taken from the automatic vehicle driving mission already
mentioned.

Figure 11 gives the result of the translation of a RT which includes two preconditions : motor_ok, wheel_ok, one
type-1 exception : speed_overload, one type-2 exception signal lost and one type-3 exception motor_pb.

The program handles five inputs : motor_ok, wheel ok, speed_overload, motor_pb and signal lost; and four
outputs : GExc RT_sens_loc, LExc RT_sens_loc, LC_speed overload and signal lost RT_sens_loc. The first two
outputs indicates the detection of a global or a local exception during the execution of the Robot Task. The last ones
are self-explanatory.

The other events used in the subprogram : ok1,0k2, errorG, errorL and okprec, are local ones used to force
the communication between automata of the program. The communicating process will be explained later.

Each object which composes an Argos program is an automaton the transition labels of which are of the form
inputs/outputs. The inputs part expresses the condition under which the transition is triggered. Absence of events
is denoted by over-lining. The outputs part is the set of output events emitted when the transition is triggered. An
arrow without an associated source state denotes the initial state of the automaton.

Some of these automata have temporized states, which are drawn with labels of the form [n]. These temporized
states also have an outgoing transition the label of which is replaced by a square. This is the timeout transition. Their
intuitive semantic is as follows : once a temporized state is entered, it must be left before the indicated amount of
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Figure 11: RT _sens_loc specification translated into Timed Argos

time has elapsed. The automaton can leave the temporized state through a “normal” transition (if such a transition
exists), or through the special timeout one when the delay expires.

This program is built hierarchically. The outermost automaton has three states according to the current status of
the RT : while waiting for the preconditions to be satisfied, active (the execution law is alive) and finished. The first
of these status could end either when the two preconditions are satisfied or when a global exception is detected, i.e.
the delay associated to a precondition expires. The Wait Prec RT_sens_loc state is refined by three automata which
are composed in parallel : they evolve simultaneously. The box with an attached sub-box which contains ok1, ok2,
indicates that these two events are local. They are used both as inputs and outputs. The communication process is
called synchronous broadcast. This is the same as in the Esterel language. If a local event is emitted by a component,
each automaton could react to this emission by triggering other transitions. All these transitions participate to the
same global reaction of the program.

The Kronos Verification Tool The Kronos tool implements a symbolic model-checking algorithm for TCTL [Alur90)
(a real-time extension of the branching-time logic CTL) on Timed Automata. It means that the property is expressed
by a TCTL formula and that Kronos computes the set of states of the Mealy Machines associated with the Timed
Graph which satisfy it. The property is satisfied if and only if the initial state belongs to this set. The algorithm
implemented by Kronos is symbolic, since the Mealy Machine associated with the Timed Graph is always represented
implicitly.

A TCTL formula ¢ is built following the grammar :

¢ = p|=0|d A PV pcd|IV4 PV 4 cp|F T4

# belongs to {<,<,>,>}. ¢ is an integer value. p is a property of states (i.e. nodes and valuation of the clocks), and
can be identified to the set of states where it is true. The set can be given in extension, but it is usually described by
using a function which builds state properties out of transition properties. For instance, enable(l) computes the set
of states ¢ such that there exists at least one transition sourced in ¢ and labeled by I.

Let us illustrate the semantics of TCTL with the following example: 33.4{q}. A node ¢ satisfies this formula if
and only if there exists one execution sequence from ¢' such that a state satisfying ¢ is reached before 4 units of time.
It expresses the possibility to reach ¢’ before 4 units of time. Some formulas do not have temporal restrictions (given
by the #c expression): V¢ expresses that ¢ will be satisfied eventually, i.e. for each execution sequence from ¢' there
exists a state satisfying ¢. VV¢ expresses that ¢ is an invariant property and V¢ is satisfied if and only if there exists
one execution of the program on which ¢ is always satisfied.

15



5.2 A Classification of Relevant Temporal Properties

The aim of this part is to present a classification of temporal properties that it could be interesting to check inside
the ORCCAD environment. These properties are intended to help the designer in specifying his application. The idea
is to avoid the designer using TCTL to express properties, by identifying generic ones which could be automatically
translated into TCTL formulas. This automatic translation is closely related to the automatic translation of the
controller specification into Timed-Argos.

e Time bound property
This property is concerned by the boundedness of the maximum execution time of a Robot Procedure. The time
bound property is the only one which could be checked automatically (without any designer’s participation)
whenever a complete specification of a Robot Procedure is built.

e Event / Event properties

This class of properties aims to check that in case of a complete execution (without detecting a type 3 exception)
of a Robot Procedure, the maximum (resp. the minimum) laps of time between two events of the robotic
controller is lower (resp. greater) than a value T. For instance, during the specification of an automatic car
parking, the designer would like to check that the maximum time-lag between the permission to enter given by
the controller to a car and the parking acknowledgment given by the same car to the controller is bounded by
a value T specified by the designer. He has to specify the name of the two events involved by the property, the
constant value T, and its choice between a maximum or a minimum.

e Event / Action properties
This class of properties expresses that, in case of a complete execution of a Robot Procedure, the maximum
(resp. the minimum) laps of time between one event of the robotic system and the start of either a Robot
Task, or a Robot Procedure, or a Robot Task execution law, is lower (resp greater) than a value T. Let us take
again the example of the automatic vehicle driving mission. The designer would like to check that the maximum
time-lag between the more_brake event, which indicates that the engine-braking is not sufficient to stop the car,
and the beginning of the Robot Task RT _brake execution law, is smaller than a value T.

e Action / Action properties
This class may be split into two subclasses :

— Sequential Action / Action properties. The property to verify is that the maximum (resp. minimum)
time-lag between two sequential actions (with the above-mentioned meaning) is lower (resp. greater) than
a value T.

— Overlapping Action / Action properties. The property to verify is that the maximum (resp. minimum)
time-lag between two actions which could overlap themselves is lower (resp. greater) than some value T.

6 Concluding Remarks

It begins to be clear in the robotics area that verification is a major concern, especially when robots have to be
launched towards hostile environments where they should survive. We have proposed in this paper an approach to
specify and to verify, in a highly structured way, such complex robotics applications. Logical as well as temporal issues
were considered. In order to make easier and more reliable the designer’s activity, we tried to use as far as possible
available and efficient softwares from the computer science area: the ESTEREL, ARGOS, TIMED-ARGOS languages for
specification and programming; the FC2T0OOLS, AUTOGRAPH, KRONOS, ALDEBARAN tools for automata handling
and formal proofs. We also addressed several applications in order to show that the proposed approach was really
pertinent.

However, although we obtained some successes in that work, for example in proving generic properties, we also
found that nice improvements could be done in order to make the approach fully usable in the applications.

¢ although the example we implemented was not so complex, the size of the timed automaton of the controller
was large (about 100 states, 30000 transitions and 15 clocks). This timed automaton should be much smaller
for verification purposes. Therefore, instead of building the large-size automaton and then minimizing it, it is
necessary to define a specific compilation process which would integrate the minimization phase, in order to
improve its time performances.

e on the side of logical specification and verification we also fast reach some limits even with examples of moderate
size. For the mission designer, specification is aided using the “profession oriented” MAESTRO language which
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targets ESTEREL w.r.t. the ORCCAD concepts while having a more usual programming style [Coste-Maniere98].
On the other hand the size of the control automata grow very fast so that the interpretation of the verification
process output becomes very hard even after minimization and reduction through bisimulation. More intuitive
specification and analysis verification interfaces remain to be studied. An even more appealing idea consists in
synthesizing the controller rather than specifying and then verifying it: using some variant of the RW supervisory
control theory is currently investigated for that purpose.

e the identification of generic properties allows the user to avoid learning TCTL. It is a first (big) step in the
integration process of real-time quantitative properties into the ORCCAD environment. Nevertheless, we have
not yet found a way to solve the “error diagnosis problem”. Indeed, when a property is not satisfied the diagnosis
given by Kronos does not allow to find easily the error in the program.

e Another important point comes from the fact that the approach based on Timed Argos and Kronos provides the
user with a way to verify if its program satisfies a time-dependent constraint. However, from the designer’s point
of view, nothing is done to help him to select the right delay values which will necessarily satisfy this constraint.
This complementary problem of synthesis is indeed very relevant for the application area since its lies at the
design level. It cannot be solved by Kronos since the delays values have to be known during the analysis. A
first step to address this problem combines the the Polka analysis tool [Halbwachs94] and Hybrid Argos, an
extension of Argos allowing to model linear hybrid systems. As an example, Hybrid Argos and Polka can be
used to answer the following question:

Given a Robot Task with some delays, what should be the delay values to ensure that the mazimum execution
time of the Robot Task is lower than T?

The solution is based on the so-called technique of synchronous observers used in synchronous programming
environments. We have realized some tentative tests with this approach. Results were promising, although it
appeared that performances should be considerably improved if we want to deal with large scale applications.

More generally, we believe that all the area of hybrid systems (modeling, programming, formal verification) is a key
research domain for the future, the results of which will find particularly relevant applications in robotics.
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