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Abstract: Robotic applications are real-time dynamical systems which
intimately combine different components ranging from high-level decision
making and discrete-event controllers to low-level feedback loops. Tightly
coupling the two last components and considering them in a formal frame-
work permitted, in a centralized approach, both crucial properties to be
proved and efficient implementation. We examine this coupling in the case
of an architecture where discrete-event and low-level controllers are spatially
distributed and we propose, in the framework of the OrRCCAD methodology,
different methods for their implementation. Their impact to the verifi-
cation process is analyzed. The experimental evaluation of the proposed
techniques uses the IFREMER free-floating underwater manipulation system
VORTEX-PA10. The real-time programming aspects of the experiment are
handled in the framework of the ORCCAD programming environment tar-
geting the PIRAT real-time controller.

1. Introduction

In applications like autonomous vehicles, aircrafts and robots, stand alone
computerized controllers are being integrated to form cooperating subsystems
which can together provide improved functionality, reliability, and reduced
costs. Modern and future machinery will therefore, and to some extend al-
ready does, include embedded distributed real-time computer control systems.
In this context, considering a given hardware architecture, programming of an
application must deal with algorithms distribution over the different locations
and implies exchange of real-time data between subsystems. The present con-
tribution gives insight on the programming of some aspects of such a distributed
robotic applications.

The work reported here is motivated by the particular objective of spec-
ifying, validating and implementing missions on the Vortex-PalO underwater
manipulation system developed at Ifremer, where the control computers are dis-
tributed on a network. In [8] we specified and validated by formal methods and
realistic simulations an underwater structure inspection mission considering the
whole system. Distinct control laws were designed for each subsystem which



were coordinated by a centralized discrete-event controller which rhythmed the
logical evolution of the mission. It has been shown that a reasonable stabiliza-
tion of the vehicle was achievable using acoustic or visual sensor-based control
despite the arm motions. Besides, the correctness of the logical behavior of the
mission has been formally verified taking advantage of the centralized imple-
mentation of the discrete-event controller.

This work is carried out in the framework of the development of the ORC-
CAD programming environment [9], which allows the specification, the valida-
tion and the implementation of robotic reactive applications. It clearly sepa-
rates the specification of the discrete-event controller which rhythms the logical
evolution of the application from the data handling used to implement the con-
trol laws on the target architecture. This is achieved by designing an application
as a hierarchical and structured composition of Robot-Tasks (RTs), which har-
moniously integrate discrete and continuous time aspects, in Robot- Procedures
(RPs) which mainly handle logical behaviors. Using the synchronous approach
as the semantics of composition for RTs and RPs pave the way to apply formal
verification methods (and especially ‘model-checking’ approaches) to prove the
mission correctness from a logical and temporal point of view [4].

This approach has been already used in various robotic applications [6]:
even in the case of multi-processor systems the discrete-event controller was
always centralized (i.e. compiled as a single automaton) thus allowing for
its formal analysis. However, this centralized approach is not always timely
efficient or may be unsafe or impossible to implement on a naturally distributed
system as failures in the communication links between the controllers may leave
some subsystems totally out of control. It is expected that distributing the
logical control code over the distributed hardware may improve subsystems
survivability.

As an extension of this previous work we now experiment parts of an
underwater mission in a pool [8]. In this paper our interest is twofold and
combines theoretical considerations and experimental validations:

e propose a methodology to distribute the discrete-event controller of the
mission. Two solutions are envisioned:
1) separately design the controllers of the subsystems (i.e independently
of its context) and the global controller, and compile them into several
object programs located on the different nodes. In that case, we obtain
asynchronously connected controllers for which global formal verification
is impossible and validation must be carried out using simulation.
2) globally design the mission controller, compile the mission specification
into a single object program, and then distribute it on the nodes. Thus, the
specification of the logical evolution of the mission and its formal analysis
can be globally carried out while its implementation will be automatically
distributed ensuring that the verified properties hold in the resulting dis-
tributed program. This methodology is based on recent theoretical results
in the field of reactive systems theory [3] and is currently integrated in our
control architecture.

e experimentally validate the simulated control laws. Simulations taking into



account most of the temporal features of the controlled system enlightened
limits of the hardware and suggested improvements e.g. adaptive trigger-
ing of acoustic sensors. Preliminary experiments will be used to assess
these simulation results and will be used to better calibrate the simulation
model. We consider several phases of the mission: preparing the vehicle
for cruising, reaching the working area, and finally performing motions of
the arm while the vehicle is actively stabilized.

2. The Discrete Event part of the Hybrid Controller
2.1. ORCCAD overview

ORrccAD ([9]) is a development environment for specification, validation by
formal methods and by simulation, and implementation of robotic applications.
Its conception is articulated around two entities which formally characterize a
robotic action, the Robot-Task and the Robot-Procedure.

The Robot-Task (RT) models basic robotic actions where control aspects
are predominants. Typical examples are the trajectory tracking of an arm
manipulator, the positioning at a desired pose of an underwater vehicle, .. ..
It characterizes in a structured way continuous time closed loop control laws,
along with their temporal features related to implementation and the man-
agement of associated events. A data-flow well identified mode of execution
implements the algorithmical (control law) part of the RT. The considered
events may be pre-conditions, post-conditions and exceptions which are them-
selves classified in type 1 (weak), type 2 (strong) and type 3 (fatal) exceptions.
The reception of these events rhythms the evolution of the action according to
a pre-defined scheme: the satisfaction of the pre-conditions leads to the activa-
tion of the control law. During its execution, if a specified exception occurs, it
is handled according to its type; the reception of the post-conditions implies the
ending of the action. A reactive process is used to implement this discrete-event
part of the RT. Therefore, in a RT intimately cooperate a data-flow scheme
and a discrete-event controller; section 2.2 details this connection. RT design
mainly falls in the field of automatic control design using block-diagrams and
sampled time while calls to the underlying operating system and the encoding
of the reactive program are automatically generated.

The Robot-Procedure (RP) entity models a robotic action of variable com-
plexity. For example, the cruising phase of the inspection mission schedules
trajectory tracking navigation followed by automatic wall following associated
to starting and stopping conditions. It specifies in a hierarchical and struc-
tured way a logical and temporal composition of RTs and RPs in order to
achieve an objective in a context dependent and reliable way, providing pre-
defined corrective actions in the case of unsuccessful execution of RTs. The
composition concerns only the logical aspects of the RT and it is systematized
thanks to a well defined interface. Therefore, the RP can be considered as a
discrete-event controller which rhythms the sequencing of RTs (through their
local discrete-event controllers) following a user-defined scheme (section 2.3 de-
tails this aspect). Thus the end-user is able to design a full robotic application
using a library of pre-defined validated high-level actions without worrying with
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Figure 1. Control architecture

low level programming and implementation tricks.

Using robust control-laws and tuning the gains and parameters with a
simulation tool like SIMPARC ([1]) ensures the stability of the physical system
during RTs execution with specified performance. On the other hand the logical
behavior of the RT is verified to satisfy critical properties of liveness and safety.
The RP ensures a robust control of the physical system seen as a collection of
RTs. Here, simulations are used to validate the transition phases and formal
verification to prove the correctness of the logical and temporal behavior by
checking critical properties and conformity with application’s requirements.
These well defined structures allows to systematize and thus automatize formal
verification on the expected controller behavior.

The resulting control architecture is organized in three levels (Figure 1):
in the functional one reside the RTs executing the low level control laws; thanks
to the event driven interface they are sequenced by the RPs which are elements
of the control level. Finally a decisional level should be ideally added on the
top of the architecture to provide automatic or manual replanning.

2.2. Robot-Task Discrete-Event Controller

The evolution of a RT execution is characterized by three main phases, briefly
speaking initialization, control law application and controlled ending. The
activation of a RT starts after an external request, follows its local behavior
rhythmed by the events monitored during the RT execution and signals its end,
thus providing an external abstract view allowing for its manipulation. The role
of the RT discrete-event controller is to model and implement this evolution.
We illustrate in Figure 2) the discrete-event RT controller in the form of an
automaton where transitions are labeled by events : input one are prefixed by
¢?” and the output by ‘I’. The first phase copes with initialization aspects and
starts after reception of the synchronization pre-condition event Start rt. By
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Figure 2. Robot-task and Robot-procedure local behaviors

the emission of the Init 1t output signal the discrete-event controller asks the
services of a concurrently running process to prepare the RT execution : the
necessary threads implementing the data-flow part of the RT are spawned and
the used algorithms are initialized (communication devices, filters, memories,
...). Sequently, the inter-connected modules network is periodically executed,
without sending commands to the actuators while the previous RT ensures
the robot command until all the pre-conditions are satisfied. A request is
then send to the previous RT discrete-event controller and after acknowledg-
ment (CmdStopOK) the Activate_rt output signal asks from the current RT
to start sending commands to the actuators thus entering in its second phase.
During this phase the control law is applied to the robot and the presence of
the specified exceptions and post-conditions are observed and handled. The
post-conditions satisfaction implies the logical end of the RT, signaled by the
GoodEnd_ rt event and drives the RT to its third phase of execution, named
transition phase. During this phase the commands are always send to the robot
during the initialization of the following RT after which the ending code of the
algorithms is executed and the threads are deactivated. We note that Abort rt
requests and type 2 or type 3 exceptions are handled at each phase of the
execution of the RT signaled by the T2 exception rt and T8 rt events. For
clarity purposes in figure 2 a limited number of these transitions are designed.

2.3. Robot-Procedure Discrete-Event Controller

The RP discrete-event controller is aimed both to coordinate RTs and RPs in
order to achieve a predefined behavior and to offer, as for the RT, the adequate
event based interface which constitutes its abstract view. Consider for example
a very simple RP, named rpr, sequencing two RTs, rtf and rt2. The behavior
of the corresponding discrete-event controller is illustrated by the automaton
figure 2 : upon the reception of the Start rpr synchronization pre-condition
signal the first RT is asked to be launched (Start rt! event) and sequently



the controller waits possible terminations of the RT issued by its discrete-event
controller. In the case of the GoodEnd_rt1 the second RT is asked to be
launched (Start 7t2 event) while in the case of T8 rt1 the RP is aborted in
order to apply a security procedure.

2.4. Specification using the ESTEREL language

The activity of the RT and RP discrete-event controllers is naturally described
in terms of responses to stimuli originated by the environment. The use of
the reactive model to formalize their behavior is therefore a natural choice.
Following this model one considers communicating systems that continuous
interact with their environment. When activated with an input event a reactive
system reacts by producing output events and returns waiting for the next
activation. Moreover this choice is justified by the efforts of the computer
science community to provide mathematically sound formalisms and integrated
environments for the specification, verification and efficient code generation of
such systems.

The ESTEREL language [2] is a member of the synchronous languages fam-
ily based on a rigorous mathematical semantics, especially designed to program
reactive systems where control aspects are predominant. Due to an adequate
set of primitives an ESTEREL program is very close to the system’s behavior
specification. The RP discrete-event controller given as example in section
2.3 is simply specified by the ESTEREL program and is easy to understand
without particular knowledge of the language. For verification and simula-
tion/implementation purposes the ESTEREL code is compiled into automata
which are translated into several target languages such as C or Ada.

In ORCCAD system, ESTEREL is used both to encode RT and RP discrete-
event controllers. From the user point of view, the ORCCAD programming
environment automatically generates RTs discrete event controllers through a
dedicated window while currently the RP programming must be left to the end-
user. However, an ORCCAD compliant task-level language targeting ESTEREL
is currently under development [5].

3. Centralized vs. Distributed Control

In the ORccAD methodology for the design of the robot controller the spec-
ification of the RTs and RPs is followed by: i) their verification, aiming to
prove that the specification is conform to the end-user’s requirements and ii)
their implementation w.r.t. the specification. For the discrete-event part of
the robot controller a crucial question is the choice of the semantics of the
composition of the specified discrete-event controllers in order to obtain the
global one which rhythms the logical evolution of the whole application. Let
us take the particular example of the Start rt synchronization event which is
an output one for the RP discrete-event controller and input for the RT; how
this synchronization signal is exchanged with respect to the reaction of the two
controllers? Two solutions can be adopted: the centralized one where the global
discrete-event controller is executed as a single process and the synchronization
signals are synchronously broadcast within each controller, and the distributed
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one where the discrete-event controllers run on different processes (possibly on
different processors) and the synchronization signals are asynchronously trans-
mitted. These two solutions and their impact to the verification process are
now detailed.

3.1. Centralized approach

The centralized approach consists in synchronously [2] compose the specified
discrete-event controllers. This composition paradigm is illustrated figure 3a.

In reaction to some external event an atomic reaction occurs which propa-
gates activation instantaneously to all discrete-event controllers at all levels of
the hierarchy. Let us suppose the presence of the postcondition external event
of the RT rtl. The reaction of the global controller to this event consists in
activating the RT controller which broadcasts the GoodEnd rt1 signal. Dur-
ing the same reaction the RP controller receives this synchronization event and
emits the Start rt2 event to the controller of the second RT. Thus rt2 enters in
its initialization phase emitting to the environment the Init rt2 output event
which asks, as indicated in section 2.2, the preparation of the RT execution. We
note here that the events post, GoodEnd_ rt1, Start rt2, Init_rt2 are received
and emitted at the same atomic reaction. Given also that ESTEREL compiler
completely disappears the instantaneous communications from the resulting
code time efficiency is ensured.

A second major advantage of the centralized approach is related to the
verification aspects. It is known that a property verified by each of two discrete-
event controllers separately is not necessarily verified when their interaction is
considered. In the centralized approach a particular property is verified over
the global behavior of the system taking into account even the particular details
of each RT local behavior.

3.2. Distributed approach

Robotic or more generally mechanical systems are often composed by spatially
distributed actuators and sensors in order to improve modularity, functionality
and performance. Therefore, a centralized approach is not always feasible nor
desirable in particular from the dependability point of view. Firstly, external
events handling, in particular those concerned with fatal exceptions must be
fast processed at the location they have been produced . In addition, for safety
reasons, a minimum logical control must be provided at each robotic sub-system
in order to give a certainly restricted but crucial decisional autonomy facing



failures such as communication interrupts.

Therefore, face to a distributed system a distributed approach for the im-
plementation of the discrete-event controller of the system must be envisioned.
Several methods are available to built such controllers :

o separately consider each RT discrete-event controller and the RP one, com-

pile them into several object programs located on the different nodes and
make them communicate through asynchronous channels (first-in/first-out
files for example). Let us revisit our pedagogic example: in Figure 3b the
three reactive discrete-event controllers communicate through two chan-
nels. In this configuration rt1 discrete-event controller as reaction to the
presence of the post event sends through the network the GoodEnd_rt1
event to the rpr discrete-event controller and ends its reaction; the rpr
reacts emitting the Start rt2 event to rt2 and ends its reaction; finally the
rt2 reacts and emits the Init_rt2 event.
This approach has a major drawback. Even if each reactive part can
be analyzed and verified individually their composition through non-
deterministic communications inhibit any verification on the global system.
A second approach tends to remediate this drawback.

e synchronously compose all the RTs and RPs discrete-event controllers,
compile them into a single reactive program and then distribute it on the
nodes in such a way that the parallel execution of these codes implements
the initial program and each node has only to perform its own compu-
tations. Given a synchronous program (in oc format) and distribution
directives locating each signal to a node, the ocrep tool [3] automatically
distributes the centralized program to the corresponding nodes. The ma-
jor advantage of this approach lies on the global verification capability as
properties verified on the centralized program remains valid on its distrib-
uted implementation. Nevertheless, this approach increases the load on
the communication links since additional dummy signals are exchanged in
order to correctly synchronize each program.

4. Experimental results

Let us now focus to the case study we used to evaluate some of the proposed
methods. This example is an extension of the work done in the Union project
[7] to assess the design and verification methods of ORCCAD with an underwater
test-bed application. The mission takes place in a pool, using the Vortex vehicle
fitted with a manipulator.

4.1. Experiment setup

Vortex is a Remotely Operated Vehicle (ROV) designed by Ifremer as a test-bed
for control laws and control architectures. It is equipped with a set of six screw
propellers and with a traditional sensing set such as compass, inclinometers,
depth-meter and gyrometers allowing to measure most of its internal state. A
video camera is used for target tracking tasks and a belt with eight ultrasonic
sounders allows to perform positioning and wall following tasks. Vortex is also



equipped with an electric powered Mitsubischi Pal0 arm with 7 degrees of
freedom to perform manipulation tasks (see Figure 5).

The vehicle control algorithms are computed on an external vME backplane
running Pirat, a C++ library of objects dedicated to underwater vehicles con-
trol. At a higher level, i.e. control laws and mission management, the reactive
synchronous ESTEREL language is used to design Robot-Tasks and Procedures,
consistently with the ORCCAD approach. The control algorithms for the arm
are run on a second VME backplane. As the two controllers only have a low
bandwidth communication capability, control laws for Vortex and the Pal0 arm
run independently and only short synchronization messages are exchanged on
the communication link. This distributed architecture (Figure 4) is used to test
the ORCCAD approach given the following informal end-user’s requirements.
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Figure 4. Experimental plant

Starting from the initial position, Vortex is set in station keeping mode
at a pre-defined depth, using the on-board flux-gate for heading control. After
completion of all necessary initialization! (e.g. the heading and depth set points
are reached), the arm is moved backward in a safety position for navigation.
Then the vehicle locks itself at a predefined distance of the front wall using
acoustic sensors servoing. Once the vehicle is locked in the chosen corner the
arm is moved forward and backward to check the platform stability under
inertial and hydrostatic disturbances. The vehicle is then driven back to its

11t must be pointed out that the first initialization phase is also mission dependent e.g.
choosing the initial heading set-point pointing towards the East direction will further drive
the vehicle in the South-East corner of the pool.



initial position under the crank.

At any time the detection of a water leak or of an hardware failure must
lead to a mission abortion leaving the system in a safe situation, i.e. setting
an alarm and emergency surfacing with the arm locked in folded position.
Other exceptions more specific to a given system or control algorithms are
also defined inside the subtasks involved in the mission. Some actions are
automatically triggered e.g. the first arm motion is triggered by an observer
checking that the vehicle has reached its working depth. Others, e.g. the
event starting the mission, are given through the keyboard thus sketching an
embryonic teleoperation master station to be further developed.

This mission scenario naturally lead to split the mission in five main pro-
cedures: INITCRUISECONFIG consists in preparing the vehicle for cruising with
the GoToPosZ RT. REACHWORKINGAREA is used to navigate in the pool
(using the GoFrontWall vehicle’s RT) until the vehicle reaches the inspection
place. DOINSPECTION is used to coordinate actions of the platform and of the
arm to simulate the inspection of an underwater structure with the arm tip: it
respectively uses the StayFrontWall and MoveJS RTs. GOHOME is in charge
of driving the vehicle to its homing position and preparing it to be pulled out.
EMERGENCY is always active to handle permanent recovery behaviors like trig-
gering a fast ascent in case of water leak. Eleven RTs are used in this mission
even if some of them are very simple like the BRAKE used to lock the arm
during vehicle’s motions.

Each of the reactive programs is generated automatically by the ORCCAD
programming environment in the following way. The discrete-event controllers
of the set of the RTs concerning the same physical resource are composed syn-
chronously forming as many reactive program as the number of the controlled
physical resources. RPs are synchronously composed in a separate program
downloaded in the vehicle backplane. Asynchronous communications are also
generated and established following a description of the target architecture.
In our particular example (Figure 4) sockets are created for the communica-
tion between the RP and the PA10 reactive programs running on different
backplanes while message queues are established between the RP and the Vor-
tex programs which run on the same VME board. Instanciating the right
communication mechanisms is automatically done from the software mapping
specification.

4.2. Experiment results

Figure 5 on the right presents experimental results carried out while running
the aforementioned mission scenario. The top plot shows the front acoustic
sensors signals which are used in particular to stabilize the vehicle in front of
the pool’s wall while the arm is in motion. The bottom plot shows the pitch
angle of the vehicle which is, due to the low accuracy of time profiling between
the two backplanes, the best way to detect the moments during which the arm
is in motion.

The necessary communicating devices (sockets or message queues accord-
ing to the respective controllers localization) are automatically instantiated at



boot-time. Even if the two backplanes are linked through a non real-time Eth-
ernet, signals between the different controllers are exchanged according to the
mission specification e.g. observers checking the state of the vehicle are able to
trigger actions of the arm and conversely. Signals sent through the keyboard
are also correctly handled.

Some properties of the mission program have been checked before launch-
ing: for example, for safety reasons we want that the arm be motionless and
locked when the vehicle is cruising. Thus, an abstract view of the mission au-
tomaton is built by reducing the global automaton to the only relevant signals.
Figure 5 on the left shows this reduced automaton where it can be easily check
that this property is verified whatever is the state of the mission: we can see
that the activation of motions of the vehicle always immediately follows the
activation of the BRAKE RT.

Besides the logical correctness of the reactive controllers behaviors the
success of such an experiment relies on the efficiency of the used control laws.
Although the gains which have been used for the experiment are very close
to those found by simulation using Simparc [8] for most basic actions, the
stabilization front of a wall using acoustic sensors was disappointing as the
acoustic sensors loose a lot of data or provide absurd measures as soon as
the pitch velocity is not negligible, may be due to multiple path propagation
in the pool’s corners. The gains of this control law had to be set to rather
low values thus reducing the robustness of the stabilization w.r.t. the tether
stiffness leading to non-repetitive results. It is expected that after careenage
the new set of sensors and actuators will allow to improve the vehicle control
efficiency.

4.3. Further improvements

The work presented here is a preliminary phase in the design of an underwa-
ter distributed teleoperated manipulation system. Further improvements will
include the following:

e In this experiment we have only actually test one way of distributing the
control code using asynchronous communication between the controllers.
The ocrep tool for automatic distribution of synchronous programs will be
tested and the additional communication cost will be evaluated.

e The code repartition has been done on a Robot-Task basis rather than
on a Procedural one. Thus, some signals which are only relevant for the
vehicle control are still exchanged between the two backplanes while the
granularity of the actions described at the mission level should be made
larger. The way of functionally distribute a robotic application will be
further explored.

e Signals sent through the keyboard only sketches a master teleoperation
station where an additional reactive program will be in charge of the man-
agement of the station (e.g. for managing the displays on a context de-
pendent basis) to provide assistance to the human operator.
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