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Abstract

This note deals with the problem of controlling a simple one-degree-of-freedom (1-dof) juggling robot (a system that belongs to the
class of nonsmooth hybrid complementary-slackness dynamical systems), when some physical parameters such as the object mass and

the restitution coefficient are not exactly known. The proposed
previously studied, in which the sequence of desired “robot™ pre

hopper is shown to be controllable by the proposed contro)

results. @ 2001 Elsevier Science Ltd. All rights reserved.

adaptive controller is based on so-called dead-beat viable controllers
-impact velocities is suitably modified. The dynamics of a simple 1-dof

algorithm. Numerical simulations support the theoretical
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1. Introduction

The analysis and control of nonsmooth hybrid mech-
anical systems with unilateral constraints {that give rise
to complementarity conditions) has recently been
the object of various studies (ten Dam, Dwarshuis.
& Willems. 1997; van der Schaft & Schumacher, 1996),
and still represents an open topic with many problems
unsolved yet. In this note we focus our attention on
a very simple case of such complementary-slackness
systems, a one-degree-of-freedom (1-dof) juggler. This
belongs to a much more general class of nonsmooth
models named complementary-slackness Juggling mech-
anical systems (Brogliato & Zavala-Rio, 2000}, that
encompasses “true” jugglers as well as hoppers, non-
prehensile manipulators, robots with passive dynamical
environments, simple models of controlled buildings, etc.
In particular it is shown that the 1-dof juggler dynamics
matches with that of a (simplified) I-dof hopper. The
control problem for such systems has been studied in
Zavala-Rio and Brogliato (1999) and Zavala-Rio (1997)
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where a class of hybrid dead-beat controllers has been
proposed and thoroughly analyzed (see also these refer-
ences for a review of juggler control}. In Brogliato and
Zavala-Rio (2000) a more general point of view on com-
plementary-slackness Juggling systems has been taken,
and some controllability criteria have been proposed.
Roughly, they hinge on the analysis of an impact
Poincaré map that represents the object dynamics from
one impact to the next, considering the pre-impact velo-
city of the robot as an intermediate input. When this
discrete-time map is controllable with the robot velocity
as input, the object has been defined to be controllable via
impacts. In this note, it is shown that a suitable extension
of the dead-beat controllers allows one to derive an
adaptive scheme which permits to relax the a priori
knowledge on the object mass and on the restitution
coeflicient, while guaranteeing convergence of the pro-
cess state towards its desired {discrete-time) orbit.

2. One-degree-of-freedom juggler

Let us begin by recalling the I-dof juggler dynamics
{see Fig. 1)
My = by + A (1)

MoV = —myg +u— A (2)

0005-1098/01/% - see front matter « 2001 Elsevier Science Ltd. All rights reserved.
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mog
Fig. 1. One-dof juggler.

PEVI = y2 20, 120, ip=0, ©)
pltE) = — epley). )

where the object and the robot dynamics are in (1) and (2)
with u as the control input force, the complementarity
conditions between the distance p and the Lagrange
multiplier 4 are in (3), and the restitution law is in 4)
where e<[0,1] is the restitution coefficient. The comp-
lementarity conditions in (3) mean that all gluing or
magnetic effects are excluded from the model, so that the
contact force A has to be zero whenever the distance
p becomes positive. On the contrary a positive contact
force 2 implies contact between the two bodies. The name
complementary-slackness systems is simply taken from
some standard terminology in convex analysis (Rockafel-
lar, 1970). Collisions take place at Impact times f; if and
only if p(z;) = 0 and p(z7) < 0 (Brogliato, 1999), yielding
{Zavala-Rio, 1997: Brach, 1991)

T l+e.  _
ity ) = 1T5m my1(fk ) +“‘*_1 n myz(l‘k ). (5a)
. ml+e), . 1—em.
) = —— — b
Valte) o e )+ T m Valty), (5b)

where m=m; /m,. Subsequently in this study, f(k) will
stand for f’s post-impact values J5) (f(t) if £ denotes
a position). Pre-impact values S(t) will be referred ex-
plicitly.

Remark 1. Let us apply Lemma 4 of Brogliato and
Zavala-Rio (2000) to the 1-dof Juggler dynamics, i.e.
consider the new coordinate system (q,,q,) where
g1 =1 and g, = p. Then (1)~(4) is transformed into

G = —g+mi, (6a)

. u o, ,

2 = — — + (1 + mm 4, (6b)
My

4220, A4=0, ip =0, (6¢)

g2t5) = — eg, i), (6d)

Fig. 2. One-dof hopper.

where 7, = 1/m,. Now, let us consider the 1-dof hopper
in Fig. 2. It is easy to show that in the coordinate system
(41.92) = (ye,y2), where y, £(m, f(m, + my))yq + (my/
(my + my))y,, its dynamics are also modeled by (6) with
my = 1/im; + my) and = myg +u;. Therefore,
a dead-beat-algorithm-based input and impact control
strategies equivalent to those to be presented in Sections
3and 4 can be gotten for this simple 1-dof hopping robot.
Let us notice that we have implicitly assumed that the
baris long enough so that Yi(t) > 0,V = 0, whatever the
control may be. Clearly, further studies should incorpor-
ate y; -y, > R for some R > 0. But then one would
have to deal with possible multiple shocks, which may
complicate the wellposedness of the mode] (Brogliato,
1999). In Brogliato and Zavala-Rjo (2000), the multiple
constraint case is discussed.

3. Dead-beat force input

The following proposition briefly recalls the control
strategy proposed in Zavala-Rio and Brogliato (1999)
(see also other references therein). It mixes a finite-time
convergent input based on the robot’s controllability
gramian inversion, and some logic to cope with the
object’s ballistic constraints. Such controllers may be
seen as two-stages inputs (Brogliato & Zavala-Rio, 2000):
the first stage is to design an intermediate control signal,
that is the robot pre-impact velocity, whose desired value
is denoted as j¥(k). The second stage is the design of the
control input force u. In the next section, we shall focus
on an adaptive version of j%(k) that relaxes the a priori
knowledge on certain physical parameters. Details on the
meaning of the various terms appearing in the expression
of the control input are given after Proposition 1. As
pointed out in Brogliato and Zavala-Rio {2000), other
finite-time inputs can be designed. In the following, the
signals with upper index * denote values that the state
(Vi,¥2.01.02) 1s forced to track at all impact times. They
differ from the signals with lower index d, which denote
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the desired trajectory of the object. The reason for this
discrepancy is that one has to incorporate the ballistic
constraints of the object in the control design (the least
requirement being that the intersection between the de-
sired discrete-time orbit and the real orbit of the object. is
not empty).

Proposition 1. Consider the dynamical system in {1)—(4).
Suppose that the initial conditions and u are such that there
exists an impact or contact time t, > 0. Let (va,0q) be the
desired position and post-impact velocity of the object. Let
us define the following control input:

u=myg + m,r, (7)
v=A(t —t) + B, (8)
with

6 12
A= O3+ 1)+ 35000 = —S(Hk+ D=k, )
p i

o)
&:—jww+n+wwn
k
6
gk 1) — k), (10)
dk:M)—gf—w—@, (11)
o(k) = /31 k) — 2g(*(k + 1) — y(k)). (12)
Ya if by, > Ya.
*hk4+1)= 13
yetd) {y(k)—#r if b, <y, (L)
o+ 2 o
by = g (14)
(k) if (k) <0,

Vk 20, where y(k) = Vi(k) =y (k) (since p(k) = 0), and
rand pi(k 4+ 1) are chosen such that vk) +r < hy. and

Vik + 1) > — o(k), (15)
Yk = 0. Then,

(1) p(t) = y(1) — y2(1) > 0. Vie(t bt + dy).
(2} they =1, + 4,

() yk +1) = y¥k + 1),

(4) altesy) = ik + 1),

Vk = 0. Moreover. if Vi(k + 1) is defined as follows:

I +m m—e
VIK + 1) = —— %k + 1) + ——— (k). 16)
Vitk + 1) T ik + )+]+e<0( ) (16)

Yk = 0. and

Va if hy >y,

Wk +1)= {

(17
Vk 20, with $, > 0, then.

(5) Ik + 1D =itk + 1), VEk > 0.
6) (wk + 1), yy(k + D) = (ya.ja), Yk = 1.

Proof. See Zavala-Rio and Brogliato (1999). O

Let us provide some insights on properties (1)-(6) of
Proposition 1:

® Property 1 means that no unexpected collision takes
place at any time within (1,1, + dy). This is known as
the viability condition, and is very important for the
overall scheme to work. In Zavala-Rio (1997) and
Wang (1993), more detailed and general explanations
about viability and/or viability conditions can be found.
These are fundamental in the study of vibro-impact
systems (Babitsky, 1998) and have sometimes been
forgotten (Shaw & Rand. 1989; Masri & Caughey,
1966).

® Property 2 means that, given a collision time Iy, the
next impact takes place immediately after a flight time
di. In other words, the flight times are predefined at
every shock through the value of d, determined by
(11). This expression is such that the object never goes
upwards at impact times. The term (k) in (12) is
a calculation (according to the ballistic trajectory of
the object), in absolute value, of the object pre-impact
velocity at 1, 4, i.e. (k) = i1t )] It is calculated
through y*(k + 1) which in turn is chosen such that the
object never be motionless at collision times (see (13)
and (14)), hence @(k) > 0, Vk >0 (the object always
goes downwards at controlied shock times).

® Property 3 means that the next impact position is
arbitrarily predefined within the ballistic trajectory of
the object through a suitable value of v¥k + 1). The
highest position that the object can reach during any
flight time is given by h, (sce (14)). It would not make
any sense to try to hit the object at a position that is
not on its trajectory (a position higher than h;).
Eq. (13) assures that yv*(k + 1) < hy.

¢ Property 4 means that the surface is forced to collide
the object with an arbitrary pre-impact velocity
through the value of P¥(k + 1) satisfying (15). Such
condition essentially arises from the pre-impact
velocity necessary condition: Pte<1) < 0. Further-
more, it appears to be fundamental in the proofs of
viability and contact loss too (Zavala-Rio & Brogliato,
1999).
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® Property 5 means that the object post-impact
velocities are arbitrarily predefined through the value
of yf(k + 1) in (16) (provided that (15) is satisfied,
which is ensured by (17)).

® Property 6 means that the object impact Poincaré map
orbit converges to the desired trajectory (v,,j,) after
one impact.

4. Direct adaptive control

In this section, the signal y3(-) that appears in (9) and
(10) is suitably modified to relax its dependence on the
restitution coefficient e (see (16)).

Proposition 2. Let us define L(k)2b + (1 + Mwk) +
(M —b)p(k)/ya, where v(k)&/2g(y; — y*(k + 1)), and
M is any value larger than m2m, /m,. Let Vik + 1) be
defined as follows (instead of (16)):

Yk + 1) = paalk) + b(e(k) — 3,), (18)

where 3, > Oandbe(— 1, — 0.5). a(k) is an auxiliary state
which dynamics are defined as

c. .
a(k + 1) = a(k) + ).}—(Cp(k) — Ja) (19)
d
with ce(b + 0.5,0). Its initial conditions must be defined
according to the following criterion:

(1) Ifho > ya: a(0) is taken such that a(0) = L(0) (and (19)
is computed at every impact Yk > ().

Q) If ho < yg: first, at k =0, a(0) is taken such that
a(0) = L(0) and (19) is not computed, next, at k = 1,
a(1) is taken such that a(1) > L(1) (and (19) is computed
at every impact Vk > 1).

Then, for any e € [0,1] and me [0, M): wk) =y, Vk =2,
and limy ., .,(p, (k), a(k)) = (34, a*), where a* =(1 — e +
2m)/(1 + e).

Before the proof of Proposition 2, let us comment on
the meaning of L(k). The expression defined as L(k) is
such that a(k) > L(k) represents a sufficient condition
(given the uncertainty of e and m) to assure hy ., > y,.
This will be made clear within the proof. The importance
of ensuring #, > y, during two initial subsequent impacts
will also be highlighted within the proof.

Proof. From (5a), the object dynamics integrated in time
from ¢, to t;, + d,, (11), and properties 2 and 4 of Proposi-
tion 1, we get

m—e
1+ m

1+e
j )= — k pEk + 1 2
ik + 1) (P()+1+mY2( +1) (20)
which is a valid expression for any y*(k + 1) < k, and
¥3(k + 1) satisfying condition (15). Both conditions will

appear to be satisfied later in the proof. Indeed, on the
one hand, one can easily verify that the desired impact
position trajectory defined in (13) yields, at every impact,
values of y*(k + 1) lower than hy (see (14)). On the other
hand, the proposed expression for y%(k + 1)in (18) will be
proved to guarantee: j,(k + 1) > 0, Vk > 0. Then, from
{20), it follows that:

Pk +1)>0 = pitk+1) > if—;—:}p(k). (21)

Notice that for any m > 0 and ee [0.1]: [(m — e)/(1 + ¢)]
@(k) > — @(k). Hence, any value of Vi(k + 1) greater
than [(m — e)/(1 + e)]p(k) is even greater than — (k).
From this fact and (21), we have

ik + 1) > 0 ik + 1) > ’f _e@(k)

=ik +1)> — g(k),

which proves that any value or expression of j¥(k + 1)
guaranteeing y,(k + 1) > 0 satisfies condition (15) of
Proposition 1. Now, substituting (18) into (20), we get

Vilk + 1) = ayalk) + ap(k) — obp,, (22)

where: 6 2(1 + ¢)/(1 + m) and «26(b + 1) — 1. The rest
of the proof is divided in two cases depending on whether
the initial conditions are such that ho > yy4, or such that
ho < ya:

(1) Initial conditions such that ho > y,: Let us for the
moment suppose that &, > y,, Vk > 1. Then, from prop-
erty 3 of Proposition 1, (13) and (12), we have
yk) = y*(k) = y, and @(k) = yi(k) >0, Yk > 1. Hence,
Eq. (22) can be expressed as

ok + 1) = ayalk) + (k) — aby,, (23)

Vk > 0. Let us now define the error states ey (k)2 p(k)
— Jya and ey(k)2a(k) — a*, and the error state vector
e(k) = (¢, (k)& (k))T. Then, (23) and (19) can be expressed in
the error state space as

ok + 1) = Ae(k), (24)
where
ox Oy
A= . (25)
A
Va

The origin of (24) is an asymptotically stable equilibrium
point if the characteristic polynomial of A4, ie P(z) =
lzI — Al = z° + pyz + po, is Schur stable (all its roots
have magnitude less than unity). From (25)
Pr= —1-—o and py =a —co. Let us define P(s)2
(s = 1PPlls + Dfis — 1)) = p,s* + p, s + Po. We get:
Pp2= —co, p =2 —o+co) =22+ 0(c —b—1)),
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and po =2+ 20— co = {2 + 2 — ). It is well-known
that if P(s) preserves the same degree as P(z). ie. p, 0,
then P(z) is Schur stable if and only if P(s) is Hurwitz
stable (all its roots have negative real part) (Bhat-
tacharyya, Chapellat, & Keel, 1995). One can easily verify
that for any me[0, M), ee[0,1], be(—1,—0.5), and
ce(b + 0.5,0), we have: p, > 0, Vi = 0,1,2, which is a suffi-
cient condition for P(S) to be a second degree Hurwitz
stable polynomial. Therefore, the proposed tuning cri-
terion, ie. be( — 1, — 0.5) and ce(b + 0.5,0), ensures the
Schur stability of P(z), guaranteeing the agymptotic stab-
ility of (24), hence lim, . &(k) = 0. To complete the proof
(before the second initial condition case is treated), we
still need to show that h > y,, Vk > 1 (recall that this
was initially supposed) which is what validates (23} and
(24), and gives rise to: (k) = V¥(k) = vy, Yk > 1. First of
all, notice that: h, > y, =Yk +1)=y, (see (13)
=yk +1)=y, (recall property 3 of Proposition 1).
Moreover:  yk +1) =y, and yilk+1)>0 imply
M+ 1 > yq (see (14)). Hence, all we need is to show that the
proposed control input ensures j,(k + 1) >0, Vk > 0
(recall that hy > y, is being assumed). Let us first analyze
¥1(1). Since h, >y, we have: 1) =y*1) =y, =
V0)=0=L0O)=b+ (M — bYp(0)/34. Now, notice that
M >(m—e)/(1+e) for any me|o, M) and ee[0,1].
Then, since a(0) = L) = b + (M — b)p(0)/v,, we have
a0) > b +(m— e/l +¢) — bYp(0)/34 = ajryal0) + ap(0)
—obys >0, proving that j,(1) >0 (see (22)). Then
hy > vy, giving rise to ¥(2) = y*(2) = Ya. At this point, the
second order dynamics of ¢, (k) defined by (24), ie.

etk +2)= — pyeg(k + 1) — poey(k) (26)

is valid (for k = 0). Observe that since w1l = y¥1) = y,,
then ¢(1)= (1), and since o(1)=y,(1)>0 and
®(0) > 0, then £,(1) > — j, and £1(0) > — j,. On the
other hand, one can easily verify that for any me [0, M),
ee[0,1], be(—1,-0.5), and ce(b +0.50), we have:
O0< —pi < —p; —py < 1. Hence, one sees that
since &,(1) > — j, and £1(0) > — jy,, then: ¢,(2) =
= Ppiei(l) = poe;(0) > (- Pr = pod — Ja) > ~ jgu
Hence §#,(2)>0, and since W2)= y*2) = y,, then
hy > vy, giving rise to y(3) = ¥*(3) = v, which implies
®(2) = y1(2). Then (26) is again valid {for k = 1), and since
ei(2)> — j, and ¢,(1) > — Ya» then: &,(3) = — p,2,(2)
—Pots(1) > (= py — po) — jg) > — i, that is
71(3) > 0. The whole process is then repeated at every
impact, proving that y,(k + 1) > 0, Vk > 0. Therefore
hy > y4, Yk =1, which completes the proof (for the
present case).

(2) Initial conditions such that h, < ya: From the pre-
ceding analysis, one can easily realize that in this situ-
ation, by just ensuring h; > y, and subsequently b, > y,,
the asymptotically stable second order dynamics of
er(k) in (26) is retrieved Vk > 1. and consequently:
lim, ., &(k) = 0, and y(k) = V*k) = vy, Yk = 2. Then. all
we need is to show that this is accomplished through the

Fig. 3. Adaptive control: h, > Va-

choices of a(0) and a(1). Recalling that M > (m — e)/
(1 +e)for any me [0, M) and ec [0,17, and since a(0) >
LO) = b+ (1 + MW0) + (M — b)p(0)/,, we have:

(m— e (m—e
( 1+ v(0) + (H — b)go(O)
a0) > b4+ > (1+e)) i (1 +¢)
Ya

= 06J,4a0) + ap(0) — cbiy > w(0).

Hence j, (1) > w(0) (see (22) = y(1) + j2(1)/2g > vy (re-
call the definition of v(k) and property 3). Therefore
hy > ys (see (14)), giving rise to W2 =y*2) = y, =
W)=0=L1)=b+ (M — b)p(1)/y,.  Finally, since
a(l) = L(1) = b + (M — b)p(1)/iy,  then all)y > b +
((m — /1 + e) — byp(1)/i1y = oiga(l) + ap(l) — obj, >
0. Hence j(1) > 0 (see (22)), and since W2) = y*2) = y,,
then h, >y, [

The following numerical examples show the results
obtained from the application of the proposed adaptive
scheme to a 1-dof juggler with the following parameter
values: ¢=0.8, m, =0.1kg, and m, =1 kg, giving
m = 0.1. The desired fixed-point is (Va,74) = (0,3.13 my/s),
resulting in a fixed apex hy = y; + §2/29 = 0.5 m. The
control parameter values were taken as b= — 0.9,
¢= —03,and M = 0.2. Figs. 3 and 4 show the results of
the simulations for the two initial condition cases:
ho > ys and hy < y,, respectively. In the left-hand side of
the figures. the position trajectories and the control input
uare presented. In the system trajectory curves, the lower
and upper dashed lines indicate respectively the values of
va and hy, while that in the input force graphs indicates
the robot weight (m,g). The meaning of the dotted lines
appearing in the force curves will be explained later. In
the right-hand side of the figures. the discrete evolution of
Filk). ak), and j%(k + 1), are shown. The dashed lines
indicate the desired convergence values: Voo a¥oand a*p,.
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t [sec) k

Fig. 4. Adaptive control: hy < Yu-

respectively. In the j,(k) graph, the dotted-line curve
represents the evolution of ¢(k), observe that
(k) = yi(k) > 0.Vk > i where | = 1ifhg > yy.andi =2
ifhy < y,. Inthe first example, Fig. 3, the following initial

impact conditions were taken: W0 = —02m. j(0) =
2.5m/s. and y,(0) = 1 m/s, giving iy = 0.12m > y,. The
auxiliary state initial value was a(0) = —0.36 = L{0). In

the second example, Fig. 4, everything was repeated ex-
cept that this time the object initial impact velocity was
taken as: y,(0) = 1.5 mys. vielding g = — 0.1m < Va.
The auxiliary state initial values were selected
as:a(0) = 0.43 = L(0)and a(1) = 0.9 = L(1). Observe that
in both examples, i, (k) and afk) converge asymptotically
towards p, and a* respectively. and yk) =y, Vk=2
(Vk = 1ifhy > y,). Finally. let us point out an Important
observation concerning the upper and lower dotted
lines in the force curves. These stand respectively
for U, =myg + m,V, and Ui =myy +m>V,, where
Vig[(=3+e—2m+ 2emyl + ¢)ly and V,2
(B —2e+4m—emyi(1 + e)lg. In (Zavala-Rio & Brog-
lato. 1999), a control strategy ensuring the convergence
of the object impact states to the desired fixed point
avoiding saturation of the input ¥ when this one
is bounded such that u, <u< ; Wwas proposed,
based on the assumption that uy and u, are such that
uy < Uy and wu, > U,. The results observed in the
present examples, Figs. 3 and 4, show that the lowest
and highest values of i at each flight time. u(t,’) and
ulfy+1). are respectively higher than U, and lower than
U forallk > 2.ie. U, <ut)) < Wty ) < U, Vi =2
This suggests that conditions on the initia] system impact
state values and on a(0) can be found in order for the
adaptive strategy in Proposition 2 to be applicable
avoiding saturation of the input u when this one is
bounded such that u, < ussu, where u, < U, and
u, > U,,

5. Conclustons

This note is devoted to the control of a class of non-
smooth mechanical systems. that encompasses simple
models of juggling and hopping robots. Its aim is to
extend some previously studied control algorithms
(Zavala-Rio & Brogliato. 1999; Brogliato & Zavala-Rio,
2000). Roughly speaking, such controllers are construc-
ted by first designing a sequence of fictitious inputs in
terms of the “robot” pre-impact velocities {(which consti-
tutes a step that has attracted the interest of some
researchers in the field (Buehler, Koditshek, &
Kindklmann, 1994)). Then in a second stage, one designs
the force control input that guarantees that this
pre-impact velocities sequence is realized. The note
focuses mainly on the first step. It concerns the relaxation
of the a priori knowledge of physical parameters like the
kinematic restitution coefficient e and the object’s
mass, in the design of the robot pre-impact velocities,
A semi-globally stable adaptive scheme is proposed.
Some numerical simulations illustrate the theoretical
results.
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