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Abstract

This paper deals with the controllability of a class of nonsmooth complementarity mechanical systems. Due to their particular structure
they can be decomposed into an “object” and a “robot”, consequently they are named juggling systems. It is shown that the accessibility of
the “object” can be characterized by nonlinear constrained equations, or generalized equations. Examples are presented, including a simple
model of backlash. The main focus of the work is about linear jugglers.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Manipulating objects by pushing and hitting (also called nonprehensile manipulation) is an important robotic task, see
[1,16,12,24] and references therein. It is easily recast in the setting of so-called juggling systems [9,15,26,28] (a class that
encompasses systems with dynamic backlash [18], manipulators with dynamic passive environments, controlled structures,
hopping machines, tethered sattelites [14], etc.).

A powerful way to model many physical systems is to use the so-called complementarity formalism [11,5]. In particular,
mechanical systems subject to unilateral constraints belong to this class of nonsmooth dynamical systems. From a general point
of view, controllability, observability, and stabilizability of such systems have not yet been understood, except in particular cases
[19,20,6,15,10,26–28]. This is typically the case for jugglers which form a subclass of complementarity dynamical systems.

Studies on the controllability of such nonlinear nonsmooth dynamical systems require the development of specific analysis
tools, due to their very particular features [8,16,27,15]. The paper [15] contains a very nice study of a juggling system and its
reachable subspaces, and proposes a general method for the design of feedback control in order to stabilize specific trajectories.
In particular, the studied juggler is not small-time locally controllable. Global criteria for accessibility may be needed. This
paper is dedicated to investigate a way to characterize the controllability properties of a subclass of juggling systems, which
we choose to name linear jugglers. It appears that despite the fact this class of jugglers may represent the simplest juggling
systems, their controllability is not easy to establish, in general, since they anyway remain highly nonlinear dynamical systems.
This work presents some tools which allows one to characterize in a general way whether the considered system possesses the
required accessibility properties, or not. The paper is organized as follows: in Section 2, we introduce the dynamics of jugglers;
in Section 3 the controllability framework is developed; Section 4 is devoted to illustrating the theoretical setting by an example
(dynamic backlash). Conclusions end the paper. Some definitions and calculations are provided in appendices. A preliminary
version of this work can be found in [7].
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2. System’s dynamics

2.1. Introduction

Let us consider the following class of complementarity dynamical systems [11,5]:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ż1 = f1(z1, t, �),

ż2 = f2(z2, t, u, �),

0�h(z1, z2) ⊥ ��0,

Collision mapping

(1)

which has been named juggling systems in [8], where z1 ∈ Rn1 , z2 ∈ Rn2 , h(·, ·) and � ∈ Rm, and u ∈ Rnu . The z1-dynamics
represents the dynamics of the “object” (which may be a real object like a puck, or the center of gravity dynamics of a flying
system [4, Section 8.7]), while the z2-dynamics is that of the “robot”. The signal � in (1) is a vector of Lagrange multipliers which
represents the contact force between the two parts of the system, if the system is a mechanical system. When the “distance”
function h(z1, z2) is positive, then the interaction is � = 0, and the force is allowed to be � > 0 only if h(z1, z2) = 0. At times of
impact, � is no longer a function but is a Dirac measure so that the dynamics becomes algebraic [4]. Obviously, the free-motion
dynamics (� ≡ 0) is not controllable. Though the system in (1) can model various physical systems with nonsmooth effects, we
will focus in this paper on mechanical systems subject to unilateral constraints. In addition, only a subclass of dynamics as in
(1) that we may call linear jugglers will be examined:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

M1q̈1 = AT
1 �,

M2q̈2 = Eu + AT
2 �,

0�Aq + B ⊥ ��0,

q̇(t+k ) = proxM [q̇(t−k ), V (q(tk))].
(2)

In (2) q1 ∈ Rn1/2×1, q2 ∈ Rn2/2×1, qT = (qT
1 , qT

2 ) is a n1+n2
2 -dimensional vector of generalized coordinates, A = (A1, A2) ∈

Rm×(n1/2+n2/2), i.e. A1 is made of the first n1/2 columns of A, whereas A2 is made of the last n2/2 columns of A. Also
E ∈ Rn2/2×nu , M1 ∈ Rn1/2×n1/2, M2 ∈ Rn2/2×n2/2 both full-rank, and B ∈ Rm are all constant, � ∈ Rm. Clearly, both n1 and
n2 are even integers. The “proxM” denotes the proximation in the kinetic metric, i.e. q̇(t+k ) is the closest vector to q̇(t−k ) inside
the set V (q(tk)), and with the distance deduced from the scalar product xTMy, x and y ∈ Rn1/2+n2/2. The times tk generically
denote impact times.

Example 1. For the backlash model in Fig. 1, one has

A =
(

1 −1
−1 1

)
, B =

(
0
L

)
,

m = 2, n1 = n2 = 2. Thus,

A1 =
(

1
−1

)
, A2 =

(−1
1

)
.

The controllability properties of this example will be examined in more detail in Section 4.

0

q2

M2
M1

L2L1

q1

u

L = L1 + L2

Fig. 1. The impacting pair.
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Fig. 2. A nonprehensile manipulation system.

Example 2. Let us consider the nonprehensile manipulation system without gravity depicted in Fig. 2. Then one has n1 =n2 =4,
m = 2,

A =
(

cos �1 sin �1 −1 0
cos �2 sin �2 0 −1

)
, B =

(
L1 cos �1

−L2 cos �2

)
, E = I2,

M1 =
(

m3 0
0 m3

)
, M2 =

(
m1 0
0 m2

)
, q1 =

(
x

y

)
, q2 =

(
�1
�2

)
,

where I2 is the 2-by-2 identity matrix. We suppose that 0 < �1 < �, 0 < �2 < �.

At t = tk the multiplier � = pk�tk is a Dirac measure, pk �0, and the dynamics in (2) can be rewritten as

⎧⎪⎪⎨
⎪⎪⎩

M1(q̇1(t
+
k ) − q̇1(t

−
k )) = AT

1 pk,

M2(q̇2(t
+
k ) − q̇2(t

−
k )) = AT

2 pk,

q̇(t+k ) = proxM [q̇(t−k ), V (q(tk))].
(3)

It is implicitly assumed in (2) that the control input u(·) is a bounded function of time (in other words, Dirac measures are
excluded from the control action). This will be settled next in Theorem 1. Anyway, as will be explained in Section 2.2, this paper
describes an intermediate step in the controllability study, which does not concern directly u(·). Let us give some important
definitions and notations:

We denote Ai the ith row of the matrix A, Bi the ith entry of B, and let I (q) the set of active constraints, i.e. Aiq +Bi =0 for
all i ∈ I (q). The tangent cone to the domain D = {q : Aq + B �0} is defined as V (q(t)) = {x ∈ Rn1/2 × Rn2/2|Aix = Ai

1x1 +
Ai

2x2 �0, i ∈ I (q)}, V (q(t))=Rn1/2+n2/2 if Aq +B > 0, and V (q(t))=∅ if Aq +B < 0. Let us choose Moreau’s collision rule
with restitution e. We define Vi(q(t))={x ∈ Rn1/2 ×Rn2/2|Aix=Ai

1x1 +Ai
2x2 �0}, 1� i�m, and let M =blockdiag(M1, M2).

We will also use [·]+ to denote the positive part of [·] and [·]− the negative part (i.e. [·]+ = [·] if [·]�0 and [·]+ = 0 if [·] < 0,
and similarly for negative part). Note that proxM(y, Vi(q(tk))) = y − 〈y, ni〉+ni with

ni = −1√
AiM−1(Ai)T

(
M−1

1 (Ai
1)

T

M−1
2 (Ai

2)
T

)
= −1√

AiM−1(Ai)T

(
Ni

1

Ni
2

)
, i ∈ {1, . . . , m}

and the scalar product 〈·, ·〉 is in the kinetic metric. Consequently, we can rewrite the impact law with restitution e ∈ [0, 1]
as [17]

q̇(t+k ) = −eq̇(t−k ) + (1 + e)

[
q̇(t−k ) − 1

AiM−1(Ai)T [Ai
1q̇1(t

−
k ) + Ai

2q̇2(t
−
k )]−

(
Ni

1
Ni

2

)]
. (4)

The choice of the model, especially the impact rule, will not be discussed here. Note that there could be a different ei for each
constraint. For the sake of simplicity of the subsequent presentation, we assume that ei = e, 1� i�m.
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2.2. Well-posedness

The dynamics in (2) (or with the impact law in (4)) is a measure differential inclusion [22]. Introducing a function v(·) of local
bounded variation that equals the velocity q̇(·) Lebesgue almost everywhere, the so-called differential measure dv is introduced
and the dynamics in (2) is rewritten as an equality of measures as

−M dv +
(

0
E

)
u(q(t), v(t+), t) dt ∈ NV (q(t))(v(t+)), (5)

where NV (q(t))(v(t+)) is the normal cone to the tangent cone V (q(t)) at v(t+).1 The next theorem is a compilation of Proposition
32, Problem P, Theorems 8, 10 and Corollary 9 of [2], adapted to (2).

Theorem 1. Assume that the row vectors Ai, i ∈ I (q) of the matrix A are independent for all q ∈ D, and that ‖Eu(q, v, t)‖q

� l(t)(1+d(q, q(0))+‖v‖q) with l(t) ∈ L1
loc(R; R+), d(q, q(0)) is the Riemannian distance between q and the initial position

q(0), and ‖ · ‖q is the kinetic norm. Then solutions of (5) exist on R+ and are unique with q(·) absolutely continuous, whereas
the velocity v(·) is right continuous of local bounded variation. Moreover, the acceleration is a measure dv = {q̈} dt + d�a ,
where {q̈} is a Lebesgue integrable function, and d�a is an atomic measure with a countable set of atoms on any compact time
interval (atoms coincide with impact times).

Theorem 1 therefore guarantees that provided the control u(·) satisfies the above constraint, then the closed-loop system
is well-posed. Note, however, that solutions may in general be discontinuous with respect to initial conditions [2]. Also, left
accumulations of velocity jumps may exist (like in the bouncing ball system with e ∈ (0, 1)) but right accumulations are
excluded. In the sequel, we shall deal with controllability problems involving a finite number of velocity jumps. From a general
point of view, we propose to study the controllability of jugglers as follows:

(1) Assume that a controller u exists that can drive the “robot” at arbitrary positions on the “object”’s orbit and with arbitrary
velocity. Then study the existence of a path in the (q, q̇)-space that consists of a finite sequenceS of positions and velocities
at impact times tk .

(2) Construct a trajectory qd(·) ∈ C1[(tk, tk+1)] which satisfies (qd(tk), q̇d (t+k )) ∈ S, Aqd(t) + B �0 for all t ∈ (tk, tk+1).
(3) Find a control u(·) which satisfies the inclusion(

0
E

)
u(t) ∈ {Mq̈d(t)} + NV (qd(t))(q̇d (t)) (6)

for all t ∈ (tk, tk+1).

This way of studying the controllability of jugglers is quite a natural one, as the z1-dynamics is controllable only through the
Lagrange multiplier �, i.e. when there is at least one constraint hi(z1, z2)�0 that is active (hi(z1, z2) = 0). This corresponds
to either pushing the “object” with the “robot” (phases of permanent contact), or hitting the “object” with the “robot”. We
are concerned with the second type of task in this paper. Moreover, we deal only with step (1). Preliminary solutions for
solving steps (2) and (3) have been indicated in [8,15]. It is noteworthy that the object’s trajectory q1d(·) is given solely by
the dynamics (ballistic constraints), as the object is free between impacts. Hence, (6) is equivalent to Eu(t) ∈ {M2q̈2d(t)} +
(0n1/2 In2/2)NV (qd (t))(q̇d (t)), where 0n1/2 ∈ Rn1/2×n1/2 is the null matrix, and In2/2 is the n2

2 × n2
2 identity matrix. The normal

cone in the right-hand side of (6) is not equal to {0} on (tk, tk+1) as positions are continuous and for all tk there exists at least
one i such that Aiqd(tk) + Bi = 0. A fourth step is stabilization of trajectories.

Despite what one might think, step (1) is a difficult one and this is why we focus on it in this paper.

3. A controllability criterion

3.1. Controllability through the impacts

As mentioned above, we chose in this study to control the object’s dynamics through impacts with the robot’s dynamics.
Therefore, phases of persistent contact between these two parts of the system, are excluded from the following developments.
Similarly, as in [8] we make the following.

1 Since the function h(z1, z2) in (1) is linear, these cones are the usual tangent and normal cones to a convex set [25].
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Fig. 3. The path from initial to final states.

Assumption 1. There exists u(q, q̇, t) satisfying the constraint in Theorem 1, such that q̇2(k) can be given arbitrary values at
arbitrary positions on the object’s orbits. Moreover, it is possible to strike a unique arbitrary constraint at times tk .

In this paper, we deal only with simple impacts, i.e. impacts with one constraint Aiq + Bi = 0 for some 1� i�m. Thus,
we have by Theorem 1 the existence and uniqueness of a global solution. However, multiple impacts can be incorporated in
the proposed framework by suitably modifying the reinitialization rule in (4) [22,4]. Assumption 1 allows one to decouple the
control problem into two parts: the control of the object’s dynamics using � as the input (i.e. using impacts), then the control
of the overall system with u. Here, we focus on the first part only and we suppose, throughout the paper, that Assumption
1 holds. Let us note that the algebraic form (3) of the dynamics at the impact times, allows one to express � as a function
of positions and velocities. Therefore, “using � as the input” can be understood as using some of these variables as the in-
put, in particular q̇2(k) and q2(k) (which obviously is linked to q1(k), see (2)). Let us formulate the following controllability
problem.

Problem 1. Given (q1
1 , v+

1 ) and (qn
1 , v+

n ) with v+
1 	= 0, find a path {q1(k)}2�k �n, {q̇1(k)}2�k �n, {q2(k)}1�k �n and

{q̇2(k)}2�k �n, such that (q1(t1), q̇1(t
+
1 )) = (q1

1 , v+
1 ) and (q1(tn), q̇1(t

+
n )) = (qn

1 , v+
n ) (Fig. 3).

Note that n�2 by construction. In Problem 1, n may be given or be considered as a variable (i.e. one may want to study the
controllability with a fixed number of impacts, or search if there exists a finite n such that controllability holds). The times tk
are not fixed at this stage of the study. The constraint on v+

1 will be made clear later. However, v+
n = 0 is a possible choice.

Problem 1 is formulated such that an impact has occurred at t1 and one starts looking at the system just after this impact. It will
appear below (see (7)) that q̇2(1) is not an unknown of the problem since we consider (q1

1 , v+
1 ) and the time t1 as initial data.

This has no consequence on the rest of the study and has to be seen as an analysis artefact. One sees that if Problem 1 has a
solution, then step (3) of the controllability study is to find out a controller u(·) which drives the robot state towards the values
given by the sequences {q2(k)}1�k �n and {q̇2(k)}2�k �n.

Since our main goal is to characterize controllability, we will focus later on the characterization of reachable subspaces and
the accessibility of the systems in (2) and (4).

Definition 1. For n�2 the reachable set from (q1
1 , v+

1 ) in n−1 impacts is the subset of Rn1/2 ×Rn1/2 defined asRn[(q1
1 , v+

1 )]=
{(qn

1 , v+
n )| Problem 1 possesses at least one solution}.

Definition 2. Let us denote R̄n[(q1
1 , v+

1 )] = ⋃
2�k �n R

k[(q1
1 , v+

1 )]. The object’s dynamics is called accessible when
R̄n[(q1

1 , v+
1 )] contains an open set for some n�2, and accessible in N − 1 impacts if R̄n[(q1

1 , v+
1 )] contains an open set

for all n�N .

The reason for the N − 1 instead of N comes from the fact that the first impact that counts in the analysis is at time t2.
Let us denote Rn

V1
[(q1

1 , v+
1 )] the reachable set from (q1

1 , v+
1 ) in n − 1 impacts, with object’s trajectories (q1(k), q̇1(k))2�k �n

remaining in a neighborhood V1 of (q1
1 , v+

1 ).

Definition 3. The object’s dynamics is called locally accessible if R̄n
V1

[(q1
1 , v+

1 )] contains an open set for any V1 and any n�2.
When the object’s dynamics is accessible but not locally accessible, it is said to be globally accessible.
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As pointed out in the Introduction, some jugglers are not locally accessible. In other words, given (q1
1 , v+

1 ) and (qn
1 , v+

n ) in
any neighborhood V1, one may need to consider object’s trajectories which do not remain inside V1 to reach (qn

1 , v+
n ). This

is essentially due to the unilaterality of the constraints (i.e. the complementarity conditions). Note that the trajectories are
understood as the positions and velocities at the impact times only. However, the complete trajectories (i.e. the functions of time
t) may leave V1 as the simplest one degree-of-freedom juggler under gravity (see [8]) shows.

Definition 4 (CTI). The object’s dynamics in (2) is controllable in n − 1 impacts (or controllable through the impacts in n − 1
impacts, denoted as CTI(n − 1)) if Problem 1 has a solution for all (q1

1 , v+
1 ) ∈ Rn1/2 × Rn1/2 and all (qn

1 , v+
n ) ∈ Rn1/2×n1/2.

Let us denote xT
1 = (qT

1 (2), . . . , qT
1 (n − 1)), x1 ∈ R(n−2)(n1/2)×1, xT

2 = (qT
2 (1), . . . , qT

2 (n)), x2 ∈ Rn(n2/2)×1, xT
3 =

(q̇T
1 (2), . . . , q̇T

1 (n − 1)), x3 ∈ R(n−2)(n1/2)×1, xT
4 = (q̇T

2 (2), . . . , q̇T
2 (n)), x4 ∈ R(n−1)(n2/2)×1. The first aim of this note is

to prove the following.

Lemma 1. Problem 1 has a solution if and only if the constrained equation Hj(x1, x2, x4)=0, Gj(x1, x2, x4)�0 has a solution,
for at least one j ∈ {1, . . . , n(n−2)} where Hj(·) and Gj(·) are the nonlinear functions given in (36).

This result is not surprising due to the complementarity conditions in the dynamics. It is the basis for subsequent analysis.

Proof. The proof (i.e. the construction of the functions Hj(·) and Gj(·)) is divided in five steps which correspond to the
constraints that the unknowns in Problem 1 have to satisfy:

Final velocity equality: In the following, the index i(k) means that the constraint i(k), corresponding to the row i(k) of the
matrix A, is striked at the time tk . For instance, if m = 2 one may have i(k) = 1 or i(k) = 2. Since Problem 1 is concerned with
n − 1 impacts, let us denote Ij = {i(2), . . . , i(n)}, j ∈ {1, . . . , m(n−1)}, the possible sequences of successive simple impacts
with the m constraints. From (4) we have

q̇1(t
+
k ) = q̇1(k) − (1 + e)

1

Ai(k)M−1(Ai(k))T [Ai(k)
1 q̇1(k) + A

i(k)
2 q̇2(k)]−N

i(k)
1 = q̇1(k) − ak−N

i(k)
1 , (7)

with ak− = 1+e

Ai(k)M−1(Ai(k))T [Ai(k)
1 q̇1(k) + A

i(k)
2 q̇2(k)]− and q̇1(k)�q̇1(t

−
k ). One notes that ak− is linear in its arguments q̇1(k) and

q̇2(k) provided A
i(k)
1 q̇1(k) + A

i(k)
2 q̇2(k)�0. From (2) it follows that

q̇1(k) = q̇1(t
+
k−1). (8)

From (7) and (8) one can write⎧⎪⎪⎪⎨
⎪⎪⎪⎩

q̇1(t
+
k ) = q̇1(t

+
k−1) − ak−N

i(k)
1 ,

q̇1(t
+
k−1) = q̇1(t

+
k−2) − ak−1− N

i(k−1)
1 ,

...

q̇1(t
+
2 ) = q̇1(t

+
1 ) − a2−N

i(2)
1 .

(9)

Consequently there are m(n−1) possible sequences as (9) within the formulation of Problem 1. We obtain

q̇1(t
+
k ) = q̇1(t

+
1 ) −

⎛
⎝ k∑

j=2

a
j
−N

i(j)
1

⎞
⎠ . (10)

From Problem 1 we can rewrite (10) as

q̇1(t
+
k ) = v+

1 −
⎛
⎝ k∑

j=2

a
j
− (q̇1(j), q̇2(j)) N

i(j)
1

⎞
⎠ (11)

and obviously at tn one obtains

v+
n = v+

1 −
⎛
⎝ n∑

j=2

a
j
−(q̇1(j), q̇2(j))N

i(j)
1

⎞
⎠ , (12)
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where v+
n and v+

1 are data of the problem. Consider (7) and (8), and the linearity of a
j
−; in particular a1−= 1+e

Ai(1)M−1(Ai(1))T [Ai(1)
1 v+

1 +
A

i(1)
2 q̇2(1)]− and using (7) and (9) one can express q̇1(j) as a linear function of x4. For instance, one has

q̇1(j) = q̇1(j − 1) − a
j−1
− (q̇1(j − 2) − a

j−2
− N

i(j−2)
1 , q̇2(j − 1))N

i(j−1)
1 . (13)

We have q̇1(2) = v+
1 , q̇1(3) = v+

1 − a2−(v+
1 , q̇2(2))N

i(2)
1 , q̇1(4) = v+

1 − a3−[v+
1 − a2−(v+

1 , q̇2(2))N
i(2)
1 , q̇2(3)]Ni(3)

1 −
a2−(v+

1 , q̇2(2))N
i(2)
1 , and so on. Then from (11) and since A

i(k)
1 q̇1(k) + A

i(k)
2 q̇2(k) is a scalar, one gets

q̇1(t
+
k ) = v+

1 + Fk(e, A, M1, M2)x4 + Gk(v
+
1 , e, M1, A, M2), (14)

where Fk(·) and Gk(·) are constant matrices. Taking k = n one notes that the equality in (14) represents a constraint on x4
given as

FIj
(e, A, M1, M2)x4 + GIj

(v+
1 , e, M1, A, M2) + v+

n = 0, (15)

where FIj
∈ Rn1/2×(n2/2)(n−1) and GIj

∈ Rn1/2×1.

Example 3. Let us illustrate the fashion to obtain (15) for Example 2. We choose n = 3, i(2) = 2, i(3) = 1 and denote the
sequence as I1. To simplify the notations we take m1 = m2 = m3 = 1. One obtains

q̇1(t
+
2 ) = v+

1 + 1 + e

2
[cos �2ẋ(2) + sin �2ẏ(2) − �̇2(2)]

(
cos �2
sin �2

)
(16)

and

q̇1(t
+
3 ) = v+

3 = q̇1(t
+
2 ) + 1 + e

2
[cos �1ẋ(3) + sin �1ẏ(3) − �̇1(3)]

(
cos �1
sin �1

)
. (17)

Inserting equality (16) into (17) one gets an illustration of (12) for the nonprehensile manipulation system. We have xT
4 =

(�̇1(2)�̇2(2)�̇1(3)�̇2(3)). Using (8) for k = 2 and k = 3, and using (14), (16) and (17), we obtain

F2 =
⎛
⎜⎝0

1 + e

2
cos �2 0 0

0
1 + e

2
sin �2 0 0

⎞
⎟⎠ . (18)

and

FI1(e, A, M1, M2) =

⎛
⎜⎜⎝

0
1 + e

2
cos �2 − (1 + e)2

4
(cos2�1 cos �2 + cos �1 sin �2 sin �1)

1 + e

2
cos �1 0

0
1 + e

2
sin �2 − (1 + e)2

4
(sin2�1 sin �2 + sin �1 cos �2 cos �1)

1 + e

2
sin �1 0

⎞
⎟⎟⎠ . (19)

The constant matrices G2 in (14) and GI1 can be calculated similarly.

Negative pre-impact velocities: One has from the impact existence condition A
i(k)
1 q̇1(k) + A

i(k)
2 q̇2(k)�0 and (8)

A
i(k+1)
1 q̇1(t

+
k ) + A

i(k+1)
2 q̇2(k + 1)�0, 1�k�n − 1. (20)

Still using recursively (13) it follows that (20) can be rewritten compactly as

KIj
(v+

1 , A, e, M1, M2) + LIj
(e, M1, A, M2)x4 �0 (21)

for some constant matrices KIj
(·) ∈ R(n−1)×1, LIj

(·) ∈ R(n−1)×(n2/2)(n−1) and the �0 is componentwise.
Nonsingularity conditions: To be able to go further in our analysis (see below), we are led to take from now on the following

assumption:

A
i(k+1)
1 q̇1(t

+
k ) 	= 0, 0�k�n − 1. (22)

This gives us, using (14), an additional constraint on x4:

A
i(k+1)
1 v+

1 + A
i(k+1)
1 Fkx4 + A

i(k+1)
1 Gk 	= 0, 1�k�n − 1. (23)
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The matrices Fk and Gk are constant matrices at each step k, see an instance of calculation in Example 3. Concatenating these
n − 1 inequalities one obtains

UIj
(A)v+

1 + VIj
(e, A, M1, M2)x4 + WIj

(e, A, M1, M2, v
+
1 ) > 0 or < 0, (24)

where UIj
∈ R(n−2)×n1/2, VIj

∈ R(n−2)×(n−1)(n2/2), and WIj
∈ R(n−2)×1. Note that if n = 2 then VIj

(e, A, M1, M2) = 0
and WIj

= 0 since F2 = 0 and G2 = 0 (see (14)).
Final position equality: From the object’s dynamics one gets

q1(k + 1) − q1(k) = q̇1(t
+
k )�k , (25)

with �k = tk+1 − tk , 1�k�n − 1, and from the constraints expression at tk+1

A
i(k+1)
1 q1(k + 1) + A

i(k+1)
2 q2(k + 1) + Bi(k+1) = 0, 0�k�n − 1 (26)

and inserting (25)

A
i(k+1)
1 q1(k) + A

i(k+1)
2 q2(k + 1) + Bi(k+1) + A

i(k+1)
1 q̇1(t

+
k )�k = 0. (27)

Now, from (25) it easily follows that

qn
1 − q1

1 =
n−1∑
k=1

�kq̇1(t
+
k ). (28)

Since we have assumed that A
i(k+1)
1 q̇1(t

+
k ) 	= 0, 0�k�n − 1, we can use (27) to express �k . Inserting into (28) and using

(26), we obtain

qn
1 − q1

1 =
n−1∑
k=1

−q̇1(t
+
k )

A
i(k+1)
1 q̇1(t

+
k )

[Ai(k+1)
1 q1(k) + A

i(k+1)
2 q2(k + 1) + Bi(k+1)]

=
n−1∑
k=1

−q̇1(t
+
k )

A
i(k+1)
1 q̇1(t

+
k )

A
i(k+1)
1 [q1(k) − q1(k + 1)], (29)

where qn
1 and q1

1 are data of the problem. Now, using the fact that we can express q̇1(t
+
k ) as a function of v+

1 and x4, see (14),
for all k ∈ {2, . . . , n}, we obtain from the second equality in (29)

AIj
(v+

1 , A, M1, M2, x4)x1 + BIj
(v+

1 , A, q1
1 ) + RIj

(e, A, M1, M2, v
+
1 , x4)q

n
1 = 0 (30)

for some matrices AIj
(·) ∈ Rn1/2×n1/2(n−2), BIj

(·) = −q1
1 + v+

1

A
i(2)
1 v+

1

A
i(2)
1 q1

1 ∈ Rn1/2×1 and RIj
(·) = In1/2 − q̇1(t

+
n−1)A

i(n)
1

A
i(n)
1 q̇1(t

+
n−1)

∈
Rn1/2×n1/2 whose entries may be singular in x4, but with a denominator that is linear in x4, see (14).

Example 4. Let us continue with the nonprehensile manipulation system as in Examples 2 and 3. We have xT
1 = (x(2) y(2)).

Using (29) with n = 3, the same sequence I1 as in Example 3, we get

AI1(v
+
1 , A, x4)

=

⎛
⎜⎜⎜⎝

ẋ+
1 cos �2

cos �2ẋ
+
1 + sin �2ẏ

+
1

− ẋ(t+2 ) cos �1

cos �1ẋ(t+2 ) + sin �1ẏ(t+2 )

ẋ+
1 sin �2

cos �2ẋ
+
1 + sin �2ẏ

+
1

− ẋ(t+2 ) sin �1

cos �1ẋ(t+2 ) + sin �1ẏ(t+2 )

ẏ+
1 cos �2

cos �2ẋ
+
1 + sin �2ẏ

+
1

− ẏ(t+2 ) cos �1

cos �1ẋ(t+2 ) + sin �1ẏ(t+2 )

ẏ+
1 sin �2

cos �2ẋ
+
1 + sin �2ẏ

+
1

− ẏ(t+2 ) sin �1

cos �1ẋ(t+2 ) + sin �1ẏ(t+2 )

⎞
⎟⎟⎟⎠ , (31)

where v+
1 = (ẋ+

1 ẏ+
1 )T. Using now (16) to calculate ẋ(t+2 ) and ẏ(t+2 ) allows one to get the final form of AI1(v

+
1 , A, x4),

obtained from the second equality in (29). Since the denominators in (31) are linear with respect to ẋ(t+2 ) and ẏ(t+2 ), and since
from (16) both these quantities are linear in x4, it follows that the denominators are linear in x4 as well. The other matrices in
(30) are calculated similarly.
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Positive flight-times: From (25) and (27) we get

A
i(k+1)
1 [q1(k + 1) − q1(k)] = A

i(k+1)
1 q̇1(t

+
k )�k . (32)

Since A
i(k+1)
1 q̇1(t

+
k ) 	= 0, the constraints �k �0, 1�k�n − 1, may therefore be written as (see (14))

HIj
(v+

1 , e, A, M1, M2, x4)x1 + JIj
(q1

1 , qn
1 , v+

1 , e, A, M1, M2, x4)�0 (33)

for some matrices HIj
(·) ∈ R(n−1)×(n1/2)(n−2) and JIj

(·) ∈ R(n−1)×1 whose components may be singular in x4. The vector
JIj

has the following structure

⎛
⎜⎜⎜⎝

− A
i(2)
1 q1

1

A
i(2)
1 v+

1
0
...

0

⎞
⎟⎟⎟⎠+

⎛
⎜⎜⎜⎜⎝

0
...

0
A

i(n)
1 qn

1

A
i(n)
1

[
v+

1 −∑n−1
j=2a

j
−N

i(j)
1

]

⎞
⎟⎟⎟⎟⎠ . (34)

Note that the form of the inequalities in (33) depends on the sign of A
i(k+1)
1 q̇1(t

+
k ) for each 1�k�n − 1. From (34) one sees

that JIj
is linear in q1

1 and in qn
1 .

Unilateral constraints active at impact times: From (26) one can construct the set of equalities

CIj
(A)x1 + DIj

(A)x2 + EIj
(B, q1

1 ) + QIj
(A)qn

1 = 0, (35)

with CIj
(·) ∈ Rn×(n1/2)(n−2), DIj

(·) ∈ Rn×n(n2/2), EIj
(·) ∈ Rn×1, and

QIj
(A)qn

1 =

⎛
⎜⎜⎝

0
...

0
A

i(n)
1 qn

1

⎞
⎟⎟⎠ , QIj

∈ Rn×n1/2.

The functions Hj(·), Gj(·) can be constructed from (30), (35), (15) and (33), (21), (24), respectively. The controllability
problem formulated as Problem 1 yields nonlinear equations2 in x under inequality constraints, as follows:

(S1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

AIj
(v+

1 , A, M1, M2, x4)x1 + BIj
(v+

1 , A, q1
1 ) + RIj

(e, A, M1, M2, v
+
1 , x4)q

n
1 = 0 (i)

CIj
(A)x1 + DIj

(A)x2 + EIj
(B) + QIj

(A)qn
1 = 0 (ii)

FIj
(e, A, M1, M2)x4 + GIj

(v+
1 , e, M1, M2, A) + v+

n = 0 (iii)

HIj
(v+

1 , e, A, M1, M2, x4)x1 + JIj
(q1

1 , qn
1 , v+

1 , e, A, M1, M2, x4)�0 (iv)

KIj
(v+

1 , A, e, M1, M2) + LIj
(e, M1, M2, A)x4 �0 (v)

UIj
(A)v+

1 + VIj
(e, A, M1, M2)x4 + WIj

(e, A, M1, M2, v
+
1 ) > 0 or < 0 (vi)

j ∈ {1, . . . , m(n−1)}

(36)

which forms two sets of n1 + n equalities and 3n − 4 inequalities for each j. We have therefore shown that Problem 1 has a
solution only if the constrained equation (S1) has a solution for at least one j. Since the converse is obviously true Lemma 1 is
proved. �

Remark 1. To satisfy the nonsingularity (22), we can assume, for example, that the matrix A1 satisfies rank(A1)�2. Then
Eq. (vi) below is automatically satisfied and should be removed, which simplifies substantially the analysis. However, this
assumption is meaningful only if m�2 and n1 �4. It will be convenient in deriving the accessibility criterion. Physically, it
means that the object’s velocity is never orthogonal to the chosen constraint to be striked. For instance, in Example 2,

A1 =
(

cos �1 sin �1
cos �2 sin �2

)
.

2 It is interesting to note that the controllability problem as formulated in [16] also results in a nonlinear program with equality and inequality constraints.
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So provided �2 	= �1, this assumption is satisfied (take, for example, 0 < �1 < �
2 , �

2 < �2 < �). The situation �2 =�1 corresponds
to the two plates with parallel directions, which obviously is not a good design choice. This row rank assumption and the rank
assumption in Theorem 1 are obviously decoupled one from each other.

Remark 2. It clearly appears from (25) and (27) that q2(k) cannot be used as an input in a mapping for the computation of
q1(k).

Remark 3. The constraint that v+
1 	= 0 in Problem 1 appears as a necessary condition for the construction of the matrices. It

is in fact an artefact due to the way we have formulated the controllability in Problem 1. A solution for removing this technical
assumption is to strike the object initially and then continuing. However, the choice v+

n =0 is possible, indeed the denominators
in (29) do not involve v+

n , but only q̇1(t
−
n ) = q̇1(t

+
n−1).

3.2. Some properties of the constrained equation

The set of equalities/inequalities in (36) has the following useful properties:An equivalent formulation: If we use the first
equality in (29) we get

AIj
(v+

1 , A, M1, M2, x4)x1 + BIj
(v+

1 , A, M1, M2, x4)x2 + RIj
(A, B, q1

1 ) + qn
1 = 0 (i′), (37)

where we use the same notations than in (30) but the matrices are different. Here, we haveRIj
(A, B, q1

1 )=−q1
1+ v+

1

A
i(2)
1 v+

1

[Ai(2)
1 q1

1+
Bi(2)]. The first column of BIj

in (37) is made of zeros because q2(1) is not in the right-hand side of the first line of (29). Let us
denote as (S2) the constrained equation made of (37) and (ii)–(vi) in (36). The constrained equation (S2) is equivalent to (S1).
Indeed, denoting the first equality of (29) as (29)1 and the second equality as (29)2, we obtain [(29)1 and (26)] ⇒ [(29)2] (and
(26)). Conversely, [(29)2 and (26)] ⇒ [(29)1] (and (26)). Since (26) is imposed in both (S1) and (S2) (through (35) numbered
(ii)), they are equivalent one to each other. The choice between (S1) and (S2) is difficult at this stage of the study and may depend
on some additional constraints (e.g. numerical issues). As we shall see below, for one degree-of-freedom objects (n1 = 2) then
only the formalism (S2) makes sense because the second line of (29) then becomes trivial and is not usable.

Example 5. Continuing Example 4 and using the first equality in (29), we obtain instead of (31) the following matrix AI1

for (S2):

AI1(v
+
1 , A, M1, M2, x4) =

⎛
⎜⎜⎜⎝

−ẋ(t+2 ) cos �1

cos �1ẋ(t+2 ) + sin �1ẏ(t+2 )

−ẋ(t+2 ) sin �1

cos �1ẋ(t+2 ) + sin �1ẏ(t+2 )

−ẏ(t+2 ) cos �1

cos �1ẋ(t+2 ) + sin �1ẏ(t+2 )

−ẏ(t+2 ) sin �1

cos �1ẋ(t+2 ) + sin �1ẏ(t+2 )

⎞
⎟⎟⎟⎠ (38)

which can be put into its final form using (16) and (8).

Linearity in the final state: Let xT
n = ((qn

1 )T, (v+
n )T). Then (i) (i′) (ii) (iii) and (iv) are linear in xn, so that both (S1) and (S2)

can be rewritten as{
MIj

(x4, v
+
1 )xn + NIj

(x1, x2, x4, q
1
1 , v+

1 ) = 0 (i) (or (i′)) (ii) (iii),

PIj
(x4, v

+
1 )qn

1 + TIj
(x1, x4, q

1
1 , v+

1 )�0 (iv).(vi),
(39)

where

MIj
(x4, v

+
1 ) =

(
RIj

(x4, v
+
1 ) 0

QIj
0

0 In1/2

)
for (S1), MIj

=
(

In1/2 0
QIj

0
0 In1/2

)
for (S2),

NIj
(x1, x2, x4, q

1
1 , v+

1 ) =
⎛
⎝AIj

(x4, v
+
1 )x1 + BIj

(x4, v
+
1 , q1

1 )

CIj
x1 + DIj

x2 + EIj

FIj
x4 + GIj

(v+
1 )

⎞
⎠ for (S1),

NIj
(x1, x2, x4, q

1
1 , v+

1 ) =
⎛
⎝AIj

(x4, v
+
1 )x1 + BIj

(x4, v
+
1 ) + RIj

(x4, q
1
1 )

CIj
x1 + DIj

x2 + EIj

FIj
x4 + GIj

(v+
1 )

⎞
⎠ for (S2),
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PIj
(x4, v

+
1 ) =

( 0(n−2)×n1/2
A

i(n)
1

A
i(n)
1 [v+

1 −∑n−1
j=2 a

j
−N

i(j)
1 ]

)
, TIj

(x1, x4, q
1
1 , v+

1 ) = HIj
(x4, v

+
1 )x1 +

⎛
⎜⎜⎜⎝

− A
i(2)
1 q1

1

A
i(2)
1 v+

1
0
...

0

⎞
⎟⎟⎟⎠ .

The two functions Hj and Gj in Lemma 1 satisfy Hj(x1, x2, x4) = Hj,x4(x1, x2) and Gj(x1, x2, x4) = Gj,x4(x1, x2), where
Hj,x4(·) and Gj,x4(·) are linear. Since x4 and x2 play the role of the input, this means that the problem is linear in the state but
nonlinear in the input.

Further equivalent formulations: (a) One can formulate Problem 1 and rewrite (36) as{
Fj (x1, x4) = 0 (i)(iii),
(x1, x4) ∈ �j ⊂ R(n−2)[(n1+n2+2)/2] (iv)(v)(vi)(ii)

(40)

for all j ∈ {1, . . . , m(n−1)}, some function Fj (·) and some closed subset �j . The problem is then under the canonical form
studied in [21] for the variables x1 and x4. However, the applicability of the general conditions of existence of a solution to (40)
in [21] is not straightforward.

(b) Let us denote xT = (xT
1 , xT

2 , xT
4 ). Then (S1) in (36) can be written as{

Hj(x1, x2, x4) = Mj(x4)x + Nj(x4) = 0 (i)(ii)(iii),
Gj (x1, x2, x4) = Lj (x4)x + Kj(x4)�0 (iv)(v)(vi),

(41)

where

Mj(x4) =
(
AIj

(x4) 0 0
CIj

DIj
0

0 0 FIj

)
and Nj(x4) =

(
BIj

(x4)

EIj

GIj

)
+ MIj

(x4)xn,

Lj (x4) =
(
HIj

(x4) 0 0
0 0 LIj

)
,

i.e. NIj
in (39) is

NIj
= Mj(x4)x +

(
BIj

(x4)

EIj

GIj

)
.

In (41) Mj ∈ R(n1+n)×(n1/2(n−2)+n2/2(2n−1)), Nj ∈ R(n1+n)×1, Lj ∈ R3n−4×((n1/2)(n−2)+(n2/2)(2n−1)), Kj ∈ R3n−4×1. If (S2)

is used (see (37)), then the matrix Mj is modified accordingly.
One degree of freedom objects: If n1 = 2 the second line of (29) becomes trivial, so one has to use the first line of (29) and

modify the constrained equations in consequence (see (37)). Then the first line of (29) becomes

qn
1 − q1

1 = −
n−1∑
k=1

q1(k) + A
i(k+1)
2

A
i(k+1)
1

q2(k + 1) + Bi(k+1)

A
i(k+1)
1

(42)

and (i′) is modified to the equality

AIj
(A)x1 + BIj

(A)x2 + RIj
(q1

1 , B) + qn
1 = 0 (i′), (43)

where all matrices are constant (in (37) they may generally be function of x4). One sees that (i′) (ii) (iii) in (36), (37) can be
rewritten as

Mjx + N̄j +
⎛
⎝ qn

1
QIj

qn
1

v+
n

⎞
⎠= 0,

where the matrices

Mj =
(
AIj

BIj
0

CIj
DIj

0
0 0 FIj

)
and N̄j =

(
RIj

EIj

GIj

)

are constant for given initial data. This is the case for the backlash model in Fig. 1. �
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3.3. Analytical study of accessibility

The number of impacts n − 1 is an important parameter in the existence of a solution to Problem 1. This combined with
the fact that when m�2 the index i(k) may vary from one impact to the next, renders the controllability study a hard task
in general. However, attacking the problem of multiple impacts as a succession of simple impacts, inherently contains such
cumbersome enumeration procedures [13,8]. Note that for Problem 1 to make sense there must exist at least one feasible x∗
for (36) and a nonempty open neighborhood of x∗

4 in which the entries are nonsingular. Since the denominators are linear
in x4 (consequently the singular set is closed), the matrices entries are even smooth in this neighborhood. Let us state the
following:

Lemma 2. We have:

(a) In (39) rank(PIj
) = 1.

(b) If (S1) is used, then one has rank(MIj
) = n1 − 1.

(c) If (S2) is used, one has rank(MIj
) = n1.

Proof. (a) and (c) follow by direct inspection of the matrices structures, in particular from (37) it follows that

MIj
=
(

In1/2 0
QIj

0
0 In1/2

)
.

(b) In (30) one has rank(RIj
) = n1

2 − 1. Indeed if v is an eigenvector of RIj
and � the corresponding eigenvalue, one has

RIj
v=�v. It follows that

q̇1(t
+
n−1)A

i(n)
1

A
i(n)
1 q̇1(t

+
n−1)

v= (1−�)v. The matrix
q̇1(t

+
n−1)A

i(n)
1

A
i(n)
1 q̇1(t

+
n−1)

has rank 1, and it is easy to see that all its eigenvalues

are 0 except one eigenvalue equal to 1, whose eigenvector is v = q̇1(t
+
n−1). Therefore, RIj

has all eigenvalues equal to 1 except
one that is 0. The result then follows from the structure of the matrix QIj

in (35) and that of MIj
. �

Lemma 3. Accessibility in the sense of Definition 2 implies 4n1+n2
n1+2n2

�n.

Proof. The proof can be done by direct calculation and inspection of the structure of the matrices Mj and Nj in (41). One
has rank(MIj

)�n1. In the general case of n impacts, one has Mj ∈ R(n1+n)×((n1/2)(n−2)+(n2/2)(2n−1)). Accessibility implies

that for a given (q1
1 , v+

1 ), the equality in (39) be satisfied for xn in an open set. Consequently, it must hold that Im(Mj ) ⊇
Im(MIj

). The representations in (S1) and (S2) being equivalent one to each other, let us use (S2). It follows that (rank(Mj )�
rank(MIj

)) ⇔ n1
2 (n − 2) + n2

2 (2n − 1)�n1 ⇐⇒ n� 4n1+n2
n1+2n2

. �

Clearly, the lower bounds in Lemma 3 are conservative and should be refined. Let us propose the following, without
proof:

Conjecture 1. One has n1 �2n if accessibility holds.

3.3.1. The case n = 2
Controllability as in Definition 4 holds if there exists n such that R̄n[(q1

1 , v+
1 )] = Rn1/2 × Rn1/2 for any (q1

1 , v+
1 ). One

may examine the structure of R2[(q1
1 , v+

1 )] in order to determine whether or not a covering of Rn1/2 × Rn1/2 is possible in a
finite or infinite number of impacts (more exactly one should speak of the object configuration space × its tangent space). The
reason may be that the study of the spaces R2[(q1

k , v+
k )] may be more tractable, hence the characterization of R2[(q1

k , v+
k )],

(q1
k , v+

k ) ∈ R2[(q1
k−1, v

+
k−1)], may be useful. Let us therefore better understand the constrained nonlinear equation (36) when

n = 2. Note first that x1 no longer appears in the problem, so that xT = (xT
2 , xT

4 ), x ∈ Rn2 × Rn2/2. This means that the matrix
AIj

is no longer defined in both (30) and (37). The structure of all the matrices defined in (39), (40) and (41), has to be modified
accordingly.

Lemma 4. If n = 2 in Problem 1, then the matrices Mj , Nj , Lj , Kj in (41) are constant (i.e. they do not depend on x4), and
(iv) in (36) simplifies to an inequality JIj

(q1
1 , q2

1 , v+
1 , A)�0. Moreover, rank(Mj )= 3 and accessibility in one impact implies

n1 = 2.
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Proof. Here, we use the formalism (S2), constructed from (37). The proof is done by inspection of the structure of the matrices
in (36), replacing (i) by (i′) in (37). In particular, one has

Mj =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
v+

1 A
i(2)
2

A
i(2)
1 v+

1

0

A
i(1)
2 0 0

0 A
i(2)
2 0

0 0
(1 + e)N

i(2)
1 A

i(2)
2

Ai(2)M−1(Ai(2))T

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ R(n1+2)×(3/2)n2 .

The rank follows as there are three columns which are independent vectors in Rn1+2. Using the formalism in (41) constructed
from (37) (in other words, using the matrix MIj

of (39) for (S2)), one sees that rank(MIj
) = n1. For the system to be

accessible, Problem 1 has to have solutions for (q2
1 , v+

2 ) evolving in a set containing an open set of Rn1 . From (41) this implies
that rank(Mj )� rank(MIj

). Consequently, n1 �3, i.e. n1 = 2. �

It is useful to think of Problem 1 (i.e. of (36)) in terms of a convex quadratic program, which in turn can be posed as a LCP
[23, Section 1.3.4]. Some definitions concerning LCPs are given in Appendix A.

Corollary 1. If n = 2, Problem 1 has a solution only if the mixed linear complementarity problem (mLCP) in (46) is solvable.

Proof. First, let us note that since n = 2, the inequality constraint (vi) reduces to A
i(2)
1 v+

1 > 0 or < 0. We therefore disregard it.
If x∗ is a solution of Problem 1, then from (41) it is also a solution of the quadratic programme (QP)

min 1
2 (Mjx + Nj)

T(Mjx + Nj),KIj
+ LIj

x4 �0. (44)

Hence the Karush–Kuhn–Tucker (KKT) necessary and sufficient conditions are satisfied, i.e. there exists a slack variable � ∈ R

such that{
MT

j Mjx
∗ + MT

j Nj − LT
j � = 0,

0�� ⊥ KIj
+ LIj

x4 �0,
(45)

where Lj =(0 LIj
) ∈ R1×(3/2)n2 . If x∗ is a KKT point of this program [23, Section 9.3.1] and in addition Mjx

∗ +Nj =0, then

(q2
1 , v+

2 ) is reachable from (q1
1 , v+

1 ). If one can show that there is a set in Rn1/2 × Rn1/2 � (q2
1 , v+

2 ) containing an open set, and
such that both conditions are satisfied, then the system is reachable in one impact. We know from Lemma 4 that rank(Mj ) = 3.
If MT

j Mj ∈ R(3/2)n2×(3/2)n2 has full-rank 3 (this is the case only if n2 = 2), one can easily transform (45) into a LCP(�) with a

positive definite matrix. If n2 �4, let us denote r̄ = 3
2n2 − 3. Let us define E3 = (0 I3), Er̄ = (Ir̄ 0) and W, WTW = I(3/2)n2 ,

such that WMT
j MjW

T = diag(0r̄×r̄ , Dj ),where Dj > 0 is diagonal and 3 × 3. Then (45) can be rewritten as⎧⎪⎪⎨
⎪⎪⎩

DjE3Wx∗ + E3WMT
j Nj − E3WLT

j � = 0,

Er̄WMT
j Nj − Er̄WLT

j � = 0,

0�� ⊥ KIj
+ LIj

x∗
4 �0

(46)

which is a mLCP. �

One may solve the mLCP numerically, and then look for solutions which satisfy Mjx
∗ +Nj = 0. In the case n=n1 =n2 = 2,

one may use LCPs to study accessibility and controllability, see Section 4. The use of complementarity problems is important
because it paves the way to theoretical and numerical studies.

Corollary 2. (a) (q2
1 , v+

2 ) ∈ R2[(q1
1 , v+

1 )] �⇒ (b) JIj
(q1

1 , q2
1 , v+

1 )�0 and x∗(0) is a KKT point of the QP in (44) ⇐⇒ (c)

JIj
(q1

1 , q2
1 , v+

1 )�0 and the mLCP in (46) is solvable with � = 0. If Ker(MT
j ) = {0} then (a) ⇐⇒ (b).

Proof. Simply note that if (q2
1 , v+

2 ) is reachable from (q1
1 , v+

1 ) then Mjx
∗ + Nj = 0 so that � = 0, and HIj

in (33)
vanishes. �
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3.3.2. The general case
A vector x is said admissible if the entries of the matrices in (36) are bounded at x. The set of admissible x is open.

Lemma 5. Consider the constrained equation (S2) in (39). The system is accessible in (n−1) impacts in the sense of Definition
2 if and only if there exists a set V of admissible x and j ∈ {1, . . . , m(n−1)} such that

(a) −[PIj
(x4), 0] (MT

Ij
MIj

)−1MT
Ij

NIj
(x) + TIj

(x)�0 for all x ∈ V ,

(b) KIj
+ LIj

x4 �0 and UIj
v+

1 + VIj
x4 + WIj

> 0 or < 0 for all x ∈ V ,

(c) NIj
(x) ∈ Ker [In1+n − MIj

(MT
Ij

MIj
)−1MT

Ij
] for all x ∈ V ,

(d)
⋃

j∈{1,...,m(n−1)} MT
Ij

spanx∈V [NIj
(x)] contains an open set of Rn1 .

Proof. We suppress the arguments in the matrices for the sake of clarity of the writing. Let us first show that if the system is
accessible in (n − 1) impacts, then (a)–(d) hold. Accessibility implies that there exists at least one xn and one j such that (S2)

written as in (39) is satisfied for some x. One has MIj
xn + NIj

= 0 ⇒ xn = (MT
Ij

MIj
)−1MT

Ij
NIj

. Thus, (a) follows
from PIj

xn + TIj
�0. (b) is just (v), (vi) in (39). Next, we have

MIj
xn + NIj

= 0 ⇒ MT
Ij

[MIj
xn + NIj

] = 0

⇒ xn + (MT
Ij

MIj
)−1MT

Ij
NIj

= 0

⇒ MIj
xn + MIj

(MT
Ij

MIj
)−1MT

Ij
NIj

= 0

⇒ − NIj
+ MIj

(MT
Ij

MIj
)−1MT

Ij
NIj

= 0

⇒ NIj
∈ Ker [In1+n − MIj

(MT
Ij

MIj
)−1MT

Ij
] (47)

so V is not void and (c) is proved. Finally, xn = −(MT
Ij

MIj
)−1MT

Ij
NIj

and since accessibility implies that (S2) is satisfied

for xn in an open set of Rn1 , condition (d) follows remembering that MIj
has constant rank n1.

Let us prove now that if (a)–(d) hold, then the system is accessible in (n − 1) impacts. Equivalently, there exists an open set
O ⊂ Rn1 such that (S2) is satisfied for all xn ∈ O (i.e. there is a set V such that for each xn in O, (S2) is satisfied with some
x ∈ V and some j ∈ {1, . . . , m(n−1)}). Let us consider (c). It implies that NIj

= MIj
(MT

Ij
MIj

)−1MT
Ij

NIj
, and the

vector xn = −(MT
Ij

MIj
)−1MT

Ij
NIj

is such that MIj
xn + NIj

= 0. Considering now (d), one sees that as x varies in V

and j varies through j ∈ {1, . . . , m(n−1)}, then MT
Ij

NIj
(x) spans an open set of Rn1 . Thus, xn can be taken in an open set.

Condition (a) then implies that (iv) of (S2) holds in this open set, and (b) allows one to get (v), (vi).
If one uses (S1), then similar conditions can be derived taking into account that rank(MIj

(x4)) = n1 − 1. �

Lemma 5 can be used to test the nonaccessibility by checking that one of the conditions (a)–(d) fails.
It is clear that a next step is to study how the physical parameters of the juggler (namely e, A, B, M, n1, n2) influence the

existence of solutions to the various constrained equations that characterize the reachable subspaces.

4. Example: dynamic backlash model

As an illustration, let us consider the impacting pair in Fig. 1. Since n1 = 2, the comment on one degree-of-freedom objects
in Section 3.2 applies. The following is true.

Lemma 6. The dynamics of the impacting pair’s object is accessible in 1 impact in the sense of Definition 2.

The proof is given in Appendix B. It is an application of Corollary 2, however we develop all the calculations and provide an
accurate characterization of the reachable subspaces.

Lemma 6 is a first step to show the following:

Lemma 7. The dynamics of the impacting pair’s object is controllable in 3 impacts in the sense of Definition 4.

The proof is given in Appendix C. It relies on the characterization of the spaces R2[(qk
1 , v+

k )] which can be analytically
computed. Both Lemmas 6 and 7 hold independently of e ∈ [0, 1]. The shape of the reachable subspaces for the impacting pair
that is found from the analysis in Appendices B and C is intuitively sound (see Fig. 4).
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v2
+

q1
2

(q1, v1)1 +

0

0

(final state)

0

0

(a, b)

Case v1 < 0
+

2[(q1,v1)]1 +

v2
+

(final state)

(final state)

2[(q1,v1)]1 +

(q1, v1)1 +

Case v1 > 0
+

Case v2 > 0
+

(q1, v2)2 +

(final state)

2[(q1,v2)]2 +

v3
+

q1
2

q1
3

q1
3

2[(q1,v2)]2 +

Case v2 < 0
+ v3

+

(q1, v2)2 +

(final state)

(a) (b)

(c) (d)

Fig. 4. Reachable subspaces for the backlash model.

5. Conclusions

This work focuses on the controllability of a class of nonsmooth complementarity mechanical systems, named jugglers because
of their particular dynamics. Potential and important applications can be found in nonprehensile manipulation, kinematic chains
with dynamic backlash, controlled structures, manipulators with dynamic passive obstacle, hopping and running machines,
vibro-impact processes, etc. The simplest jugglers are examined, which anyway remain highly nonlinear systems. It is shown
that the attainable subspaces of the object dynamics are characterized by constrained equations. These constrained equations
are shown to possess a specific structure so that preliminary analytical results can be derived. The usefulness of the developed
analysis is twofold: firstly the presented tools, which heavily rely on complementarity problems, pave the way towards numerical
computation of the reachable subspaces. Secondly, jugglers may be designed so that the complementarity problems characterizing
their reachable subspaces, are well-posed. Extension towards systems with friction, nonlinear constraints, objects subject to
gravity, is the topic of future works.
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Appendix A. Complementarity problems

Given A ∈ Rn×n and B ∈ Rn, the problem of finding x ∈ Rn and y ∈ Rn satisfying

y = Ax + B �0, x�0, xTy = 0 (48)

is called a linear complementarity problem (LCP) [3]. It can be equivalently written as

0�x ⊥ y = Ax + B �0. (49)
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Roughly, the LCP has a unique solution x∗ whatever B if and only if A satisfies some positivity conditions, see [23]. Positive
definiteness of A is sufficient.

Given A ∈ Rn×n, B ∈ Rm×m, C ∈ Rn×m, D ∈ Rm×n, a ∈ Rn, b ∈ Rm, the problem of finding x ∈ Rn and y ∈ Rm

satisfying

a + Ax + Cy = 0, 0�b + Dx + By ⊥ y�0 (50)

is called a mLCP [3].

Appendix B. Accessibility in one impact

Let us consider the case n1 = n2 = n = 2. Then if Problem 1 has a solution x∗ and using notations in Lemma 4, this must be
the value that minimizes the quadratic function

	(x) = 1

2

⎡
⎢⎢⎢⎢⎣Mjx + N̄j +

⎛
⎜⎜⎜⎜⎝

q2
1

0

A
i(2)
1 q2

1

v+
2

⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎢⎣Mjx + N̄j +

⎛
⎜⎜⎜⎜⎝

q2
1

0

A
i(2)
1 q2

1

v+
2

⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎦

subject to Lj (x4)x + Kj(x4)�0, and x = (q2(1), q2(2), q̇2(2))T ∈ R3×1. The matrices Mj ∈ R4×3 and Nj ∈ R4×1 are

constant, see the last item in Section 3.2. The inequality in (S1) reduces to (v), i.e. from (20): −A
i(2)
1 v+

1 − A
i(2)
2 x4 �0, because

(iv) disappears from the analysis in a first stage. The KKT necessary and sufficient conditions stipulate the existence of a
Lagrange multiplier � ∈ R such that [23, Section 9.3.1]

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

MT
j Mjx

∗ + MT
j N̄j + MT

j

⎛
⎜⎜⎜⎜⎝

q2
1

0

A
i(2)
1 q2

1

v+
2

⎞
⎟⎟⎟⎟⎠+

⎛
⎜⎝

0

0

A
i(2)
2

⎞
⎟⎠ � = 0,

��0, �T(A
i(2)
2 x∗

4 + A
i(2)
1 v+

1 ) = 0, −A
i(2)
2 x∗

4 − A
i(2)
1 v+

1 �0

(51)

for a j ∈ {1, 2} (in other words, one can choose to strike with either constraint at time t2 and to initialize the system with any
constraint at time t1). Since rank(Mj ) = 3 (see Lemma 4), the second line in (51) is a LCP(�) with LCP-matrix (a scalar in this
case)

MLCP = (0 0 A
i(2)
2 ) (MT

j Mj )
−1

⎛
⎜⎝

0

0

A
i(2)
2

⎞
⎟⎠> 0.

Therefore, LCP(�) always possesses a unique solution [23, Theorem 3.13]. From the first line of (51) one has

x∗(�) = (MT
j Mj )

−1

⎡
⎢⎢⎢⎢⎣−MT

j N̄j − MT
j

⎛
⎜⎜⎜⎜⎝

q2
1

0

A
i(2)
1 q2

1

v+
2

⎞
⎟⎟⎟⎟⎠−

⎛
⎜⎝

0

0

A
i(2)
2

⎞
⎟⎠ �

⎤
⎥⎥⎥⎥⎦ . (52)

Let us come back on the backlash model, where m1 and m2 are the masses of the two bodies in Fig. 1. If we choose to strike at
t1 the constraint 2 and at t2 the constraint 1 (i.e. i(1) = 1 and i(2) = 2), we have A

i(2)
1 = A2

1 = −1 and A
i(2)
2 = A2

2 = 1. Consider
x∗

4 calculated from (52) with �= 0, and let us denote it as x∗
4 (0). So if x∗

4 (0)− v+
1 < 0 the solution of LCP(�) is �= 0. Injecting

(52) into the left-hand side of this inequality, one sees that the obtained scalar function is a linear function of (q2
1 , v+

2 ) and since
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rank(Mj ) = 3, there is a half space in the (q2
1 , v+

2 )-plane such that x∗
4 (0) − v+

1 < 0. More precisely, in this case one has

MT
j

⎛
⎜⎜⎜⎜⎝

q2
1

0

A
i(2)
1 q2

1

v+
2

⎞
⎟⎟⎟⎟⎠=

⎛
⎜⎝

0 0 −1 0

1 1 0 0

0 0 0 −(1+e)m2
m1+m2

⎞
⎟⎠
⎛
⎜⎜⎜⎜⎝

q2
1

0

A
i(2)
1 q2

1

v+
2

⎞
⎟⎟⎟⎟⎠=

⎛
⎜⎝

0

0
−(1+e)m2
m1+m2

v+
2

⎞
⎟⎠ .

Therefore, x∗
4 (0) is a linear function of v+

2 only. In addition to be a KKT point of the QP for the suitable values of v+
2 in a

half-plane, x∗ in (52) and with � = 0 satisfies the equality

Mjx
∗ + Nj +

⎛
⎜⎝

q2
1

0
A

i(2)
1 q2

1
v+

2

⎞
⎟⎠= 0.

Let us examine now inequality (iv). From (32) one finds q2
1 −q1

1 =v+
1 �1. The constraint �1 �0 therefore yields q2

1 �q1
1 if v+

1 �0,
and q2

1 �q1
1 if v+

1 �0. We conclude about accessibility of the impacting pair in one impact since R̄2[(q1
1 , v+

1 )] = R2[(q1
1 , v+

1 )]
is a quadrant in the (q2

1 , v+
2 )-plane, as intuitively expected (see Fig. 4).

Appendix C. Controllability in three impacts

The proof relies on the following arguments:

• The goal is to show that for any initial data (q1
1 , v+

1 ) one can reach any (q4
1 , v+

4 ) after three impacts. In Appendix B, we have
shown that R2[(q1

1 , v+
1 )] = [q1

1 , +∞) × [−∞, v+
1 ) if v+

1 > 0 and R2[(q1
1 , v+

1 )] = (−∞, q1
1 ] × [−∞, v+

1 ) if v+
1 < 0.

• Let us choose in a second step a sequence of impacts, that comes after the second impact, that consists of a third impact at
time t3 and with the constraint number 1. In other words, we restart the analysis and we choose i(1) = 2 and i(2) = 1. The
new initial condition for this second sequence is (q2

1 , v+
2 ), and the final condition is (q3

1 , v+
3 ). This time calculations show

that R2[(q2
1 , v+

2 )] = (−∞, q2
1 ] × [v+

2 , +∞) if v+
2 < 0, and R2[(q2

1 , v+
2 )] = [q2

1 , +∞) × [v+
2 , +∞) if v+

2 > 0.
• The reachable sets which correspond to such a succession of impacts are depicted in Fig. 4. One can easily imagine what the

sets look like if a third impact at t4 is imposed, with the same sequence of attained surfaces as in the first case. The idea is
therefore to prove controllability by looking for sets R2[(qk

1 , v+
k )] and (qk

1 , v+
k ) ∈ R2[(qk−1

1 , v+
k−1)].• Inspection of the reachable sets in the four cases depicted in Fig. 4 shows that whatever the final state, one can always choose

a combination of impacted surfaces in order to attain such a point of the object’s state space. Consider, for instance, the point
(a, b) in Fig. 4(b), with |a| > |q1

1 | and v+
1 < 0. It is not possible to reach this point in two impacts (Fig. 4(a) and (b)). However,

choosing v+
2 > b one can reapply an initial sequence with positive velocity (Fig. 4(c)) and reach the desired point.

• We conclude that it is possible to reach the whole plane after at most three impacts, i.e. R̄
4[(q1

1 , v+
1 )] = R2[(q1

1 , v+
1 )] ∪

R3[(q1
1 , v+

1 )] ∪ R4[(q1
1 , v+

1 )] = R2, which allows us to conclude about controllability in three impacts of the impacting
pair’s object. Possibly the system is controllable in less impacts than 3, because we have not checked all possible sequences
between the set of indices (1, 2) and the initial velocity sign (i.e. we have not constructed all the possible constrained equations
in (36)).
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