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Abstract

The focus of this survey is the modeling and control of bipedal locomotion systems. More speci6cally, we seek to review the developments
in the 6eld within the framework of stability and control of systems subject to unilateral constraints. We place particular emphasis on
three main issues that, in our view, form the underlying theory in the study of bipedal locomotion systems. Impact of the lower limbs
with the walking surface and its e:ect on the walking dynamics was considered 6rst. The key issue of multiple impacts is reviewed in
detail. Next, we consider the dynamic stability of bipedal gait. We review the use of discrete maps in studying the stability of the closed
orbits that represent the dynamics of a biped, which can be characterized as a hybrid system. Last, we consider the control schemes that
have been used in regulating the motion of bipedal systems. We present an overview of the existing work and seek to identify the needed
future developments. Due to the very large number of publications in the 6eld, we made the choice to mainly focus on journal papers.
? 2004 Published by Elsevier Ltd.
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1. Introduction

In general, a bipedal locomotion system consists of sev-
eral members that are interconnected with actuated joints.
In essence, a man-made walking robot is nothing more than
a robotic manipulator with a detachable and moving base.
Design of bipedal robots has been largely inDuenced by the
most sophisticated and versatile biped known to man, the
man himself. Therefore, most of the models/machines devel-
oped bear a strong resemblance to the human body. Almost
any model or machine can be characterized as having two
lower limbs that are connected through a central member.
Although the complexity of the system depends on the num-
ber of degrees of freedom, the existence of feet structures,
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to modeling, stability, and control of two legged locomotion systems.
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upper limbs, etc., it is widely known that even extremely
simple unactuated systems can generate ambulatory motion.
A bipedal locomotion system can have a very simple struc-
ture with three point masses connected with massless links
(Garcia, Chatterjee, Ruina, & Coleman, 1997) or very com-
plex structure that mimics the human body (Vukobratovic,
Borovac, Surla, & Stokic, 1990). In both cases, the system
can walk several steps. The robotics community has been
involved in the 6eld of modeling and control of bipeds for
many years. The books (Vukobratovic, 1976; Vukobratovic
et al., 1990; Raibert, 1986; Todd, 1985) are worth reading
as an introduction to the 6eld. The interested reader may
also refer to the following web pages:
http://www.androidworld.com/prod28.htm,
http://robby.caltech.edu/∼kajita/bipedsite.html,
http://www.fzi.de/divisions/ipt/WMC/preface/

preface.html,
http://www.kimura.is.uec.ac.jp/faculties/legged-robots.

html.
Nevertheless, and despite the technological exploit

achieved by Honda’s engineers (Japan is certainly the
country where bipedal locomotion has received the most
attention and has the longest history), some fundamental
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modeling and control problems have still not been addressed
nor solved in the related literature. One may notice, in par-
ticular, that the locomotion of Honda’s P3 prototype re-
mains far from classical human walking patterns at the same
speeds. Although Honda (HONDA) did not publish many
details either on the mechanical part or on the implemented
control heuristic, it is easy to see on the available videos that
P3’s foot strike does not look natural and leads to some tran-
sient instability (http://www.honda-p3.com). The number of
foot design patents taken out by Honda (up to an air-bag-like
planter arch) reveals again that foot–ground impact remains
one of the main diLculties one has to face in the design of
robust control laws for walking robots. This will become the
key issue with increasing horizontal velocity requirement.
This problem, however, is more sensitive for two-legged
robots than for multi-legged ones due to the almost straight
leg con6guration and the bigger load at impact time for the
former, leading to stronger velocity jumps of the center of
mass. While Honda’s engineers seem to consider these ve-
locity jumps as unwanted perturbations and thus appeal to
mechanical astuteness to smooth the trajectory, we argue
that impact is an intrinsic feature of mechanical systems like
biped robots and should be taken as such in the controller
design. Other bipedal robots have been designed. Among
the most advanced projects, we cite the Waseda University
Humanoid Robotics Institute biped, the MIT Leg Labora-
tory robots, the LMS-INRIA BIP system (Sardain, Rostami,
& Bessonnet, 1998; Sardain, Rostami, Thomas, & Besson-
net, 1999), the CNRS-Rabbit project (Chevallereau et al.,
2003), and the German Autonomous Walking programme
(Gienger, LNoOer, & Pfei:er, 2003), which can be found at
http://www.humanoid.rise.waseda.ac.jp/booklet/

kato 4.html,
http://www.ai.mit.edu/projects/leglab/robots/robots.html,
http://www.inrialpes.fr/bip,
http://www-lag.ensieg.inpg.fr/PRC-Bipedes/,
http://www.fzi.de/ids/dfg schwerpunkt laufen/

start page.html.
respectively. Among all these existing bipeds, the Honda

robots seem to be the most advanced at the time of writing
of this paper according to the information made available by
the owners. However, the solution for control designed by
Honda does not explain why a given trajectory works nor
does it give any insight as to how to select, chain together,
and blend various behaviors to e:ect locomotion through
diLcult terrain (Pratt, 2000). It is the feeling of the authors
that the problem of feedback control of bipedal robots will
not be solved properly as long as the dynamics of such sys-
tems is not thoroughly understood. In fact, the main moti-
vation for the writing of this paper has been the following
observation about walking: there is no analytical study of
a stable controller with a complete stability proof available
in the related literature. It is our belief that the main rea-
son for this is the lack of a suitable model. We propose a
framework that is not only simple enough to allow subse-
quent stability and control studies but also realistic as some

experimental validations prove. In addition, the framework
provides a uni6ed modeling approach for mathematical, nu-
merical, and control problems, which has been missing. It is
for instance signi6cant that the main e:orts of the MIT Leg
Lab (Pratt, 2000) have been directed toward technological
(actuators) improvement and testing of heuristic control al-
gorithms similar to Honda’s works.
We should emphasize that the main thrust of this sur-

vey does overlook several practical aspects that may arise
during the design and development of walking machines.
Admittedly, a walking machine can be built without paying
attention to many of the main ideas of this survey. There are
numerous toys that walk in a certain fashion. There are quite
a few bipedal robots that are designed to avoid impacts al-
together during walking. The fact remains that the stability,
agility, and versatility of any existing bipedal machine does
not even come close to that of the human biped. The sur-
veyed concepts will better enable the design and evaluation
of such machines through more suitable control algorithms
that take into account impact mechanics and stability. The
practical issues that arise in the design and development ac-
tual machines deserve another survey article. In the ensuing
part of this survey we, therefore, will mainly focus on a the-
oretical framework.

2. General description of a bipedal walker

A biped can be represented by an inverted pendulum
system that has a constrained motion due to the for-
ward and backward impacts of the swing limb with the
ground (Cavagna, Heglund, & Taylor, 1977; Hurmuzlu &
Moskowitz, 1986; Full & Koditschek, 1999). Although sim-
ilar to the structure of vibration dampers in many aspects
(Shaw & Shaw, 1989), which are relatively well studied,
structure of bipedal systems have a fundamental di:erence
arising from the unconstrained contact of the limbs with the
ground (see Fig. 1). While the vibration damper remains in
contact with the reference frame at all times because of the
hinge that is located between the inverted pendulum and
the vibrating mass, the limbs of the biped are always free
to detach from the walking surface. Detachments occur fre-
quently and lead to various types of motion such as walking,
running, jumping, etc. As a matter of fact, one can classify
bipedal locomotion systems as complementarity systems
(LNotstedt, 1984; Brogliato, 2003). Such a modeling frame-
work does not at all preclude the introduction of Dexibilities
at the contact points. Also it allows one to include other ef-
fects like Coulomb friction in a single framework, which can
be quite useful for numerical simulations in order to validate
the controllers. Fig. 1 depicts other systems that fall into the
same category. In the latter part of the article, we will show
that such systems can be analyzed by the use of Poincar*e
maps (Hurmuzlu & Moskowitz, 1987), and possess com-
mon features in terms of motion control. We would like to
stress that the focus of this article is on motions that include
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Fig. 1. Bipeds as complementarity systems: (a) biped, (b) pendulum,
impact damper, (c) mass impact damper, (d) juggler, and (e) manipulator
in contact with a rigid wall.

contact and impacts. For example, a biped can rock back
and forth while the swing limb remains above the walking
surface for all times. Such motions will be outside the focus
of the discussions presented here.
A typical walking cycle may include two phases: the

single support phase, when one limb is pivoted to the
ground while the other is swinging in the forward direc-
tion (open kinematic chain con6guration), and the double
support phase, when both limbs remain in contact with the
ground while the entire system is swinging in the forward
direction (closed kinematic chain con6guration). When
both limbs are detached, the biped is in the “Dight” phase
and the resulting motion is running or some other type of
non-walking motion (Kar, Kurien, & Jayarajan, 2003). Any
e:ort that involves analytical study of the dynamics of gait
necessitates a thorough knowledge of the internal structure
of the locomotion system. When the system is human or
animal, this structure is extremely complicated and little is

(a) (b)

Fig. 2. (a,b) Types of oscillation of a three-element biped.

known about the control strategy that is used by human be-
ings and animals to realize a particular motion and achieve
stable gait (Full & Koditschek, 1999; Vaughan, 2003). If
the system represents a man-made machine or a numerical
model representing such a machine, one has to synthesize
control strategies and performance criteria that transform
multi-body systems to walking automata. Devising prac-
tical control architectures for bipedal robots remains to
be a challenging problem. The problem is tightly coupled
with the control studies in the area of robotic manipulators.
Unlike manipulators, however, bipedal machines can have
many types of motion. The control objectives should be
carefully selected to conform with a speci6c type of motion.
A control strategy that is selected for high-speed walking
may cause the system to transfer to running, during which
an entirely di:erent control strategy should be used, similar
to jugglers control (Brogliato & Zavala-Rio, 2000).
Consider the biped depicted during the single support

phase in Fig. 1(a). This biped is equivalent to a pendulum
attached to the foot contact point with a mass and a length
that are con6guration dependent. Inverted pendulum mod-
els of various complexities, therefore, have been extensively
used in the modeling of gait of humans and bipedal walk-
ing machines. The dynamics of bipedal locomotion is intu-
itively similar to that of an inverted pendulum and has been
shown to be close to it according to energetical criteria (Kar
et al., 2003; Cavagna et al., 1977; Full & Koditschek, 1999;
Blickman & Full, 1987).
A simple two-element biped (Hurmuzlu & Moskowitz,

1987) may operate in two modes (see Fig. 2): (a) impactless
oscillations, (b) progression with ground contacts. The im-
portance of the contact event can be better understood if the
motion is depicted in the phase space of the state variables.
We simplify the present discussion by describing the

events that lead to stable progression of a biped for a
single-degree-of-freedom system, however, this approach
can be generalized to higher-order models. The phase
plane portrait corresponding to the previously described
dynamic behavior is depicted in Fig. 3(a). The sample
trajectories corresponding to each mode of behavior are
labelled accordingly. The vertical dashed lines represent
the values of the coordinate depicted in the phase plane
for which the contact occurs. For the motions depicted in
Fig. 3(a) or (b), the only trajectory that leads to contact is
C. The contact event for this simple model produces two
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Fig. 3. Impact on the phase plane portrait.

simultaneous events:

(1) impact, which is represented by a sudden change in
generalized velocities,

(2) switching due to the transfer of pivot to the point of
contact.

The combined e:ect of impact and switching on the phase
plane portrait is depicted in Fig. 3(b). As shown in the 6g-
ure, the e:ect of the contact event will be a sudden transfer
in the phase from points 1 to 2, which is generally located
on a di:erent dynamic trajectory than the original one. If the
destination of this transfer is on the original trajectory, then
the resulting motion becomes periodic (Fig. 3(c)). This type
of periodicity has unique advantage when the inverted pen-
dulum system represents a biped. Actually, this is the only
mode of behavior that this biped can achieve progression.
The most striking aspect of this particular mode of behav-
ior is that the biped achieves periodicity by utilizing only a
portion of a dynamic trajectory. The impact and switching
modes provide the connection between the cyclic motions
of the kinematic chain and the walking action.
We can clearly observe from the preceding discussion

that the motion of a biped involves continuous phases sep-
arated by abrupt changes resulting from impact of the feet
with the walking surface. During the continuous phase, we
may have none, one, or two feet in simultaneous contact
with the ground. In the case of one or more feet contacts,
the biped is a dynamical system that is subject to unilateral
constraints. When a foot impacts the ground surface, we
face the impact problem of a multi-link chain with unilat-
eral constraints. In fact, the overall motion of the biped may
include a very complex sequence of continuous and discon-
tinuous phases. This poses a very challenging control prob-

lem, with an added complication of continuously changing
motion constraints and large velocity perturbations resulting
from ground impacts.

3. Mathematical description of a biped as a system
subject to unilateral constraints

3.1. Dynamics of the complementarity model

Bipedal locomotion systems are unilaterally constrained
dynamical systems. A way to model such systems is to in-
troduce a set of unilateral constraints in the following form:

F(q)¿ 0; q∈Rp; F :Rp → Rm;

where q represents the complete vector of independent gen-
eralized coordinates. In other words, p denotes the number
of degrees of freedom of the system without constraints, i.e.
when F(q)¿ 0. The constraints mean that the bodies that
constitute the system cannot interpenetrate (irrespective of
the fact that they are rigid or Dexible). The dynamics of a
p-degree-of-freedom mechanical system subject to m uni-
lateral constraints may be written as the following system
(S) of equations, named a complementarity dynamical sys-
tem (Brogliato, 2003; Heemels & Brogliato, 2003):

M (q) Nq + N (q; q̇) = Tu + ∇F(q)�n + Pt(q; q̇); (1)

�TnF(q) = 0; �n¿ 0; F(q)¿ 0; (2)

Restitution law + shock dynamics; (3)

Dry Friction Amontons–Coulomb′s model; (4)

where M (q) is the inertia matrix, N (q; q̇) includes Coriolis,
centrifugal, gravitational, and other terms, u is an external
input, �n ∈Rm is the Lagrange multiplier corresponding to
the normal contact force. The orthogonality �TnF(q) = 0
means that if F(q)¿ 0 then �n=0, whereas a non-zero con-
tact force �n ¿ 0 is possible only if there is contact F(q)=0.
Such a contact model therefore excludes gluing, magnetic
forces. Complementarity Lagrangian systems as in (1)–(4)
have been introduced by Moreau (1963, 1966), and Moreau
and Panagiotopoulos (1988). The rest of the terms and vari-
ables are de6ned next. For the bipeds the Lagrange dynamics
can be rewritten in a speci6c way that corresponds to con-
trol objectives and allows the designer to get a better under-
standing of their dynamical features (Wieber, 2000; Grizzle,
Abba, & Plestan, 2001; Werstervelt, Grizzle, & Koditschek,
2003). In other words, the choice of the generalized coor-
dinates q is crucial for control purpose, and certainly much
less obvious than it is for serial manipulators. For example
in Fig. 4, q can be split in two subsets q1 and q2. The vec-
tor q1 = (x; y; �) describes the global position of the robot
in space whereas the vector q2 = (�1; : : : ; �6) encapsulates
the joint coordinates. The vector q1 could be attached to any
point of the biped. Nevertheless, it is known from biomedi-
cal studies of human gait that one of the primary objectives
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Fig. 4. A 9-degree-of-freedom planar biped.

during locomotion is the stabilization of the head where
the exteroceptive sensors (inner ear, sight) are located. Set-
ting q = (q1; q2)T, (1) splits in an upper part and a lower
part corresponding to head motion and joint dynamics,
respectively,(

M1(q)

M2(q)

)
Nq +

(
N1(q; q̇)

N2(q; q̇)

)

=

(
0

T2

)
u + ∇F(q)�n + Pt(q; q̇); (5)

F(q) = (yA1 ; yB1 ; yA2 ; yB2 )
T ∈R4; (6)

where yA1 denotes the y-coordinate of point A1, and so on.
In the sequel we will review the available modeling tools
which will allow the designer to complete (5) with (3) and
(4). In (5), T1=0 since the biped has only joint actuators. As
a matter of fact head motion can only be achieved thanks to a
coordinated action of joint actuation and contact forces. This
fact is probably more apparent for the Dight phases (running)
during which there are no contact forces and the trajectory
of the center of mass (attaching this time q1 to the center of
mass) yields only to gravity. All complementarity systems
depicted in Fig. 1 can be represented in the form given by
(1)–(4). However, biped dynamics possesses some speci6c

features that make the control study di:er signi6cantly from
the control of other complementarity systems. Bipeds share
the following features:

(1) with systems (b), (d) and (e): the center of mass is not
controlled when F(q)¿ 0, as the object of a juggler
(Brogliato & Zavala-Rio, 2000),

(2) with system (e): their dynamics is that of a manipulator
when one foot sticks to the ground,

(3) with system (b): they may be underactuated (no ankle
actuator) and act as an inverted pendulum when one
foot sticks to the ground.

The fact that bipeds merge all these characteristics makes
their control analysis complex. Eq. (1) represents the dy-
namics when either the system evolves in free-motion or in
a phase of permanent contact, i.e.{

Fi(q) ≡ 0 for some i ∈I(q) ⊆ {1; : : : ; m};
Fj(q)¿ 0 for j 	∈ I(q):

(7)

Then, in Eq. (1) (∇Fi(q)=(9FT
i =9q)(q)∈Rp is the gradient

vector)

∇F(q)�n =
i=m∑
i=1

∇Fi(q)�n; i:

Notice that for i ∈I(q), one can express (2) as (where
Ḟ i(q; q̇) = d=dt[Fi(q(t))])

�n; iḞ i(q; q̇) = 0; �n; i¿ 0; Ḟ i(q; q̇)¿ 0 (8)

or, if Ḟ i(q; q̇) ≡ 0 for i ∈I(q), as (where NFi(q; q̇; Nq) =
(d=dt)[Ḟ i(q(t); q̇(t))])

�n; i NFi(q; q̇; Nq) = 0; �n; i¿ 0; NFi(q; q̇; Nq)¿ 0: (9)

As we shall see, when the constraints are frictionless the
conditions in (9) de6ne a linear complementarity problem
(LCP) with unknowns �n; i. An LCP is a system of the
form Ax + B¿ 0, x¿ 0, xT(Ax + B) = 0 (Cottle, Pang, &
Stone, 1992). LCPs are ubiquitous in many engineering ap-
plications (Ferris & Pang, 1997), and particularly in uni-
lateral mechanics in which they have been introduced by
Moreau (1963, 1966). Finally, the models in (3) and (4) are
needed to complete the dynamics. In particular, it is nec-
essary to relate the post-impact velocities to the pre-impact
data to be able to compute solutions that are compatible
with the constraints (integrate the system and render the do-
main� , {q |F(q)¿ 0} invariant). The classical Coulomb
friction model in (4) provides the form of Pt(q; q̇) in (1).
It is apparent that the set of equations in (1)–(9) de6nes
a complex hybrid dynamical system, in the sense that it
mixes both continuous and discrete-event phenomena. The
states of the discrete-event system (DES) are de6ned by
the 2m modes of the complementarity conditions in (2). It
is also important to point out that such systems fundamen-
tally di:er in nature from those studied in Bainov and Sime-
onov (1989), which consist of mainly ordinary di:erential
equations with impulsive disturbances. Some discrepancies
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between both models are recalled in Brogliato (1999, Sec-
tions 1.4.2, 7.1) and Brogliato, ten Dam, Paoli, G*enot, and
Abadie (2002). Especially, one should always keep in mind
that the complementarity conditions (2) play a major role
in the dynamics of complementarity systems (for instance
they are necessary to properly characterize the equilibrium
states). From a mechanical engineer point of view, two ques-
tions have to be answered to, when one wants to integrate
system (1)–(4) (Moreau & Panagiotopoulos, 1988):
Q1. Assume that I(q) in (7) is non-empty at a time

instant �, and that the velocity q̇(�−) points inwards � or
tangentially to 9�: determine which contacts i ∈I(q), will
persist at �+. In other words, determine the subsequent mode
(or DES state).
Q2. At an impact time tk , one has q̇(t−k )T∇Fi(q(tk))¡ 0

for some i ∈ {1; : : : ; m} and Fi(q(tk))=0. Determine the right
velocity q̇(t+k ). In other words, determine a re-initialization
of the (continuous) state as soon as one (or several) of the
unilateral conditions in (2) is going to be violated.
In the sequel tk , k = 0; 1; 2 : : : will generically denote the

impact instants. The answer to those questions is far from
being trivial and has been the object of many researches.
The 6rst one is related to solving the LCP associated to
the system, i.e. being able to calculate at each time of a
collision-free phase the interaction forces Pq , ∇F(q)�n+
Pt(q; q̇); hence, the acceleration Nq and the subsequent mo-
tion. It has been raised initially by Delassus (1917) (see
also Pfei:er & Glocker, (1996) for a very nice and sim-
pler example). The second question is that of de6ning
proper restitution rules, or collision laws. This goes back to
the 17th century and the celebrated Newton’s conjecture,
see Brogliato (1999) and Kozlov and Treshchev (1991)
for more details. In particular, if several hypersurfaces
Zi = {q |Fi(q) = 0} are attained simultaneously, a multiple
impact occurs. Such an event occurs typically during walk-
ing at the end of a single support phase when the swinging
leg foot hits the ground. For example, for the planar biped
depicted in Fig. 4, a 3-impact takes place at foot strike, that
is yA2 (t)=yB2 (t)=0, yA1 (t)¿ 0, and yB1 (t)¿ 0 for t ¡ tk ,
while yA2 (tk) = yB2 (tk) = 0, yA1 (tk) = 0, and ẏ A1 (t

−
k )¡ 0.

From our point of view, only too few attention was payed
in the literature to the existence of unilateral constraints.
In fact, most of the works on the control of biped robots
model the robot in the single support phase as a manipula-
tor whose base corresponds to the supporting foot and add
some closed loop constraints for the double support phase.
Even if this approach is very convenient to derive trajectory
tracking laws via the computed torque technique, it does
not account for possible slippage nor detachment at ground
contacts nor say anything about the inDuence of impacts on
stability. Notice also that the human walking pattern and
the underlying control strategy di:ers notably depending on
the ground characteristics (ice arena, basketball playground,
trampoline, etc.), which makes the walking pattern (or tra-
jectory planning) an important topic of research (El Ha6 &
Gorce, 1999; Lum, Zribi, & Soh, 1999; Yagi & Lumelsky,

2000; Rostami & Bessonnet, 2001; Shih, 1999; Huang et al.,
2001; Chevallereau & Aoustin, 2001; Saidouni & Besson-
net, 2003).

3.2. Frictionless contacts (continuous motion)

The succeeding sections are devoted to the study of the
LCP in (9) (i.e. the calculation of the contact forces) and
multiple impacts respectively. In the frictionless case (S)
reduces to (1), (2) and (3) with Pt(q; q̇)=0. Moreau (1963,
1966) has been the 6rst to show that in the multiple con-
straints case m ≥ 1, using that NF(q; q̇; Nq) = ∇FT(q) Nq +
f(q; q̇), the complementarity relation (9) combined with
(1) yields an LCP of the form (assuming here that I(q) =
{1; : : : ; m} in (7))

NF(q; q̇; Nq) = A(q)�n + b(q; q̇)¿ 0;

�n¿ 0 and �Tn NF(q; q̇; Nq) = 0; (10)

where

A(q) = ∇FT(q)M−1(q)∇F(q)

and

b(q; q̇) = ∇FT(q)M−1(q)h(q; q̇) + f(q; q̇)

and setting h(q; q̇) = Tu − N (q; q̇). If the active constraints
(i ∈I(q)) are independent, then A is positive symmetric
de6nite (PSD) and it is known that the LCP in (10) pos-
sesses a unique solution �n (Cottle et al., 1992). If some con-
straints are dependent, then A is only semi-PSD and unique-
ness only holds for the acceleration NF(q; q̇; Nq). Moreover,
∇F(q)�n is also unique, see Moreau (1966) and LNotstedt
(1982), and thus from dynamics (1) Nq is unique too. As a
classical example, one may think of a chair with four legs
on a rigid ground: even if the interaction forces cannot be
uniquely determined, the acceleration of the mass center is
unique (upwards). Using Kuhn–Tucker’s theory (Kuhn &
Tucker, 1951) it is possible to show that any solution �n to
the LCP in (10) is also a solution to the quadratic problem

min
�n¿0

1
2 �TnA(q)�n + �Tn b(q; q̇); (11)

which is equivalent to Gauss’ principle of least deviation
(Moreau, 1966; LNotstedt, 1982). To summarize, it is clear
that if one is able to obtain at time � a value for �n, then
introducing this value into (2) allows one to determine which
contacts persist and which ones are going to break (become
inactive) on (�; � +  ),  ¿ 0,  small enough.

Remark 1. The answer to Q1 does not necessarily re-
quire the explicit calculation of the contact forces �n. Let
us consider the simple example (p = 1) of a ball resting
on the ground (m = 1) at �0. Suppose that an external
force f is applied to the ball at �0. Then the dynamics is
Nq(t) = max(0; f) (recall that max functions can be written
with complementarity). Let us discretize the unconstrained
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Fig. 5. Possible motions and shock outcomes in an abstract con6guration
space.

motion (q¿ 0) as

qi+1 = qi + hq̇i;

q̇i+1 = q̇i + hf: (12)

Using (12), the dynamics is discretized as

q̇i+1 = prox[R+; q̇i + hf]; (13)

where prox denotes the proximal point to q̇i + hf in R+.
This implicit scheme can be generalized to more complex
systems (p¿ 1, m¿ 1), as proposed in Moreau (1986).
Moreover, it can be generalized to provide one solution to
the multiple impact problem as will be shown in Section 3.3.

3.3. Frictionless contacts (multiple impacts)

Section 3.2 was devoted to partially answer to Q1. We
now focus on Q2. In general, walking robots use several
support points during locomotion (biped robots; Hurmuzlu
& Moskowitz, 1986, 1987; Hurmuzlu, 1993, quadruped
robots, Chevallereau, Formal’sky, & Perrin, 1997; Perrin,
Chevallereau, & Formal’sky, 1997). In other words m¿ 2.
This means that the boundary 9� of the admissible domain
� is not di:erentiable everywhere. Its singularities corre-
spond to surfaces with codimension¿ 2. Thus, the eventu-
ality that the state collides in a neighborhood of a singularity
cannot be excluded in mechanical systems as (S). In the
framework of bipedal locomotion, such events intrinsically
belong to the dynamics of walking. Let us view for simplic-
ity the bipedal robot as a point R(t) in a two-dimensional
generalized con6guration space. The classical standard
walking assumption can be seen as a “bilateral sliding
motion” of the generalized point R(t) con6ned to the two
constraint boundaries, see Fig. 5(a). Single support phases
correspond to R(t)∈ [A; B) ∪ (B; C], the double support
phase to R(t) = B. However one cannot a priori exclude

• rebounding multiple shocks at B, see Fig. 5(b);
• detachment during single support phases, see the forego-
ing paragraph, and Fig. 5(c).

The most recent studies in the 6eld can be divided in two
di:erent approaches.

• The 6rst one (Hurmuzlu & Marghitu, 1994; Marghitu &
Hurmuzlu, 1995; Han & Gilmore, 1993) consists of an
enumeration procedure. They apply a restitution law for
simple impact at Aj and sequentially propagate its e:ects
on the other contact points Ai, i ∈I(q). Nevertheless, the
overall process is assumed to be instantaneous, i.e. all
shocks occur simultaneously at all the contact points: this
is therefore really a multiple impact. At each point they
investigate whether assuming zero or non-zero local per-
cussions yield consistent outcomes. The main drawback
of these studies is that they do not rule on whether or not
the proposed algorithms always terminate with a unique
solution. In the case of several admissible solutions, they
do not give a criterion to make the choice between these
solutions. However, this should not be seen as a real draw-
back (except for simulation tool design purpose) since
any heuristic to make the “good” choice, excluding in the
same time several admissible solutions, drops the rigid
body assumption.

• The second approach corresponds to the de6nition of a
collision mapping

Pc : 9� × {−V (q(tk))} → 9� × {V (q(tk))};

(q(tk); q̇(t−k )) �→ (q(tk); q̇(t+k )); (14)

whereV (q)={v∈Rp: ∀i ∈I(q), vT∇Fi(q)¿ 0} denotes
the tangent cone to 9� at q(t) (Moreau & Panagiotopou-
los, 1988), i.e. the set of admissible post-impact velocities.
It is clear that the choice of Pc should yield a mathemat-
ically, mechanically and numerically coherent formula-
tion of the studied phenomenon. The so-called “sweeping
or Moreau’s process” (Brogliato, 1999; Moreau, 1985;
Moreau & Panagiotopoulos, 1988) is a general formula-
tion of the dynamics in (1)–(4) based on convex analysis
tools. It allows one to write the dynamics as a particu-
larMeasure DiBerential Inclusion, a term coined by J.J.
Moreau. It implicitly de6nes a collision mapping based
on the computation of the post-impact motion via a prox-
imation procedure in the kinetic metric

q̇(t+k ) = proxM (q(tk ))[q̇(t
−
k ); V (q(tk))]: (15)

It is noteworthy that this can also be equivalently writ-
ten as a quadratic programme under unilateral constraints,
and consequently under a LCP formalism, see (10), (11).
Let us note that the mapping in (15) applied to the shock
of two rigid bodies correspond to taking a zero restitu-
tion coeLcient. Hence it may be named a “generalized
dissipative impact rule”. However, it is possible to intro-
duce some restitution %∈ [0; 1] by substituting q̇(t+k ) in
(15) by 1

2 (1+%)q̇(t+k )+
1
2 (1−%)q̇(t−k ) (Moreau & Pana-

giotopoulos, 1988; Mabrouk, 1998). The interested reader
may have a look at Brogliato (1999, Section 5.3) for a
non-mathematical introduction to this material. Similar
results have been obtained in LNotstedt (1982). In Pfei:er
and Glocker (1996), an extension of Poisson’s impact law
is proposed that takes the form of two LCPs (see, e.g.,
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Brogliato, 1999, Section 6.5.6 for a simple example of
application of this impact mapping).

3.4. Contacts with Amontons–Coulomb’s friction

In the frictionless case, we saw that the LCP (10) was
well-posed since the only possible indeterminacies, result-
ing from dependent active constraints, do not inDuence the
global motion of the mechanical system (uniqueness of the
acceleration still holds). The problem becomes more com-
plicated through the introduction of dry friction, an essential
parameter of the legged locomotion. The next step relies on
the fact that the relay characteristic of Coulomb’s friction,
can be represented analytically in a complementarity for-
malism by introducing suitable slack variables (or Lagrange
multipliers). This allows one to construct a set of comple-
mentarity conditions which monitor all the transitions from
sticking to slipping, and from contact to detachment. The dy-
namics in (1)–(4) can consequently be rewritten as (Pfei:er
& Glocker, 1996)

M (q) Nq = h(q; q̇) + [W (q) + Nslide(q)]�; (16)

y = A(q)� + b(q; q̇);

y¿ 0; �¿ 0; yT� = 0 (17)

for appropriate matrices A(·) and b(·), W and Nslide, where
the components of � are suitable slack variables. The pow-
erfulness of the complementarity formalism clearly appears
from (16), (17) in which the overall dynamics is written
in a compact way: the continuous dynamics plus comple-
mentarity conditions. This perfectly 6ts within the general
complementarity dynamical framework (Brogliato, 2003).

4. The stability framework

The most crucial problem concerning the dynamics of
bipedal robots is their stability, see e.g. http://www.ercim.
org/publication/Ercim News/enw42/espiau.html. As has
been explained in Sections 2 and 3, a biped is far from
being a simple set of (controlled) di:erential equations.
Moreover, the objectives of walking are quite speci6c.
One is therefore led to 6rst answer the question: what
is a stable biped? And, consequently, what mathematical
characterization of this stability can be constructed from
the complementarity models? As we will see next, this is
closely related to the fact that bipeds can be considered as
hybrid dynamical systems, the stability of which can be
attacked from various angles. The goal of this section is to
present some tools which can serve for the stability analysis
of models as in (2)–(5), and which are suitable for bipeds
because they encapsulate their main features. Firstly, we
spend some time on describing invariant sets for comple-
mentarity systems. The point of view that is put forth is that
various existing, or to be investigated, stability frameworks

x

u
m

Admissible Region

Inadmissible Region

A

(a)

(b)
0

FCIS CVIS UIS

Fig. 6. Controlled mass subject to a unilateral constraint.

are better understood when invariant sets are classi6ed. Sec-
ondly, we review the so-called impact Poincar*e maps, which
have been used extensively in the applied mathematics and
mechanical engineering literature for vibro-impact systems
(Masri & Caughey, 1966; Shaw & Holmes, 1983; Shaw &
Shaw, 1989). This point of view seems natural if one con-
siders bipeds as jugglers (Brogliato & Zavala-Rio, 2000;
Zavala-Rio & Brogliato, 2001). However, it presents limi-
tations which we point out.

4.1. Invariant sets of systems subject to unilateral
constraints

Application and use of mapping techniques is tightly cou-
pled with the structure of the invariant set that represents
the steady-state motion. Systems subject to unilateral con-
straints behave in a more complex manner than the ones
that are not (Budd & Dux, 1994). For example, let us con-
sider the system given in Fig. 6(a). Suppose we would like
to develop a controller to place the mass at a time varying
position xd(t)=A+B sin(!t) starting from an arbitrary ini-
tial condition in the admissible region. One can use a simple
controller that yields the following closed-loop dynamics:

m( Nx − Nxd(t)) + k1(ẋ − ẋd(t)) + k2(x − xd(t)) = �n;

06 �n ⊥ x¿ 0; ẋ(t+k ) = −eẋ(t−k ) with e ∈ [0; 1):
(18)

Our objective here is not to explore all possible types
of invariant sets that may be attained by the system
given by (18). Instead, we would like to show that the

http://www.ercim.org/publication/Ercim_News/enw42/espiau.html
http://www.ercim.org/publication/Ercim_News/enw42/espiau.html
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invariant sets of the closed loop system can be classi6ed
under three categories (see Fig. 6(b)):
(i)Constraint violating invariant sets (CVIS): An invari-

ant set that includes at least one collision with the constraint
surface per cycle of motion (including orbits that stabilize
in 6nite time on the constraint surface after an in6nite num-
ber of collisions). Hence, an impact PoincarDe mapping P is
well de6ned that captures these orbits. This type of invari-
ant set is a unique feature of systems subject to unilateral
constraints. All the systems shown in Fig. 1 can be made to
exhibit this behavior with a set of properly selected param-
eter values. Speci6cally, for locomotion systems, this will
be the only mode of motion that can describe running and
walking.
(ii) Unconstrained invariant sets (UIS): An invariant set

that does not include collisions with the constraint surface.
In the single mass case, this corresponds to the cyclic mo-
tions of the mass that occur to the right of the constraint
surface (x¿ 0 ∀\t6 t6∞). This type of invariant set can
be observed for all systems of Fig. 1 except the juggler.
For the biped, this corresponds to rocking when one or two
limbs are in contact with the ground.
(iii) Fully constrained invariant sets (FCIS): An in-

variant set that never leaves the constraint surface. This
corresponds for the system in (18) to a static equilibrium
where the system rests on the constraint surface (x(t) =
0 ∀\t6 t6∞). All the systems in Fig. 1 can exhibit this be-
havior with a speci6c choice of the control parameter values
and initial conditions.
It is easy to imagine that trajectories of a system may

be CVIS, FCIS and UIS simultaneously. In particular, no-
tice that although the complementarity relations in (18),
i.e. x¿ 0, �n¿ 0, x�n = 0, a priori de6ne two modes
x¿ 0 and x = 0 (hence a bimodal system), for control
and dynamic systems analysis purpose one is led to con-
sider those phases that correspond to CVIS as independent
ones (Brogliato, Niculescu, & Monteiro-Marques, 2000;
Bourgeot & Brogliato, 2003): they are described neither by
the free motion nor by the constrained motion dynamics
but by the whole dynamics of the hybrid system.

4.2. Bipedal robots as hybrid dynamical systems

The above classi6cation of the invariant sets naturally
leads one to consider complementarity systems as in Fig. 1
as hybrid dynamical systems whose DES states are de6ned
from the described invariant sets. In the following, we shall
generically denote the phases that correspond to CVIS as Ik
and those that correspond to FCIS and/or UIS as +k . With
some abuse of notation, we shall denote the DES states and
the corresponding time intervals in the same manner. As we
shall see further subdivisions will be needed. As an example
let us consider an impact damper as in Fig. 1(c) and with a
sinusoidal excitation applied to the basis mass: for a proper
choice of the spring-dashpot, the excitation parameters and

of the initial conditions, the system possesses periodic tra-
jectories with one impact per period (hence CVISs) (Masri
& Caughey, 1966). Thus one has

R+ = I0: (19)

Consider now a manipulator as in Fig. 1(e) that performs
a complete robotic task with a succession of free-motion
and constrained motions phases, during which it is
explicitly required to track desired motion and/or con-
tact force (Bourgeot & Brogliato, 2003; Brogliato, 1999;
Brogliato, Niculsecu, & Orhant, 1997; Brogliato et al., 2000;
Menini & Tornamb*e, 2001). During the force/position con-
trol phases, the trajectories will in general be both UIS (in
the tangent direction to the constraint surface) and FCIS (in
the normal direction). During the free-motion phases, the
trajectories are UIS. It is therefore natural to split such task
into three phases +2k , +2k+1 and Ik that correspond to UIS,
FCIS and CVIS, respectively, i.e.

R+ = +0 ∪ I0 ∪ +1 ∪ +2 ∪ I1 ∪ · · · : (20)

Consider now the biped. It is clear that in order to describe
walking, running and hopping motions, one needs more than
the above three types of invariant sets (Kar et al., 2003).
Moreover, one needs more than the three phases proposed
for the manipulator case. Indeed, as we already pointed out
concerning the choice of the Poincar*e section, describing
for instance a walking motion involves to take care of the
non-sliding conditions. Hence, one is led to di:erentiate
contact phases (FCIS and UIS) and impact phases (CVIS
and FCIS and/or UIS) that slide and those that stick. Notice
moreover that this may be done independently of the pres-
ence of Amontons–Coulomb friction at the contact points:
friction adds modes to the plant model, whereas our descrip-
tion concerns the nature of the trajectories and is directly
related to stability and control objectives. But it is clear that
the plant modeling will strongly inDuence the conditions
under which those modes will be activated. Such a de6-
nition yields generally a large number of DES states. We
shall de6ne only those that are needed to describe the three
mentioned types of motion:

• +f
k : Dight phases (both feet detached);

• +sl
k : left foot sticks, right foot detached;

• +sr
k : right foot sticks, left foot detached;

• +dss
k : double support phase, both feet stick;

• I rsk : impacts on the right foot, left foot sticks;
• I ldk : impacts on the left foot, right foot detached.

Then we obtain the following:

Walking : R+ =+sl
0 ∪ I rs0 ∪ +dss

0 ∪ +sr
0 ∪ I rl0

∪+dss
1 ∪ +sl

1 ∪ · · · ; (21a)

Hopping : R+ = +f
0 ∪ I ld0 ∪ +f

1 ∪ I ld1 ∪ · · · ; (21b)

Running : R+ =+f
0 ∪ I ld0 ∪ +sl

0 ∪ +f
1 ∪ I rd1 ∪ +sr

1

∪+f
2 ∪ I ld1 ∪ · · · : (21c)
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The conditions of activation of one mode have to be stud-
ied. For instance, conditions such that sticking occurs at an
impact or during a step have been studied in Rubanovich
and Formal’sky (1981), Hurmuzlu (1993), Chang and Hur-
muzlu (1994) and G*enot, Brogliato, and Hurmuzlu (1998).
They evidently strongly depend on the process model like
Amontons–Coulomb friction and the multiple impact resti-
tution law. The concatenation of phases in (21) corresponds
to desired invariant sets of the DES. From a general view
point, any stability criterion should take into account both
the non-smooth and the hybrid natures of such complemen-
tarity systems. As it is known, one may have several point
of views of hybrid dynamical systems: continuous-time,
discrete-event, or mixed, see e.g. Automatica (1999).

4.3. Constraints that guarantee foot sticking, stability
margins

The control torques u(·) have to obey certain conditions
to ensure sticking of the contacting feet at all times. These
conditions can be written as (G*enot, 1998; G*enot et al.,
1998)

A(q; ,)u + B(q; q̇; ,)¿ 0 (22)

during smooth motion, and as

\A(q(tk); ,)q̇(t−k )¿ 0 (23)

at impact times (and for some choice of the double impact
model), where , is Amontons–Coulomb’s friction coeL-
cient at contact. The detailed calculations of inequalities (22)
and (23) can be found in G*enot, Brogliato, and Hurmuzlu
(2001). Both inequalities in (22) and (23) are necessary and
suFcient conditions to be satis6ed by the control input u
so that during the whole motion (smooth and non-smooth)
sticking is maintained and detachment is monitored. The in-
equality in (22) can be rewritten as A(�)¿ 0 and can be
used to compute stability margins (Wieber, 2002). The no-
tion of stability margin has been introduced correctly in Seo
and Yoon (1995), who formulated a set of constraints in the
spirit of (22), (23). The “distance” from the trajectory to the
constraint boundary is de6ned as the maximal magnitude
of a disturbance that is applied on the biped. Stability mar-
gins help understanding the di:erence between static gait
(center of gravity located within its base of support), and
dynamic gait (center of gravity may fall outside the sup-
port base) (Vaughan, 2003). To the best of our knowledge,
none of the control laws proposed in the literature until now
was shown to be “stable” with respect to these fundamen-
tal conditions, mainly due to the fact that the underlying
dynamics of the robot does not capture the unilateral fea-
ture of the feet-ground contacts. To summarize, a controller
which guarantees both (22) and (23) implies that the system
evolves in the DES path in (21a).

4.4. PoincarDe maps and stability

Generally, the approach to the stability analysis takes into
account two facts about bipedal locomotion: the motion is
discontinuous because of the impact of the limbs with the
walking surface (Hurmuzlu &Moskowitz, 1987; Hurmuzlu,
1993; Katoh & Mori, 1994; Zheng, 1989; Grizzle et al.,
2001), and the dynamics is highly nonlinear and non-smooth
and linearization about vertical stance generally should
be avoided (Vukobratovic et al., 1990; Hurmuzlu, 1993;
Grizzle, Abba & Plestan, 1999).
A classical technique to analyze dynamical systems is

that of Poincar*e maps. In the three-link bipedal model of
Section 2, we have shown that periodic motions of a simple
biped can be represented as closed orbits in the phase space.
Fig. 3(d) depicts a 6rst return map obtained from the points
of the trajectory that coincide with the instant of heel strike.
A Poincar*e map for a generalized coordinate -1 (which is
typically a joint angle in bipedal systems) at the instant of
heel strike now can be obtained by plotting the values of -1

at ith versus the values at (i + 1)th heel strike.
One can choose an event such as the mere occurrence

of heel strike, to de6ne the Poincar*e section (Hurmuzlu &
Moskowitz, 1987; Kuo, 1999). We can construct several
mappings depending on the type of motion. In general, how-
ever, the section can be written as follows:

Z+
i = {(q; q̇)∈R2p | t = tck}; i = 1; : : : ; l; (24)

where the condition establishes the Poincar*e section.
The discrete map obtained by following the procedure de-

scribed above can be written in the following general form:

�i = P(�i−1); (25)

where � is a reduced dimension state vector, and the sub-
scripts denote the ith and (i − 1)th return values, respec-
tively. Periodic motions of the biped correspond to the 6xed
points of P where

�∗ = Pk(�∗); (26)

where Pk is the kth iterate. The stability of Pk reDects the
stability of the corresponding Dow. The 6xed point �∗ is said
to be stable when the eigenvalues 0i, of the linearized map,

%�i =DPk(�∗)%�i−1 (27)

have moduli less than one. This technique employed
in Hurmuzlu and Moskowitz (1987), Hurmuzlu (1993),
Fran]cois and Samson (1998), Kuo (1999), Grizzle et al.
(1999, 2001), Piiroinen and Dankowicz (2002), Dankowicz
and Piiroinen (2002), Dankowicz, Adolfsson and Nordmark
(2001), Piiroinen, Dankowicz, and Nordmark (2001, 2003)
and Quint van der Linde (1999) has several advantages.
Using this approach the stability of gait conforms with the
formal stability de6nition accepted in nonlinear mechanics.
The eigenvalues of the linearized map (Floquet multipliers)
provide quantitative measures of the stability of bipedal
gait. Finally, to apply the analysis to locomotion one only
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requires the kinematic data that represent all the relevant
degrees of freedom. No speci6c knowledge of the internal
structure of the system is needed. This feature also makes it
possible to extend the analysis to the study of human gait.
Using this approach one can develop quantitative measures
for clinical evaluation of the human gait (Hurmuzlu & Bas-
dogan, 1994; Hurmuzlu, Basdogan, & Stoianovici, 1995).

5. Control of bipedal robots

The control problem of bipedal robots can be de6ned as
choosing a proper input u in (S) such that the system be-
haves in a desired fashion. The key issue of controlling the
motion of bipeds still hinges on the speci6cation of a de-
sired motion. There are numerous ways that one can specify
the desired behavior of a biped, which in itself is an open
question. The control problem can become very simple or
extremely complex depending on the speci6ed desired be-
havior and the structure of the system. Typical bipedal ma-
chines are designed to perform tasks that are not con6ned to
simple walking actions. Such tasks may include maneuver-
ing in tight spaces, walking or jumping over obstacles, and
running. In this article, we place our main focus on tasks
that are primarily related to walking. Therefore, we will not
be concerned with actions such as performing manipulation
tasks with the upper limbs.

5.1. Passive walking

Possibly the 6rst bipedal walking machine was built by
Fallis (1888). The idea of a biped walking without joint
actuation during certain phases of locomotion was initially
proposed in Mochon and McMahon (1980a). The authors
termed this type of walk as “ballistic walking”. The inspi-
ration of this idea originated from evidence in human gait
studies, which pointed out to relatively low levels of mus-
cle activity in the swing limb during the swing period (see
Basmajian, 1976; Zarrugh, 1976). Two planar models were
used: (1) a three-element model with a single-link stance and
two-link swing leg, (2) a four-element model with two-link
stance and swing limbs. In each case, the authors searched
for initial conditions at the onset of the swing phase such
that the subsequent motion satis6ed a set of kinetic and kine-
matic constraints. Then, they isolated the initial conditions
that satis6ed the imposed constraints. The simulation results
were compared to experimentally measured knee angles and
ground reaction forces. They concluded that their outcomes
and human data had the same general shape. In Mochon and
McMahon (1980b), they improved their model by adding the
stance knee (two-element stance limb). With this more so-
phisticated model, the authors analyzed the model response
by using three out of the 6ve gait determinants (Saunders,
Inman, & Eberhart, 1953). The premise of walking with-
out joint actuation, prompted McGeer (1990) to propose the
“passive walking”. McGeer developed numerical as well as

experimental models of bipeds inspired by Fallis (1888) that
have completely free joints. He demonstrated that these sim-
ple, unactuated bipeds can ambulate on downward planes
only with the action of gravity.
Now, returning to (1)–(4), the typical passive control

scheme is concerned with the free dynamics of the system
(S) given in Section 3.1 (i.e. the dynamics of the system
subject to u=0). Then, as we have shown in Section 4.1, a
Poincar*e section Z+ can be selected (see (24)) to obtain a
nonlinear mapping in the form of

�i = P(�i−1; ’); (28)

where the parameter vector ’ typically includes the slope of
the walking surface, member lengths, and member weights.
Then, the underlying question becomes the existence and
stability of the 6xed points of this map (Kuo, 1999) and
the resemblance of the resulting motions to bipedal walk-
ing. This task is generally very diLcult to realize with the
exception of very simple systems. For example, in the case
of vibro-impact systems, analytical expressions to show ex-
istence can be found (Shaw & Shaw, 1989). In the case of
slightly more complex systems, such explicit calculations
become impossible since the free-motion dynamics is no
longer integrable. Then one has to rely on numerical tools
to derive both the Poincar*e mapping and its local stabil-
ity (Kuo, 1999; Piiroinen et al., 2001, 2003; Piiroinen &
Dankowicz, 2002; Dankowicz & Piiroinen, 2002).
The main energy loss in these bipeds is due to the repeti-

tive impacts of the feet with the ground surface. The gravi-
tational potential energy provides the compensation for this
loss, thus resulting in steady and stable locomotion for cer-
tain slopes and con6gurations. The ground impacts (Hurmu-
zlu & Moskowitz, 1986) provide a unique mechanism that
leads to stable progression in very simple bipeds as has been
recently demonstrated by several investigators. In Goswami,
Thuilot, and Espiau (1996, 1998), the authors consider a
simple model that includes two variable length members
with lumped masses representing the upper body and the
two limbs. A third lumped mass is attached to this point,
which represents the upper body. They analyze the nonlinear
dynamics of (28) subject to prescribed variations in the ele-
ments of ’. They primarily focus on the e:ect of the ground
slope, mass distribution, and limb lengths. Numerical anal-
ysis of the nonlinear map, results in the detection of stable
limit cycles as well as chaotic trajectories that are reached
through period doubling cascade. A simpler, two-link model
was considered in Garcia et al. (1997). They also demon-
strated that this simple biped can produce stable locomotion
as well as very complex chaotic motions reached through
frequency doubling cascade. Chatterjee and Garcia (1998)
and Das and Chatterjee (2002) studied the existence of
periodic gaits in the limit of zero slope. The addition of
passive arms served to reduce side-to-side rocking in a 3D
passive walker (Collins, Wisse, & Ruina, 2001). Quint van
der Linde (1999) includes phasic muscle contraction as the
energy source, and vary the muscle model parameters to
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create new periodic gaits. The main challenge of the study of
passive gait is to translate the understanding gained by study-
ing passive systems to active systems. TheMIT Leg Lab pla-
nar bipeds are controlled this way (Pratt, 2000) for periodic
walking. In other words, the desired trajectories qd(t) are
designed from the study of passive walking. This is not the
case for the Honda robots where qd(t) are obtained from hu-
man recordings. One of the main obstacles to build bipedal
robots remains to be the prohibitively high joint torques that
are often required to realize even routine walking tasks. A
comprehensive investigation that bridges the passive stud-
ies to better design of active control schemes would be a
natural extension of passive locomotion research. This is
achieved in Piiroinen and Dankowicz (2002), Dankowicz
and Piiroinen (2002), who propose a control method based
on discrete adjustments of the swing-foot orientation prior
to contact, hence indirectly a:ecting the nature and timing
of the subsequent impact. This results in the (local) stabi-
lization of a motion that is naturally occurring in the system.

5.2. Walking with active control

5.2.1. Controller design
The control action must assure that the motion of a

multi-link kinematic chain, which can characterize a typical
biped, is that of a walker. Although, the characteristics of
the motion of a walker is still open to interpretation, we
may translate this requirement to a set of target/objective
functions given in the form

gi(q(t); q̇(t); qd(t); q̇d(t); �n; �t ; 3; u) = 0

i = 1; : : : ; k6p; (29)

where 3 is a vector of parameters that prescribes certain as-
pects of the walking action such as progression speed, step
length, etc. Note that for the sake of simplicity of the nota-
tions q will denote in the sequel the vector of generalized
coordinates of the model considered by the referenced au-
thors, i.e. either of the full order model, or of the reduced
order model when assuming that the ground contacts, when
active, are bilateral contacts.
The control problem can be described as specifying the

vector of joint actuator torques u in (1) such that the system
behaves in a certain way. The simplest way to proceed is
to specify the time pro6les of the joint trajectories. Inves-
tigators in the 6eld used kinematics of human gait as de-
sired pro6les (see Hemami & Farnsworth, 1977; Khosravi,
Yurkovich, & Hemami, 1987; Vukobratovic et al., 1990).
One can also simply specify certain aspects of locomo-
tion such as walking speed, step length, upright torso, etc.
(Chudinov, 1980, 1984; Lavrovskii, 1979, 1980; Beletskii,
1975; Beletskii & Kirsanova, 1976; Beletskii & Chudi-
nov, 1977b, 1980; Beletskii, Berbyuk, & Samsonov, 1982;
Grishin & Formal’sky, 1990; Novozhilov, 1984; Hurmuzlu,
1993; Chang & Hurmuzlu, 1994; Yang, 1994). In Beletskii
and Chudinov (1980), the authors use the components of

the ground reaction forces in addition to kinematics in
order to completely specify the control torques. Once the
objective functions are speci6ed, one has to choose a con-
trol scheme in order to specify the joint moments (control
torques) that drive the system toward the desired behavior.
We encounter several approaches to this problem that can
be enumerated as follows:
(1) Linear control: The equations of motion are lin-

earized about the vertical stance, assuming that the posture
of the biped does not excessively deviate from this posi-
tion. For example, in Jalics, Hemami, and Clymer (1997),
Kajita and Tani (1996), Kajita, Yamaura, and Kobayashi
(1992), Grishin, Formal’sky, Lensky and Zhitomirsky
(1994), Zheng and Hemami (1984), Hemami, Zheng, and
Hines (1982), Golliday and Hemami (1977), Hemami and
Farnsworth (1977), Gubina, Hemami, and McGhee (1974),
Mitobe, Capi, and Nasu (2000), Seo and Yoon (1995) and
Garcia, Estremera, and Gonzales de Santos (2002), a PD
controller was used to track joint trajectories. The linear
controller, however, cannot track time functions. Thus, the
authors discretized the desired joint pro6les and let the
controller track the trajectory in a point-to-point fashion.
van der Soest “Knoek”, Heanen, and Rozendaal (2003)
study the inDuence of delays in the feedback loop on stance
stability, including muscle model.
(2) Computed torque control: This method was applied

(Hemami & Katbab, 1982; Lee & Liao, 1988; Hurmuzlu,
1993; Yang, 1994; Jalics et al., 1997; Lum et al., 1999; Song,
Low, & Guo, 1999; Park, 2001; Taga, 1995: Chevallereau,
2003) to bipedal locomotion models with various levels of
complexities. In Chevallereau (2003), the computed torque
is combined with a time-scaling of the desired trajectories
optimally designed (Chevallereau & Aoustin, 2001), which
allows the 6nite-time convergence of the system’s state to-
wards the desired motion. The 6nite-time convergence espe-
cially allows one to avoid the tricky problems due to track-
ing errors induced by impacts (Bourgeot & Brogliato, 2003;
Brogliato et al., 1997, 2000).
(3) Variable structure control: This method results in a

feedback law that ensures tracking despite uncertainties in
system parameters. In this approach, one chooses the control
vector as

ui = û i − ki sign(s); (30)

where û i is a trajectory tracking controller with 6xed esti-
mated parameters. The second term, is the variable structure
part of the control input. The function s de6nes the sliding
surface that represents the desired motion. This is a high
gain approach that is advantageous because it ensures con-
vergence in 6nite time. In locomotion, the stability of the
overall motion relies on the e:ectiveness of the controller
in eliminating the errors induced by impact during the sub-
sequent step. The reader can check Chang and Hurmuzlu
(1994) and Lum et al. (1999) to see the application of such
a controller to a 6ve-element planar model.



Y. Hurmuzlu et al. / Automatica 40 (2004) 1647–1664 1659

(4) Optimal control: Optimal control methods have been
used by researchers to regulate the smooth dynamic phase
of bipedal locomotion systems. Two approaches have been
taken to the optimization problem. The 6rst method is based
on computing the values of selected parameters in the ob-
jective functions that minimize energy-based cost functions
(Frank, 1970; Vukobratovic, 1976; Beletskii & Chudinov,
1977a; Beletskii et al., 1982; Rutkovskii, 1985; Channon,
Hopkins, & Pham, 1992; Saidouni & Bessonnet, 2003).
We note that optimal trajectory planning including the dy-
namics in (1)–(4) is equivalent to searching for an optimal
open-loop control u(t). The second approach is based on
variational methods to obtain controllers that minimize cost
functions (Beletskii & Bolotin, 1983; Bolotin, 1984; Fu-
rusho & Sano, 1990; Channon, Hopkins, & Pham, 1996a, b).
It is the direct application of classical optimal control meth-
ods to bipedal locomotion, see Channon, Hopkins, & Pham
(1996c) for the most advanced work in this topic. Here
the authors regulate the motion of the biped over a support
phase with a quadratic cost function. van der Kooij, Jacobs,
Koopman, & van der Halm (2003) propose a model pre-
dictive controller designed from a tangent linearization to
regulate gait descriptors formulated as end-point conditions.
The main obstacle towards real implementation is a too large
computation time.
(5) Adaptive control: The adaptive control approach has

received very little attention in biped control. Perhaps it is
does not have real advantage in controlling bipedal locomo-
tion. Nevertheless, Yang (1994) has applied adaptive con-
trol approach to a three link, planar robot. Experiments have
been led at the MIT Leg Lab (Pratt, 2000) using adaptive
control.
(6) Shaping discrete event dynamics: The abrupt nature

of impact makes it practically impossible to directly con-
trol its e:ect on the system state. Even an approximation of
an impulsive Dirac input would demand actuators with too
high bandwidth (to say nothing of induced vibrations in the
mechanical structure). An alternate approach can be found
in shaping the system state prior to the impact instant such
that a desired outcome is assured. Such an approach was
taken in Hurmuzlu (1993) and Chang and Hurmuzlu (1994).
In these studies, a set of objective functions in the form of
(29) was tailored. Assuming perfect tracking, the authors
derived the expression for the system state immediately be-
fore the instant of impact in terms of the parameter vector3.
Subsequently, the post-impact state was computed for spe-
ci6c values of the parameter vector. The parameter space
was partitioned into regions according to slippage and con-
tact conditions that result from the foot impact. Then, this
partitioning was used to specify controller parameters such
that the resulting gait pattern has only single support phase
and the feet would not slip as a result of the feet impact. Dunn
and Howe (1994) developed conditions in terms of motion
and structural parameters such that they minimize/eliminate
the velocity jumps due to ground impact and limb switch-
ing. Thus, in their case, the objective of the shaping was to

remove the e:ect of the impact altogether. Miura and Shi-
moyama (1984) used a feedforward input that modi6es the
motion at the end of each step from measurements infor-
mations. Grizzle et al. (1999, 2001) and Werstervelt et al.
(2003) have also used a similar approach. They shape the
state before the impact, so that at the next step the state re-
sides in the zero dynamics. Doing so they create a periodic
gait that corresponds to the zero dynamics de6ned from a
set of output functions. Piiroinen and Dankowicz (2002) lo-
cally stabilize a passive walk with a speci6c strategy, see
Section 5.1.
(7) Stability and periodic motions: Stability of the over-

all gait is often overlooked in locomotion studies. Typically,
controllers have been developed, and few gait cycles have
been shown to demonstrate that the biped “walks” with the
given controller. A thorough analysis of the nonlinear dy-
namics of a planar, 6ve-element biped (Hurmuzlu, 1993)
reveals a rich set of stable, periodic motions that do not
necessarily conform to the classical period one locomotion.
Tracking errors in the control action may lead to stable gait
patterns that are di:erent than the ones that are intended
by the objective functions. One way to overcome this diL-
culty is to partition the parameter space such that one would
choose speci6c values that lead to a desired gait pattern.
This approach is taken in Hurmuzlu (1993) and Chang and
Hurmuzlu (1994).
(8) Other specialized control schemes: Several investi-

gators (Grishin & Formal’sky, 1990; Grishin et al., 1994;
Beletskii, 1975; Chudinov, 1980, 1984; Katoh & Mori,
1994; Lavrovskii, 1979, 1980). used simpli6ed models
without impact and constructed periodic trajectories by
concatenation of orbits obtained from individually con-
trolled segments of the gait cycle. This approach is quite
similar in spirit to the Kobrinskii (1965) method that is
used the existence of trajectories of the impact damper and
the impacting inverted pendulum (see Fig. 1). Blajer and
Schielen (1992) compute a nonlinear feedforward torque
corresponding to a “non-impacting” reference walk and use
PD motion and PI force feedback to stabilize around the
reference trajectory. Fuzzy logic control was used (Shih,
Gruver, & Zhu, 1991) to develop a force controller that
regulates ground reaction forces in swaying actions of an
experimental biped. A group of investigators changed the
parameters in the objective functions such that the desired
motion is adapted to changing terrain conditions (Igarashi &
Nogai, 1992; Shih & Klein, 1993; Zheng & Sheng, 1990).
Zheng (1989) used an acceleration compensation method
to eliminate external disturbances from the motion of an
experimental eight joint robot. Kuo (1999) derives numer-
ically an impact Poincar*e map that represents the walking
cycle, and proposes a linear state feedback that stabilizes
this cycle. Clearly, this is conceptually completely di:er-
ent from the works described above (see item (1) Linear
control) since the design is based on a linearization of the
Poincar*e map itself and not of the continuous dynamics on
one step.
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5.2.2. DES stabilization
As we have shown in Section 4.2, walking corresponds to

a particular sequence of activations of the modes of the DES
associated to the biped seen as a complementarity mechani-
cal system. Such a sequence can be seen as an invariant set
of the DES dynamics, see (21a). These control techniques
aim at stabilizing this invariant set in the sense that the robot
should ultimately be able to recover from falls and restart
walking (Fujiwara et al., 2002). Notice that this approach
does not emphasize the low-level details of the walk (walk-
ing speed, steps length, etc.). An interesting approach in
the area is the zero moment point (ZMP) method proposed
6rst by Vukobratovic and his co-workers (Vukobratovic &
Juricic, 1969; Vukobratovic et al., 1990). The reader can re-
fer to Goswami (1999) and Wieber (2002) and references
within for a detailed discussion regarding the real meaning
of ZMP, and to Garcia et al. (2002) for a complete de-
scription of equivalent stability concepts. Several di:erent,
but equivalent, de6nitions of the ZMP are given (Hemami
& Farnsworth, 1977; Takanishi, Ishida, Yamaziki, & Kato,
1985; Arakawa & Fukuda, 1997; Hirai, Hirose, & Kenada,
1998). The simplest one is (Hemami & Farnsworth, 1977)
the point where the vertical reaction force intersects the
ground, i.e. the center of pressure. The ZMP stability crite-
rion states that the biped will not fall down as long as the
ZMP remains inside the convex hull of the foot-support. In
these studies, the authors impose the motion of the lower
limb kinematics from human kinematic data, which they
term synergies. This way, the ZMP criterion is used to switch
between low-level controllers (which satisfy some objec-
tive functions like trajectory tracking), so as to stabilize the
DES orbit in (21a) (Park, 2001), and possibly avoid ob-
stacles (Yagi & Lumelsky, 2000). The ZMP method was
also applied with other controllers that are not based on
prescribing human data (Borovac, Vukobratovic, & Surla,
1989; Fukuda, Komota, & Arakawa, 1997; Shih, Gruver, &
Lee, 1993; Mitobe et al., 2000; Park, 2001; Huang et al.,
2001; Vanel & Gorce, 1997). One of the best example of
the high degree of eLciency that such control approaches
are able to attain are the bipeds constructed by Honda (Hirai
et al., 1998; Hirai, 1997; Pratt, 2000), whose control mainly
rely on a suitable combination of local linear controller with
high-level (or logical) conditions. In Pratt, Chew, Torres,
Dilworth, and Pratt (2001), an intuitive approach for mak-
ing some bipedal machines walk is proposed. It is based on
the so-called virtual model control. The need for both low-
and high-level control together with on-line desired trajec-
tories planning is explained in El Ha6 and Gorce (1999)
and Vanel and Gorce (1997) where only the supervisory
aspects are studied. Wieber (2002) proposes a quite inter-
esting study, starting from (22). A general criterion for the
DES path (21a) stability (equivalently, its invariance) is es-
tablished, and the link with Lyapunov functions is made
(excepting impacts). Stability margin (roughly, the distance
from the actual trajectory to the boundary of an admissible
set of trajectories, outside of which the robot falls down

(Seo & Yoon, 1995) can be derived. Such studies are of
primary importance for characterizing the stability of reha-
bilitated paraplegics (Popovic et al., 2000).

6. Conclusions and directions for future research

This survey is devoted to the problem of modeling and
control of a class of non-smooth nonlinear mechanical sys-
tems, namely bipedal robots. It is proposed to recast these
dynamical systems in the framework of mechanical sys-
tems subject to complementarity conditions. Unilateral con-
straints that represent possible detachment of the feet from
the ground and Coulomb friction model can be written this
way. In the language of Full and Koditschek (1999), this is
a suitable template. Such a point of view possesses several
advantages:

(1) It provides a uni6ed approach for mathematical, nu-
merical and control investigations. This is a quite im-
portant point since numerical studies are mandatory in
any mechanical and/or control design.

(2) This framework encompasses all the models which
have been used to study locomotion in the control and
robotics literature.

(3) Though we restrict ourselves to rigid body con-
tact/impact models, lumped Dexibilities can easily be
introduced, both at the contact or in the structure it-
self (Dexible joints). Introducing Dexibilities may be
necessary (Pratt, 2000; Pratt & Williamson, 1995),
and is physiologically sound (Gunther & Blickman,
2002). This will, however, make the control problem
harder to solve and may be ine:ective in walking (Kar
et al., 2003). It may also create serious diLculties in
the analysis, especially with multiple contacts (Paoli &
Schatzman, 2002).

(4) Such models have proved to predict quite well the mo-
tion as several experimental validations available in the
literature show (Abadie, 2000).

(5) As shown in this survey, the proposed modeling ap-
proach allows one to clarify which stability tools one
may use to characterize the stability of a bipedal robot.

(6) Finally, it is the opinion of the authors that one impor-
tant development is still missing in the 6eld of biped
design: a concise and suLciently general theoretical
analysis framework, based on realistic models, that al-
lows the designer to derive stable controllers taking
into account the hybrid dynamics in their entirety.
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