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Abstract— Analyses of position and force control laws in the
case of perfectly rigid bodies have been made so far with strong
assumptions on the state of the contacts such as supposing
that they are permanent. We’re interested here in having a
look at what happens when no such assumptions is made: we
are led therefore to propose a Lyapunov stability analysis of a
position and force control law in the mathematical framework
of nonsmooth Lagrangian dynamical systems.

I. I NTRODUCTION

Many applications of robot manipulators require contact
phases between the robots and their environments, and
a regulation of both the position of the robots and the
reaction forces at the contact points is usually demanded
in this case. So far, analyses of the corresponding position
and force control laws have been either focusing on robot
manipulators and environments with finite stiffnesses [1] or
they have been made in the case of perfectly rigid bodies
with strong assumptions on the state of the contacts [2] such
as supposing that they are permanent [3]. We’re interested
here in having a look at what happens in the case of
perfectly rigid bodies when no such assumptions is made,
and more precisely what happens with the propositions
of [3].

Now, the development of a rigorous mathematical frame-
work to study the dynamics of Lagrangian systems with per-
fectly rigid and non-permanent contacts is quite recent [4],
[5], [6], [7] and uses mathematical tools which are still
unusual in robot control theory. We are going therefore to
spend some time in section II to present this mathematical
framework building on convex and nonsmooth analysis. A
very brief introduction to the general stability theory that
can be proposed for such dynamical systems follows, and
section III is entirely devoted to analysing in this nonsmooth
dynamics framework the Lyapunov stability of the position
and force control law proposed in [3].

II. N ONSMOOTHLAGRANGIAN DYNAMICAL SYSTEMS

A. Systems with non-permanent contacts

With n the number of degrees of freedom of the dynam-
ical system, let’s consider a time-variation of generalized
coordinatesq : R → R

n and the related velocitẏq : R →
R

n:

∀ t, t0 ∈ R, q(t) = q(t0) +

∫ t

t0

q̇(τ) dτ.

We’re interested here with Lagrangian dynamical systems
which may experience non-permanent contacts of perfectly
rigid bodies. Geometrically speaking, the non-overlapping
of rigid bodies can be expressed as a constraint on the po-
sition of the corresponding dynamical system, a constraint
that will take the form here of a closed setΦ ⊂ R

n in
which the generalized coordinates are bound to stay [5]:

∀ t ∈ R, q(t) ∈ Φ.

This way, contact phases correspond to phases whenq(t)
lies on the boundary ofΦ, and non-contact phases to phases
when q(t) lies in the interior ofΦ. We will suppose that
this closed set is time-invariant, and we will have to suppose
that it is convex for the stability analysis of section III.

We can define then for allq ∈ Φ the tangent cone [8]

T (q) =
{

v ∈ R
n : ∃ τk → 0, τk > 0,

∃ qk → q, qk ∈ Φ

with
qk − q

τk

→ v
}

,

and we can readily observe that if the velocityq̇(t) has a
left and right limit at an instantt, then obviously−q̇−(t) ∈
T (q(t)) and q̇+(t) ∈ T (q(t)).

Now, note thatT (q) = R
n in the interior of the domain

Φ, but it reduces to a half-space or even less on its boundary
(Fig. 1): if the system reaches this boundary with a velocity
q̇− /∈ T (q), it won’t be able to continue its movement
with a velocity q̇+ = q̇− and still stay inΦ (Fig. 1).
A discontinuity of the velocity will have to occur then,
corresponding to an impact between contacting rigid bodies,
the landmark ofnonsmooth dynamical systems.

We can also define for allq ∈ Φ the normal cone [8]

N (q) =
{

v ∈ R
n : ∀ q′ ∈ Φ, vT (q′ − q) ≤ 0

}

,

and we will see in the inclusion (4) of section II-C that
it is directly related to the reaction forces arising from the
contacts between rigid bodies.

Now, note thatN (q) =
{

0
}

in the interior of the
domainΦ, and it contains at least a half-line ofR

n on its
boundary (Fig. 1): this will imply the obvious observation
that non-zero contact forces may be experienced only on
the boundary of the domainΦ, precisely when there is
a contact. Discontinuities of the contact forces might be
induced because of that, what will be discussed later.
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Fig. 1. Examples of tangent conesT (q) and normal conesN (q) on
the boundary of the domainΦ, and example of a trajectoryq(t) ∈ Φ that
reaches this boundary with a velocityq̇− ∈/ T (q).

In the end, note that with these definitions, the state
(q(t), q̇(t)) appears now to stay inside the set

Ω =
{

(q, q̇) : q ∈ Φ, q̇ ∈ T (q)
}

.

B. Nonsmooth Lagrangian dynamics

The dynamics of Lagrangian systems subject to
Lebesgues-integrable forces are usually expressed as dif-
ferential equations,

M (q)
dq̇

dt
+ N(q, q̇) q̇ = f ,

with M (q) the symmetric positive definite inertia matrix
that we will suppose to be aC1 function of q, N(q, q̇) q̇

the corresponding nonlinear effects andf the Lebesgues-
integrable forces. Classical solutions to these differential
equations lead to smooth motions, with a locally absolutely
continuous velocityq̇(t).

But we have seen that discontinuities of the velocity
may have to occur in the case of Lagrangian systems
experiencing non-permanent contacts between rigid bodies.
A mathematically rigorous way to allow such discontinuities
in the dynamics of Lagrangian system has been proposed
through measure differential equations [5], [9],

M(q) dq̇ + N (q, q̇) q̇ dt = f dt + dr, (1)

with dt the Lebesgues measure anddr the reaction forces
arising from the contacts between rigid bodies, an abstract
measure which may not be Lebesgues-integrable. This
way, the measure accelerationdq̇ may not be Lebesgues-
integrable either so that the velocity may not be locally ab-
solutely continuous anymore but only with locally bounded
variations, q̇ ∈ lbv([t0, T ], Rn) [5], [9] (for the sake of

simplicity, solutions to these measure differential equations
are considered only on compact time intervals).

Functions with locally bounded variations have left and
right limits at every instant, and we have for every compact
subinterval[σ, τ ] ⊂ [t0, T ]

∫

[σ,τ ]

dq̇ = q̇+(τ) − q̇−(σ).

Considering then the integral of the measure differential
equations (1) over a singleton{τ}, we have
∫

{τ}

M(q) dq̇ = M (q)

∫

{τ}

dq̇ = M(q)
(

q̇+(τ)− q̇−(τ)
)

,

∫

{τ}

(

N(q, q̇) q̇ − f
)

dt =
(

N(q, q̇) q̇ − f
)

∫

{τ}

dt = 0,

leading to the following relationship between possible dis-
continuities of the velocities and possible atoms of the
contact forces,

M (q)
(

q̇+(τ) − q̇−(τ)
)

=

∫

{τ}

dr,

or, M(q) being invertible,

q̇+(τ) = q̇−(τ) + M(q)−1

∫

{τ}

dr. (2)

C. Soft frictionless unilateral contacts

Following [5], we will consider that the non-permanent
contacts that may be experienced by our Lagrangian sys-
tems are perfectly unilateral, frictionless and soft. Express-
ing the R

n valued measuredr as the product of a non-
negative real measuredµ and aR

n valued functionr′
µ ∈

L1
loc([t0, T ], dµ; Rn),

dr = r′
µ dµ, (3)

the unilaterality of the contacts (no adhesive forces) together
with the absence of friction corresponds to the inclusion

∀ t ∈ R, −r′
µ(t) ∈ N (q(t)), (4)

and the softness of the contacts, i.e. the fact that impacts
are inelastic, corresponds to the complementarity condition

∀ t ∈ R, q̇+(t)T r′
µ(t) = 0. (5)

For a more in-depth presentation of these concepts and
equations which are quite subtle, the interested reader
should definitely refer to [5].

D. Some Lyapunov stability theory

The Lyapunov stability theory is usually presented for
dynamical systems with states that vary continuously with
time [10], [11]. Because of the possible discontinuities of
their velocity, this might not be the case for the statex(t) =
(q(t), q̇(t)) of nonsmooth Lagrangian dynamical systems.
But the Lyapunov stability theory is in fact not strictly
bound to continuity properties: using classK functions as
defined in [10], we can state for example the following



theorem that can be proved in a very similar way to what
can be found in [10], [11],

Theorem : A closed invariant setS ⊂ Ω is globally
stable if and only if there exists a functionV : Ω → R

such that

(i) there exist two classK functionsα(.) andβ(.) such
that

∀x ∈ Ω, α(d(x,S)) ≤ V (x) ≤ β(d(x,S)),

with d(x,S) the distance between the statex and the
setS, and

(ii) for all solutionsx(t) to the nonsmooth dynamics (1),
the functionV (x(t)) is non-increasing with time.

Such a function is called a Lyapunov function with respect
to the stable setS.

Note now that the position and force control law that
we are going to study in the next section is proved to be
asymptotically stable in [3] through the use of LaSalle’s in-
variance theorem. This latter is unfortunately tightly bound
to the continuity of trajectories of the systems with respect
to initial conditions, a property which doesn’t hold for
nonsmooth dynamical systems [7]. A theorem equivalent
to LaSalle’s for nonsmooth dynamical systems still doesn’t
exist, so we will stick here to the global stability proposed
in the previous theorem.

III. L YAPUNOV STABILITY ANALYSIS OF A POSITION

AND FORCE CONTROL LAW

A. A position and force control law

Let’s consider now that the Lebesgues-integrable forces
f acting on the dynamics (1) consist of some external forces
ef and a controlu,

f = ef + u.

With the help of this controlu, we would like to stabilize
both the positionq of the dynamical systems and the
reaction forcesdr to some desired constant valuesqd and
rd dt (following (3), the desired contact forces are defined
through the product of the Lebesgues measuredt and a
constant vectorrd ∈ R

n). First of all, these desired position
and reaction forces have to be consistent with the contact
model (4),

−rd ∈ N (qd). (6)

Following then the proposition of [3], we define the
control u through the derivative of a strictly convexC1

potential functionP (q), a dissipative termC q̇ with C a
positive definite matrix, and a compensation of the external
forces,

u = −
dP

dq
(q) − C q̇ − ef . (7)

With this control law, the dynamics (1) becomes

M(q) dq̇+N(q, q̇) q̇ dt = −
dP

dq
(q) dt−C q̇ dt+dr, (8)

the equilibria of which, withq̇ = 0, are positions for which

0 = −
dP

dq
(q) dt + r′

µ dµ.

This equation of measures is satisfied if and only ifdµ = dt
and

0 = −
dP

dq
(q) + r′

µ, (9)

and through theorem VII.1.1.1 of [8], this corresponds
together with (4) to the specification of the minima of
P (q) over the domainΦ: the equilibria of the closed
loop dynamics correspond to the minima of the potential
function. More precisely, sinceΦ is assumed to be convex
andP (q) strictly convex, if there is such a minimum then
it is reached at a unique position: if there is an equilibrium
position of the closed loop dynamics, then it is unique.

If we assume now that the potential function satisfies
explicitely

dP

dq
(qd) = rd,

then there is such a mimimum through (6) and the same
theorem of [8]: this minimum isP (qd), reached at the
positionqd, and equation (9) becomes

0 = −rd + r′
µ,

so that the contact forces will be as desired at this equilib-
rium,

dr = rd dt.

B. Lyapunov stability analysis

SinceP (q) has a global minimum reached at the unique
positionqd, with

K(q, q̇) =
1

2
q̇T M(q) q̇

the kinetic energy of the dynamical system, the function

V (q, q̇) = K(q, q̇) + P (q) − P (qd)

has 0 as a global minimum, reached at the unique state
(qd, 0).

Since it is convex with a minimum reached at a unique
position, we know from proposition IV.3.2.5 and definition
IV.3.2.6 of [8] that the functionP (q) is radially unbounded.
Excluding pathological behaviours of the inertia matrix, we
can suppose quite directly then that the functionV (q, q̇)
is also radially unbounded. Lemma 3.5 of [10] allows then
to conclude that it satisfies condition (i) of the theorem of
section II-D with respect to the setS = {(qd, 0)}, appearing
therefore as a possible Lyapunov function.

Indeed, classical differentiation rules of lbv func-
tions [12], [5] allow to compute the time-derivative of the
kinetic energy,

dK =
1

2
q̇T Ṁ (q, q̇) q̇ dt +

(q̇++ q̇−)

2

T

M (q) dq̇.



For the closed loop dynamics (8), this time-derivative is

dK =
1

2
q̇T

(

Ṁ (q, q̇) − 2 N(q, q̇)
)

q̇ dt − q̇T dP

dq
(q) dt

− q̇T C q̇ dt +
(q̇++ q̇−)

2

T

dr,

(note thatq̇+dt = q̇−dt = q̇ dt) where the first term is
identically 0 sinceṀ(q, q̇)−2 N(q, q̇) is an antisymmetric
matrix and−q̇T C q̇ is non-positive sinceC is a positive
matrix. Recalling then relations (2) and (3), we have

(q̇++ q̇−)

2

T

dr = q̇+T dr −
1

2

[

∫

{τ}

dr

]T

M (q)−1dr

= q̇+T r′
µ dµ

−
1

2

[

∫

{τ}

dµ

]

r′
µ

T
M (q)−1r′

µ dµ

where the first term is identically 0 because of the comple-
mentarity condition (5) and the second term is non-positive
since the inertia matrix is positive anddµ ≥ 0. All this ends
up with

dK ≤ −q̇T dP

dq
(q) dt,

and since the time-derivative of the potential function is
precisely

dP = q̇T dP

dq
(q) dt,

we are led to
dV = dK + dP ≤ 0.

The functionV (x(t)) is therefore non-increasing with time,
condition (ii) of the theorem of section II-D is also satisfied,
and the proof that the state(qd, 0) is globally stable with
the closed loop dynamics (8) is completed.

Note that what we have proved here is the stability of
the state(qd, 0) only, and not of the contact forcesrd dt:
on the contrary to what appears in [3], non-zero contact
forces can’t be stable in our case since, as we have seen in
section II-A, non-zero contact forces may be experienced
only on the boundary of the domainΦ, when there is a
contact. These forces may therefore jump to zero in every
neighbourhood of any equilibrium position, what is not
compatible with Lyapunov stability.

C. An example

Following [3], we can see for example that with a strictly
convex quadratic potential function

P (q) =
1

2
(q − qd)

T W (q − qd) + rT
d (q − qd)

with a symmetric positive definite matrixW , the control
law (7) becomes a strictly linear feedback

u = −W (q − qd) − rd − C q̇ − ef

for which we know now that the equilibrium state(qd, 0),
where the contact forces arerd dt, is globally stable.

IV. CONCLUSION

We have seen that the position and force control law
proposed in [3] can be prooved to be stable in the framework
of nonsmooth dynamics with no need for any assumptions
concerning the state of the contacts experienced by the
systems.

This result is obtained with the help of differentiation
rules for functions with locally bounded variations which
are somehow different from the more usual ones for locally
absolutely continuous functions, but which can be practiced
in a very similar way, allowing to derive a Lyapunov
stability analysis for nonsmooth dynamical systems very
similar to what appears in the smooth case.

Extreme care must be taken though about the particular-
ities of nonsmooth dynamical systems: if we can propose a
stability theorem such as the one of section II-D, which
is very similar to usual theorems for smooth dynamical
systems, it doesn’t mean that the whole stability theory
for smooth dynamics can be translated to the nonsmooth
case without specific and sometimes subtle adaptations. The
example of Lasalle’s theorem discussed in section II-D or
the fact that the contact forces can’t be stable for physical
reasons speak for themselves.
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