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Abstract

The idea of a finite collection of closed sets having “strongly regu-
lar intersection” at a given point is crucial in variational analysis. We
show that this central theoretical tool also has striking algorithmic
consequences. Specifically, we consider the case of two sets, one of
which we assume to be suitably “regular” (special cases being convex
sets, smooth manifolds, or feasible regions satisfying the Mangasarian-
Fromovitz constraint qualification). We then prove that von Neu-
mann’s method of “alternating projections” converges locally to a
point in the intersection, at a linear rate associated with a modulus
of regularity. As a consequence, in the case of several arbitrary closed
sets having strongly regular intersection at some point, the method
of “averaged projections” converges locally at a linear rate to a point
in the intersection. Inexact versions of both algorithms also converge
linearly.
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1 Introduction

An important theme in computational mathematics is the relationship be-
tween the “conditioning” of a problem instance and the speed of convergence
of iterative solution algorithms on that instance. A classical example is the
method of conjugate gradients for solving a positive definite system of linear
equations: we can bound the linear convergence rate in terms of the relative
condition number of the associated matrix. More generally, Renegar [32–34]
showed that the rate of convergence of interior-point methods for conic con-
vex programming can be bounded in terms of the “distance to ill-posedness”
of the program.

In studying the convergence of iterative algorithms for nonconvex min-
imization problems or nonmonotone variational inequalities, we must con-
tent ourselves with a local theory. A suitable analogue of the distance to
ill-posedness is then the notion of “metric regularity”, fundamental in vari-
ational analysis. Loosely speaking, a generalized equation, such as a system
of inequalities, for example, is metrically regular when, locally, we can bound
the distance from a trial solution to an exact solution by a constant multiple
of the error in the equation generated by the trial solution. The constant
needed is called the “regularity modulus”, and its reciprocal has a natural
interpretation as a distance to ill-posedness for the equation [15].

This philosophy suggests understanding the speed of convergence of algo-
rithms for solving generalized equations in terms of the regularity modulus
at a solution. Recent literature focuses in particular on the proximal point
algorithm (see for example [1,22,29]). A unified approach to the relationship
between metric regularity and the linear convergence of a family of concep-
tual algorithms appears in [23].

We here study a very basic algorithm for a very basic problem. We
consider the problem of finding a point in the intersection of several closed
sets, using the method of averaged projections: at each step, we project the
current iterate onto each set, and average the results to obtain the next
iterate. Global convergence of this method in the case of two closed convex
sets was proved in 1969 in [2]. In this work we show, in complete generality,
that this method converges locally to a point in the intersection of the sets,
at a linear rate governed by an associated regularity modulus. Our linear
convergence proof is elementary: although we use the idea of the normal
cone, we apply only the definition, and we discuss metric regularity only to
illuminate the rate of convergence.
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Our approach to the convergence of the method of averaged projections
is standard [4, 30]: we identify the method with von Neumann’s alternating
projection algorithm [40] on two closed sets (one of which is a linear subspace)
in a suitable product space. A nice development of the classical method of
alternating projections may be found in [11]. The linear convergence of the
method for two closed convex sets with regular intersection was proved in [4],
strengthening a classical result of [21]. Remarkably, we show that, assuming
strong regularity, local linear convergence requires good geometric properties
(such as convexity, smoothness, or more generally, “amenability ” or “prox-
regularity”) of only one of the two sets.

One consequence of our convergence proof is an algorithmic demonstra-
tion of the “exact extremal principle” described in [26, Theorem 2.8]. This
result, a unifying theme in [26], asserts that if several sets have strongly reg-
ular intersection at a point, then that point is not “locally extremal” [26]:
in other words, translating the sets by small vectors cannot render the in-
tersection empty locally. To prove this result, we simply apply the method
of averaged projections, starting from the point of regular intersection. In
a further section, we show that inexact versions of the method of averaged
projections, closer to practical implementations, also converge linearly.

The method of averaged projections is a conceptual algorithm that might
appear hard to implement on concrete nonconvex problems. However, the
projection problem for some nonconvex sets is relatively easy. A good exam-
ple is the set of matrices of some fixed rank: given a singular value decom-
position of a matrix, projecting it onto this set is immediate. Furthermore,
nonconvex iterated projection algorithms and analogous heuristics are quite
popular in practice, in areas such as inverse eigenvalue problems [7, 8], pole
placement [27,42], information theory [39], low-order control design [19,20,28]
and image processing [5, 41]). Previous convergence results on nonconvex
alternating projection algorithms have been uncommon, and have either fo-
cussed on a very special case (see for example [7, 25]), or have been much
weaker than for the convex case [10,39]. For more discussion, see [25].

Our results primarily concern R-linear convergence: in other words, we
show that our sequences of iterates converge, with error bounded by a ge-
ometric sequence. In a final section, we employ a completely different ap-
proach to show that the method of averaged projections, for prox-regular sets
with regular intersection, has a Q-linear convergence property: each iteration
guarantees a fixed rate of improvement. In a final section, we illustrate these
theoretical results with an elementary numerical example coming from signal
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processing.

2 Notation and definitions

We begin by fixing some notation and definitions. Our underlying setting
throughout this work is a Euclidean space E with corresponding closed unit
ball B. For any point x ∈ E and radius ρ > 0 , we write Bρ(x) for the set
x + ρB.

Consider first two sets F,G ⊂ R. A point x̄ ∈ F∩G is locally extremal [26]
for this pair of sets if restricting to a neighborhood of x̄ and then translating
the sets by small distances can render their intersection empty: in other
words, there exists a ρ > 0 and a sequence of vectors zr → 0 in E such that

(F + zr) ∩G ∩Bρ(x̄) = ∅ for all r = 1, 2, . . . .

Clearly x̄ is not locally extremal if and only if

0 ∈ int
(
((F − x̄) ∩ ρB)− ((G− x̄) ∩ ρB)

)
for all ρ > 0.

For recognition purposes, it is easier to study a weaker property than local
extremality. Following the terminology of [24], we say the two sets F, G ⊂ E
have strongly regular intersection at the point x̄ ∈ F ∩ G if there exists a
constant α > 0 such that

αρB ⊂ ((F − x) ∩ ρB)− ((G− z) ∩ ρB)

for all points x ∈ F near x̄ and z ∈ G near x̄. By considering the case
x = z = x̄, we see that strong regularity implies that x̄ is not locally extremal.
This “primal” definition of strong regularity is often not the most convenient
way to handle strong regularity, either conceptually or theoretically. By
contrast, a “dual” approach, using normal cones, is very helpful.

Given a set F ⊂ E, we define the distance function and (multivalued)
projection for F by

dF (x) = d(x, F ) = inf{‖z − x‖ : z ∈ F}
PF (x) = argmin{‖z − x‖ : z ∈ F}.

The central tool in variational analysis is the normal cone to a closed set
F ⊂ E at a point x̄ ∈ F , which can be defined (see [9, 26,35]) as

NF (x̄) =
{

lim
i

ti(xi − zi) : ti ≥ 0, xi → x̄, zi ∈ PF (xi)
}

.
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Notice two properties in particular. First,

(2.1) z ∈ PF (x) ⇒ x− z ∈ NF (z).

Secondly, the normal cone is a “closed” multifunction: for any sequence of
points xr → x̄ in F , any limit of a sequence of normals yr ∈ NF (xr) must lie
in NF (x̄). Indeed, the definition of the normal cone is in some sense driven
by these two properties: it is the smallest cone satisfying the two properties.
Notice also that we have the equivalence: NF (x) = {0} ⇐⇒ x ∈ int F .

Normal cones provide an elegant alternative approach to defining strong
regularity. In general, a family of closed sets F1, F2, . . . Fm ⊂ E has strongly
regular intersection at a point x̄ ∈ ∩iFi, if the only solution to the system

yi ∈ NFi(x̄) (i = 1, 2, . . . , m)
m∑

i=1

yi = 0,

is yi = 0 for i = 1, 2, . . . , m. In the case m = 2, this condition can be written

NF1(x̄) ∩ −NF2(x̄) = {0},

and it is equivalent to our previous definition (see [24, Cor 2], for example).
We also note that this condition appears throughout variational-analytic the-
ory. For example, it guarantees the important inclusion (see [35, Theorem
6.42])

NF1∩...∩Fm(x̄) ⊂ NF1(x̄) + · · · + NFm(x̄).

We will find it helpful to quantify the notion of strong regularity (cf. [24]).
A straightforward compactness argument shows the following result.

Proposition 2.2 (quantifying strong regularity) A collection of closed
sets F1, F2, . . . , Fm ⊂ E have strongly regular intersection at a point x̄ ∈ ∩Fi

if and only if there exists a constant k > 0 such that the following condition
holds:

(2.3) yi ∈ NFi(x̄) (i = 1, 2, . . . , m) ⇒
√∑

i

‖yi‖2 ≤ k
∥∥∥

∑

i

yi

∥∥∥.
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We define the condition modulus cond(F1, F2, . . . , Fm|x̄) to be the infimum
of all constants k > 0 such that property (2.3) holds. Using the triangle
and Cauchy-Schwarz inequalities, we notice that vectors y1, y2, . . . , ym ∈ E
always satisfy the inequality

(2.4)
∑

i

‖yi‖2 ≥ 1

m

∥∥∥
∑

i

yi

∥∥∥
2

,

which yields

(2.5) cond(F1, F2, . . . , Fm|x̄) ≥ 1√
m

,

except in the special case when NFi(x̄) = {0} (or equivalently x̄ ∈ intFi) for
all i = 1, 2, . . . , m; in this case the condition modulus is zero.

One goal of this paper is to show that, far from being of purely an-
alytic significance, strong regularity has central algorithmic consequences,
specifically for the method of averaged projections for finding a point in the
intersection ∩iFi. Given any initial point x0 ∈ E, the algorithm proceeds
iteratively as follows:

zi
n ∈ PFi(xn) (i = 1, 2, . . . , m)

xn+1 =
1

m
(z1

n + z2
n + · · · + zm

n ).

Our main result shows, assuming only strong regularity, that providing the
initial point x0 is near x̄, any sequence x1, x2, x3, . . . generated by the method
of averaged projections converges linearly to a point in the intersection ∩iFi,
at a rate governed by the condition modulus.

3 Strong and metric regularity

The notion of strong regularity is well-known to be closely related to another
central idea in variational analysis: “metric regularity”. A concise summary
of the relationships between a variety of regular intersection properties and
metric regularity appears in [24]. We summarize the relevant ideas here.

Consider a set-valued mapping Φ: E→→ Y, where Y is a second Euclidean
space. The inverse mapping Φ−1 : Y →→ E is defined by

x ∈ Φ−1(y) ⇔ y ∈ Φ(x), for x ∈ E, y ∈ Y.
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For vectors x̄ ∈ E and ȳ ∈ Φ(x̄), we say Φ is metrically regular at x̄ for ȳ
if there exists a constant κ > 0 such that all vectors x ∈ E close to x̄ and
vectors y ∈ Y close to ȳ satisfy

d(x, Φ−1(y)) ≤ κd(y, Φ(x)).

Intuitively, this inequality gives a local linear bound for the distance to a
solution of the generalized equation y ∈ Φ(x) (where the vector y is given
and we seek the unknown vector x), in terms of the the distance from y
to the set Φ(x). The infimum of all such constants κ is called the modulus
of metric regularity of Φ at x̄ for ȳ, denoted reg Φ(x̄|ȳ). This modulus is
a measure of the sensitivity or “conditioning” of the generalized equation
y ∈ Φ(x). To take one simple example, if Φ is a single-valued linear map,
the modulus of regularity is the reciprocal of its smallest singular value. In
general, variational analysis provides a powerful calculus for computing the
regularity modulus. In particular, we have the following formula [35, Thm
9.43]:

(3.1)
1

reg Φ(x̄|ȳ)
= min

{
d(0, D∗Φ(x̄|ȳ)(w)) : w ∈ Y, ‖w‖ = 1

}
,

where D∗ denotes the “coderivative”.
We now study these ideas for a particular mapping, highlighting the con-

nections between metric and strong regularity. As in the previous section,
consider closed sets F1, F2, . . . , Fm ⊂ E and a point x̄ ∈ ∩iFi. We endow the
space Em with the inner product

〈
(x1, x2, . . . , xm), (y1, y2, . . . , ym)

〉
=

∑

i

〈xi, yi〉,

and define set-valued mapping Φ: E→→ Em by

Φ(x) = (F1 − x)× (F2 − x)× · · · × (Fm − x).

Then the inverse mapping is given by

Φ−1(y) =
⋂

i

(Fi − yi), for y ∈ Em

and finding a point in the intersection ∩iFi is equivalent to finding a solu-
tion of the generalized equation 0 ∈ Φ(x). By definition, the mapping Φ is
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metrically regular at x̄ for 0 if and only if there is a constant κ > 0 such that
the following strong metric inequality holds:

(3.2) d
(
x,

⋂

i

(Fi−zi)
)
≤ κ

√∑

i

d2(x, Fi − zi) for all (x, z) near (x̄, 0).

Furthermore, the regularity modulus reg Φ(x̄|0) is just the infimum of those
constants κ > 0 such that inequality (3.2) holds.

To compute the coderivative D∗Φ(x̄|0), we decompose the mapping Φ as
Ψ− A, where, for points x ∈ E,

Ψ(x) = F1 × F2 × · · · × Fm

Ax = (x, x, . . . , x).

The calculus rule [35, 10.43] yields D∗Φ(x̄|0) = D∗Ψ(x̄|Ax̄)− A∗. Then, by
definition,

v ∈ D∗Ψ(x̄|Ax̄)(w) ⇔ (v,−w) ∈ NgphΨ(x̄, Ax̄),

and since gph Ψ = E× F1 × F2 × · · · × Fm, we deduce

D∗Ψ(x̄|Ax̄)(w) =

{
{0} if wi ∈ −NFi(x̄) ∀i
∅ otherwise

and hence

D∗Φ(x̄|0)(w) =

{
−

∑
i wi if wi ∈ −NFi(x̄) ∀i

∅ otherwise.

From the coderivative formula (3.1) we now obtain

(3.3)
1

reg Φ(x̄|0)
= min

{∥∥∥
∑

i

yi

∥∥∥ :
∑

i

‖yi‖2 = 1, yi ∈ NFi(x̄)
}

,

where, following the usual convention, we interpret the right-hand side as
+∞ if NFi(x̄) = {0} (or equivalently x̄ ∈ int Fi) for all i = 1, 2, . . . , m. Thus
the regularity modulus agrees exactly with the condition modulus that we
defined in the previous section:

reg Φ(x̄|0) = cond(F1, F2, . . . , Fm|x̄).

Furthermore, as is well-known [24], strong regularity is equivalent to the
strong metric inequality (3.2).
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4 Clarke regularity and refinements

Even more central than strong regularity in variational analysis is the concept
of “Clarke regularity”. In this section we study a slight refinement, crucial
for our development. In the interest of maintaining as elementary approach
as possible, we use the following geometric definition of Clarke regularity.

Definition 4.1 (Clarke regularity) A closed set C ⊂ Rn is Clarke regular
at a point x̄ ∈ C if, given any δ > 0, any two points u, z near x̄ with z ∈ C,
and any point y ∈ PC(u), satisfy

〈z − x̄, u− y〉 ≤ δ‖z − x̄‖ ·‖ u− y‖.

In other words, the angle between the vectors z − x̄ and u − y, whenever it
is defined, cannot be much less than π

2 when the points u and z are near x̄.

Remark 4.2 This property is equivalent to the standard notion of Clarke
regularity. To see this, suppose the property in the definition holds. Consider
any unit vector v ∈ NC(x̄), and any unit “tangent direction” w to C at x̄.
By definition, there exists a sequences ur → x̄, yr ∈ PC(ur), and zr → x̄ with
zr ∈ C, such that

ur − yr

‖ur − yr‖
→ v

zr − x̄

‖zr − x̄‖ → w.

By assumption, given any ε > 0, for all large r the angle between the two
vectors on the left-hand side is at least π

2 − ε, and hence so is the angle
between v and w. Thus 〈v, w〉 ≤ 0, so Clarke regularity follows, by [35, Cor
6.29]. Conversely, if the property described in the definition fails, then for
some ε > 0 and some sequences ur → x̄, yr ∈ PC(ur), and zr → x̄ with
zr ∈ C, the angle between the unit vectors

(4.3)
ur − yr

‖ur − yr‖
and

zr − x̄

‖zr − x̄‖

is less than π
2 −ε. Then any cluster points v and w of the two sequences (4.3)

are respectively an element of NC(x̄) and a tangent direction to C at x̄, and
satisfy 〈v, w〉 > 0, contradicting Clarke regularity.
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The property we need for our development is an apparently-slight modi-
fication of Clarke regularity.

Definition 4.4 (super-regularity) A closed set C ⊂ Rn is super-regular
at a point x̄ ∈ C if, given any δ > 0, any two points u, z near x̄ with z ∈ C,
and any point y ∈ PC(u), satisfy

〈z − y, u− y〉 ≤ δ‖z − y‖ ·‖ u− y‖.

In other words, then angle between the vectors z − y and u− y, whenever it
is defined, cannot be much less than π

2 when the points u and z are near x̄.
An equivalent statement involves the normal cone.

Proposition 4.5 (super-regularity and normal angles) A closed set
C ⊂ Rn is super-regular at a point x̄ ∈ C if and only if, for all δ > 0, the
inequality

〈v, z − y〉 ≤ δ‖v‖ ·‖ z − y‖

holds for all points y, z ∈ C near x̄ and all normal vectors v ∈ NC(y).

Proof Super-regularity follows immediately from the normal cone property
describe in the proposition, by property (2.1). Conversely, suppose the nor-
mal cone property fails, so for some δ > 0 and sequences of distinct points
yr, zr ∈ C approaching x̄ and unit normal vectors vr ∈ NC(yr), we have, for
all r = 1, 2, . . ., 〈

vr,
zr − yr

‖zr − yr‖

〉
> δ.

Fix an index r. By definition of the normal cone, there exist sequences
of distinct points uj

r → yr and yj
r ∈ PC(uj

r) such that

lim
j→∞

uj
r − yj

r

‖uj
r − yj

r‖
= vr.

Since limj yj
r = yr, we must have, for all large j,

〈 uj
r − yj

r

‖uj
r − yj

r‖
,

zr − yj
r

‖zr − yj
r‖

〉
> δ.

Choose j sufficiently large to ensure both the above inequality and the in-
equality ‖uj

r − yr‖ < 1
r , and then define points u′r = uj

r and y′r = yj
r .
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We now have sequences of points u′r, zr approaching x̄ with zr ∈ C, and
y′r ∈ PC(u′r), and satisfying

〈 u′r − y′r
‖u′r − y′r‖

,
zr − y′r
‖zr − y′r‖

〉
> δ.

Hence C is not super-regular at x̄. !

Super-regularity is a strictly stronger property than Clarke regularity, as
the following result and example make clear.

Corollary 4.6 (super-regularity implies Clarke regularity)
If a closed set C ⊂ Rn is super-regular at a point, then it is also Clarke
regular there.

Proof Suppose the point in question is x̄. Fix any δ > 0, and set y = x̄
in Proposition 4.5. Then clearly any unit tangent direction d to C at x̄ and
any unit normal vector v ∈ NC(x̄) satisfy 〈v, d〉 ≤ δ. Since δ was arbitrary,
in fact 〈v, d〉 ≤ 0, so Clarke regularity follows by [35, Cor 6.29]. !

Example 4.7 Consider the following function f : R → (−∞, +∞], taken
from an example in [37]:

f(t) =






2r(t− 2r) (2r ≤ t < 2r+1, r ∈ Z)
0 (t = 0)
+∞ (t < 0).

The epigraph of this function is Clarke regular at (0, 0), but it is not hard
to see that it is not super-regular there. Indeed, a minor refinement of this
example (smoothing the set slightly close to the nonsmooth points (2r, 0)
and (2r, 4r−1)) shows that a set can be everywhere Clarke regular, and yet
not super-regular.

Super-regularity is a common property: indeed, it is implied by two well-
known properties, that we discuss next. Following [35], we say that a set
C ⊂ Rn is amenable at a point x̄ ∈ C when there exists a neighborhood U
of x̄, a C1 mapping G : U → R#, and a closed convex set D ⊂ R# containing
G(x̄), and satisfying the constraint qualification

(4.8) ND(G(x̄)) ∩ ker(∇G(x̄)∗) = {0},
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such that points x ∈ Rn near x̄ lie in C exactly when G(x) ∈ D. In particular,
if C is defined by C1 equality and inequality constraints and the Mangasarian-
Fromovitz constraint qualification holds at x̄, then C is amenable at x̄.

Proposition 4.9 (amenable implies super-regular) If a closed set C ⊂
Rn is amenable at a point in C, then it is super-regular there.

Proof Suppose the result fails at some point x̄ ∈ C. Assume as in the
definition of amenability that, in a neighborhood of x̄, the set C is identical
with the inverse image G−1(D), where the C1 map G and the closed convex
set D satisfy the condition (4.8). Then by definition, for some δ > 0, there
are sequences of points yr, zr ∈ C and unit normal vectors vr ∈ NC(yr)
satisfying

〈vr, zr − yr〉 > δ‖zr − yr‖, for all r = 1, 2, . . ..

It is easy to check the condition

ND(G(yr)) ∩ ker(∇G(yr)
∗) = {0},

for all large r, since otherwise we contradict assumption (4.8). Consequently,
using the standard chain rule from [35], we deduce

NC(yr) = ∇G(yr)
∗ND(G(yr)),

so there are normal vectors ur ∈ ND(G(yr)) such that ∇G(yr)∗ur = vr. The
sequence (ur) must be bounded, since otherwise, by taking a subsequence,
we could suppose ‖ur‖ → ∞ and ‖ur‖−1ur approaches some unit vector û,
leading to the contradiction

û ∈ ND(G(x̄)) ∩ ker(∇G(x̄)∗) = {0}.

For all large r, we now have

〈∇G(yr)∗ur, zr − yr〉 > δ‖zr − yr‖,

and by convexity we know

〈ur, G(zr)−G(yr)〉 ≤ 0.

Adding these two inequalities gives

〈ur, G(zr)−G(yr)−∇G(yr)(zr − yr)〉 < −δ‖zr − yr‖.

12



But as r → ∞, the left-hand side is o(‖zr − yr‖), since the sequence (ur) is
bounded and G is C1. This contradiction completes the proof. !

A rather different refinement of Clarke regularity is the notion of “prox-
regularity”. Following [31, Thm 1.3], we call a set C ⊂ E is prox-regular
at a point x̄ ∈ C if the projection mapping PC is single-valued around x̄.
(In this case, clearly C must be locally closed around x̄.) For example, if,
in the definition of an amenable set that we gave earlier, we strengthen our
assumption on the map G to be C2 rather than just C1, the resulting set
must be prox-regular. On the other hand, the set

{
(s, t) ∈ R2 : t = |s|3/2

}

is amenable at the point (0, 0) (and hence super-regular there), but is not
prox-regular there.

Proposition 4.10 (prox-regular implies super-regular) If a closed set
C ⊂ Rn is prox-regular at a point in C, then it is super-regular there.

Proof If the results fails at x̄ ∈ C, then for some constant δ > 0, there exist
sequences of points yr, zr ∈ C converging to the point x̄, and a sequence of
normal vectors vr ∈ NC(yr) satisfying the inequality

〈vr, zr − yr〉 > δ‖vr‖ ·‖ zr − yr‖.

By [31, Proposition 1.2], there exist constants ε, ρ > 0 such that

〈 ε

2‖vr‖
vr, zr − yr

〉
≤ ρ

2
‖zr − yr‖2

for all large r. This gives a contradiction, since ‖zr − yr‖ ≤ δε
ρ eventually. !

Super-regularity is related to various other notions in the literature. We
end this section with a brief digression to discuss these relationships. First
note the following equivalent definition, which is an immediate consequence
of Proposition 4.5, and which gives an alternate proof of Proposition 4.10 via
“hypomonotonicity” of the truncated normal cone mapping x 4→ NC(x) ∩B
for prox-regular sets C [31, Thm 1.3].
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Corollary 4.11 (approximate monotonicity) A closed set C ⊂ Rn is
super-regular at a point x̄ ∈ C if and only if, for all δ > 0, the inequality

〈v − w, y − z〉 ≥ − δ‖y − z‖

holds for all points y, z ∈ C near x̄ and all normal vectors v ∈ NC(y) ∩ B
and w ∈ NC(z) ∩B.

If we replace the normal cone NC in the property described in the result above
by its convex hull, the “Clarke normal cone”, we obtain a stronger property,
called “subsmoothness” in [3]. Similar proofs to those above show that,
like super-regularity, subsmoothness is a consequence of either amenability
or prox-regularity. However, submoothness is strictly stronger than super-
regularity. To see this, consider the graph of the function f : R→ R defined
by the following properties: f(0) = 0, f(2r) = 4r for all integers r, f is linear
on each interval [2r, 2r+1], and f(t) = f(−t) for all t ∈ R. The graph of f is
super-regular at (0, 0), but is not subsmooth there.

In a certain sense, however, the distinction between subsmoothness and
super-regularity is slight. Suppose the set F is super-regular at every point
in F ∩ U , for some open set U ⊂ Rn. Since super-regularity implies Clarke
regularity, the normal cone and Clarke normal cone coincide throughout F ∩
U , and hence F is also subsmooth throughout F ∩U . In other words, “local”
super regularity coincides with “local” subsmoothness, which in turn, by [3,
Thm 3.16] coincides with the “first order Shapiro property” [36] (also called
“near convexity” in [38]) holding locally.

5 Alternating projections with nonconvexity

Having reviewed or developed over the last few sections the key variational-
analytic properties that we need, we now turn to projection algorithms. In
this section we develop our convergence analysis of the method of alternating
projections. The following result is our basic tool, guaranteeing conditions
under which the method of alternating projections converges linearly. For
flexibility, we state it in a rather technical manner. For clarity, we point out
afterward that the two main conditions, (5.2) and (5.3), are guaranteed in
applications via assumptions of strong regularity and super-regularity (or in
particular, amenability or prox-regularity) respectively.
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Theorem 5.1 (linear convergence of alternating projections)
Consider the closed sets F,C ⊂ E, and a point x̄ ∈ F . Fix any constant
ε > 0. Suppose for some constant c′ ∈ (0, 1), the following condition holds:

(5.2)
x ∈ F ∩ (x̄ + εB), u ∈ −NF (x) ∩B
y ∈ C ∩ (x̄ + εB), v ∈ NC(y) ∩B

}
⇒ 〈u, v〉 ≤ c′.

Suppose furthermore for some constant δ ∈ [0, 1−c′

2 ) the following condition
holds:

(5.3)
y, z ∈ C ∩ (x̄ + εB)

v ∈ NC(y) ∩B

}
⇒ 〈v, z − y〉 ≤ δ‖z − y‖.

Define a constant c = c′+2δ < 1. Then for any initial point x0 ∈ C satisfying
‖x0 − x̄‖ ≤ 1−c

4 ε, any sequence of alternating projections on the sets F and
C,

x2n+1 ∈ PF (x2n) and x2n+2 ∈ PC(x2n+1) (n = 0, 1, 2, . . .)

must converge with R-linear rate
√

c to a point x̂ ∈ F ∩ C satisfying the
inequality ‖x̂− x0‖ ≤ 1+c

1−c‖x0 − x̄‖.

Proof First note, by the definition of the projections we have

(5.4) ‖x2n+3 − x2n+2‖ ≤ ‖x2n+2 − x2n+1‖ ≤ ‖x2n+1 − x2n‖.

Clearly we therefore have

(5.5) ‖x2n+2 − x2n‖ ≤ 2‖x2n+1 − x2n‖.

We next claim

(5.6)
‖x2n+1 − x̄‖ ≤ ε

2 and
‖x2n+1 − x2n‖ ≤ ε

2

}
⇒ ‖x2n+2 − x2n+1‖ ≤ c‖x2n+1 − x2n‖.

To see this, note that if x2n+2 = x2n+1, the result is trivial, and if x2n+1 = x2n

then x2n+2 = x2n+1 so again the result is trivial. Otherwise, we have

x2n − x2n+1

‖x2n − x2n+1‖
∈ NF (x2n+1) ∩B

while
x2n+2 − x2n+1

‖x2n+2 − x2n+1‖
∈ −NC(x2n+2) ∩B.
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Furthermore, using inequality (5.4), the left-hand side of the implication (5.6)
ensures

‖x2n+2 − x̄‖ ≤ ‖x2n+2 − x2n+1‖+ ‖x2n+1 − x̄‖
≤ ‖x2n+1 − x2n‖+ ‖x2n+1 − x̄‖ ≤ ε.

Hence, by assumption (5.2) we deduce

〈 x2n − x2n+1

‖x2n − x2n+1‖
,

x2n+2 − x2n+1

‖x2n+2 − x2n+1‖

〉
≤ c′,

so

〈x2n − x2n+1, x2n+2 − x2n+1〉 ≤ c′‖x2n − x2n+1‖ ·‖ x2n+2 − x2n+1‖.

On the other hand, by assumption (5.3) we know

〈x2n − x2n+2, x2n+1 − x2n+2〉 ≤ δ‖x2n − x2n+2‖ ·‖ x2n+1 − x2n+2‖
≤ 2δ‖x2n − x2n+1‖ ·‖ x2n+2 − x2n+1‖,

using inequality (5.5). Adding this inequality to the previous inequality then
gives the right-hand side of (5.6), as desired.

Now let α = ‖x0 − x̄‖. We will show by induction the inequalities

‖x2n+1 − x̄‖ ≤ 2α
1− cn+1

1− c
<

ε

2
(5.7)

‖x2n+1 − x2n‖ ≤ αcn <
ε

2
(5.8)

‖x2n+2 − x2n+1‖ ≤ αcn+1.(5.9)

Consider first the case n = 0. Since x1 ∈ PF (x0) and x̄ ∈ F , we deduce
‖x1 − x0‖ ≤ ‖x̄− x0‖ = α < ε/2, which is inequality (5.8). Furthermore,

‖x1 − x̄‖ ≤ ‖x1 − x0‖+ ‖x0 − x̄‖ ≤ 2α <
ε

2
,

which shows inequality (5.7). Finally, since ‖x1 − x0‖ < ε/2 and ‖x1 − x̄‖ <
ε/2, the implication (5.6) shows

‖x2 − x1‖ ≤ c‖x1 − x0‖ ≤ c‖x̄− x0‖ = cα,
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which is inequality (5.9).
For the induction step, suppose inequalities (5.7), (5.8), and (5.9) all hold

for some n. Inequalities (5.4) and (5.9) imply

(5.10) ‖x2n+3 − x2n+2‖ ≤ αcn+1 <
ε

2
.

We also have, using inequalities (5.10), (5.9), and (5.7)

‖x2n+3 − x̄‖ ≤ ‖x2n+3 − x2n+2‖+ ‖x2n+2 − x2n+1‖+ ‖x2n+1 − x̄‖

≤ αcn+1 + αcn+1 + 2α
1− cn+1

1− c
,

so

(5.11) ‖x2n+3 − x̄‖ ≤ 2α
1− cn+2

1− c
<

ε

2
.

Now implication (5.6) with n replaced by n + 1 implies

‖x2n+4 − x2n+3‖ ≤ c‖x2n+3 − x2n+2‖,

and using inequality (5.10) we deduce

(5.12) ‖x2n+4 − x2n+3‖ ≤ αcn+2.

Since inequalities (5.11), (5.10), and (5.12) are exactly inequalities (5.7),
(5.8), and (5.9) with n replaced by n + 1, the induction step is complete and
our claim follows.

We can now easily check that the sequence (xk) is Cauchy and therefore
converges. To see this, note for any integer n = 0, 1, 2, . . . and any integer
k > 2n, we have

‖xk − x2n‖ ≤
k−1∑

j=2n

‖xj+1 − xj‖

≤ α(cn + cn+1 + cn+1 + cn+2 + cn+2 + · · · )

so

‖xk − x2n‖ ≤ αcn 1 + c

1− c
,
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and a similar argument shows

(5.13) ‖xk+1 − x2n+1‖ ≤
2αcn+1

1− c
.

Hence xk converges to some point x̂ ∈ E, and for all n = 0, 1, 2, . . . we have

(5.14) ‖x̂− x2n‖ ≤ αcn 1 + c

1− c
and ‖x̂− x2n+1‖ ≤

2αcn+1

1− c
.

We deduce that the limit x̂ lies in the intersection F ∩ C and satisfies the
inequality ‖x̂−x0‖ ≤ α1+c

1−c , and furthermore that the convergence is R-linear
with rate

√
c, which completes the proof. !

To apply Theorem 5.1 to alternating projections between a closed and a
super-regular set, we make use of the key geometric property of super-regular
sets (Proposition 4.5): at any point near a point where a set is super-regular
the angle between any normal vector and the direction to any nearby point
in the set cannot be much less than π

2 .
We can now prove our key result.

Theorem 5.15 (alternating projections with a super-regular set)
Consider closed sets F,C ⊂ E and a point x̄ ∈ F ∩ C. Suppose C is super-
regular at x̄ (as holds, for example, if it is amenable or prox-regular there).
Suppose furthermore that F and C have strongly regular intersection at x̄:
that is, the condition

NF (x̄) ∩ −NC(x̄) = {0}

holds, or equivalently, the constant

(5.16) c̄ = max
{
〈u, v〉 : u ∈ NF (x̄) ∩B, v ∈ −NC(x̄) ∩B

}

is strictly less than one. Fix any constant c ∈ (c̄, 1). Then, for any initial
point x0 ∈ C close to x̄, any sequence of iterated projections

x2n+1 ∈ PF (x2n) and x2n+2 ∈ PC(x2n+1) (n = 0, 1, 2, . . .)

must converge to a point in F ∩ C with R-linear rate
√

c.
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Proof Let us show first the equivalence between c̄ < 1 and strong regularity.
The compactness of the intersections between normal cones and the unit
ball guarantees the existence of u and v achieving the maximum in (5.16).
Observe then that

〈u, v〉 ≤ ‖u‖ ‖v‖ ≤ 1.

The cases of equality in the Cauchy-Schwarz inequality permits to write

c̄ = 1 ⇐⇒ u and v are colinear ⇐⇒ NF (x̄) ∩ −NC(x̄) 5= {0},

which corresponds to the desired equivalence.
Fix now any constant c′ ∈ (c̄, c) and define δ = c−c′

2 . To apply Theorem
5.1, we just need to check the existence of a constant ε > 0 such that con-
ditions (5.2) and (5.3) hold. Condition (5.3) holds for all small ε > 0, by
Proposition 4.5. On the other hand, if condition (5.2) fails for all small ε > 0,
then there exist sequences of points xr → x̄ in the set F and yr → x̄ in the set
C, and sequences of vectors ur ∈ −NF (xr)∩B and vr ∈ NC(yr)∩B, satisfy-
ing 〈ur, vr〉 > c′. After taking a subsequences, we can suppose ur approaches
some vector u ∈ −NF (x̄)∩B and vr approaches some vector v ∈ NC(x̄)∩B,
and then 〈u, v〉 ≥ c′ > c̄, contradicting the definition of the constant c̄. !

Corollary 5.17 (improved convergence rate) With the assumptions of
Theorem 5.15, suppose the set F is also super-regular at x̄. Then the alter-
nating projection sequence converges with R-linear rate c.

Proof Inequality (5.6), and its analog when the roles of F and C are
interchanged, together show

‖xk+1 − xk‖ ≤ c‖xk − xk−1‖

for all large k, and the result then follows easily, using an argument analogous
to that at the end of the proof of Theorem 5.1. !

In the light of our discussion in the previous section, the strong regularity
assumption of Theorem 5.15 is equivalent to the metric regularity at x̄ for 0
of the set-valued mapping Ψ: E→→ E2 defined by

Ψ(x) = (F − x)× (C − x), for x ∈ E.
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Using equation (3.3), the regularity modulus is determined by

1

reg Ψ(x̄|0)
= min

{
‖u + v‖ : u ∈ NF (x̄), v ∈ NC(x̄), ‖u‖2 + ‖v‖2 = 1

}
,

and a short calculation then shows

(5.18) reg Ψ(x̄|0) =
1√

1− c̄
.

The closer the constant c̄ is to one, the larger the regularity modulus. We
have shown that c̄ also controls the speed of linear convergence for the method
of alternating projections applied to the sets F and C.

Inevitably, Theorem 5.15 concerns local convergence: it relies on finding
an initial point x0 sufficiently close to a point of strongly regular intersection.
How might we find such a point?

One natural context in which to pose this question is that of sensitivity
analysis. Suppose we already know a point of strongly regular intersection of
a closed set and a subspace, but now want to find a point in the intersection
of two slight perturbations of these sets. The following result shows that,
starting from the original point of intersection, the method of alternating
projections will converge linearly to the new intersection.

Theorem 5.19 (perturbed intersection) With the assumptions of The-
orem 5.15, for any small vector d ∈ E, the method of alternating projections
applied to the sets d + F and C, with the initial point x̄ ∈ C, will converge
with R-linear rate

√
c to a point x̃ ∈ (d+F )∩C satisfying ‖x̃− x̄‖ ≤ 1+c

1−c‖d‖.

Proof As in the proof of Theorem 5.15, if we fix any constant c′ ∈ (c̄, c)
and define δ = c−c′

2 , then there exists a constant ε > 0 such that conditions
(5.2) and (5.3) hold. Suppose the vector d satisfies

‖d‖ ≤ (1− c)ε

8
<

ε

2
.

Since

y ∈ (C − d) ∩ (x̄ +
ε

2
B) and v ∈ NC−d(y)

⇒ y + d ∈ C ∩ (x̄ + εB) and v ∈ NC(y + d),
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we deduce from condition (5.2) the implication

x ∈ F ∩ (x̄ + ε
2B), u ∈ −NF (x) ∩B

y ∈ (C − d) ∩ (x̄ + ε
2B), v ∈ NC−d(y) ∩B

}
⇒ 〈u, v〉 ≤ c′.

Furthermore, using condition (5.3) we deduce the implication

y, z ∈ (C − d) ∩ (x̄ +
ε

2
B) and v ∈ NC−d(y) ∩B

⇒ y + d, z + d ∈ C ∩ (x̄ + εB) and v ∈ NC(y + d) ∩B,

⇒ 〈v, z − y〉 ≤ δ‖z − y‖.

We can now apply Theorem 5.1 with the set C replaced by C − d and the
constant ε replaced by ε

2 . We deduce that the method of alternating projec-
tions on the sets F and C − d, starting at the point x0 = x̄ − d ∈ C − d,
converges with R-linear rate

√
c to a point x̂ ∈ F ∩ (C − d) satisfying the

inequality ‖x̂− x0‖ ≤ 1+c
1−c‖x0 − x̄‖. The theorem statement then follows by

translation. !

Lack of convexity notwithstanding, more structure sometimes implies that
the method of alternating projections converges Q-linearly, rather than just
R-linearly, on a neighborhood of point of strongly regular intersection of two
closed sets. One example is the case of two manifolds [25].

6 Inexact alternating projections

Our basic tool, the method of alternating projections for a super-regular set
C and an arbitrary closed set F , is a conceptual algorithm that may be chal-
lenging to realize in practice. We might reasonably consider the case of exact
projections on the super-regular set C: for example, in the next section, for
the method of averaged projections, C is a subspace and computing projec-
tions is trivial. However, projecting onto the set F may be much harder, so
a more realistic analysis allows relaxed projections.

We sketch one approach. Given two iterates x2n−1 ∈ F and x2n ∈ C, a
necessary condition for the new iterate x2n+1 to be an exact projection on F ,
that is x2n+1 ∈ PF (x2n), is

‖x2n+1 − x2n‖ ≤ ‖x2n − x2n−1‖ and x2n − x2n+1 ∈ NF (x2n+1).
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In the following result we assume only that we choose the iterate x2n+1 to
satisfy a relaxed version of this condition, where we replace the second part
by the assumption that the distance

dNF (x2n+1)

( x2n − x2n+1

‖x2n − x2n+1‖

)

from the normal cone at the iterate to the normalized direction of the last
step is small.

Theorem 6.1 (inexact alternating projections) With the assumptions
of Theorem 5.15, fix any constant ε <

√
1− c2, and consider the following

inexact alternating projection iteration. Given any initial points x0 ∈ C and
x1 ∈ F , for n = 1, 2, 3, . . . suppose

x2n ∈ PC(x2n−1)

and x2n+1 ∈ F satisfies

‖x2n+1 − x2n‖ ≤ ‖x2n − x2n−1‖ and dNF (x2n+1)

( x2n − x2n+1

‖x2n − x2n+1‖

)
≤ ε.

Then, providing x0 and x1 are close to x̄, the iterates converge to a point in
F ∩ C with R-linear rate

√
c
√

1− ε2 + ε
√

1− c2 < 1.

Sketch proof. Once again as in the proof of Theorem 5.15, we fix any
constant c′ ∈ (c̄, c) and define δ = c−c′

2 , so there exists a constant ε > 0 such
that conditions (5.2) and (5.3) hold. Define a vector

z =
x2n − x2n+1

‖x2n − x2n+1‖
.

By assumption, there exists a vector w ∈ NF (x2n+1) satisfying ‖w − z‖ ≤ ε.
Some elementary manipulation then shows that the unit vector ŵ = ‖w‖−1w
satisfies

〈ŵ, z〉 ≥
√

1− ε2.
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As in the proof of Theorem 5.1, assuming inductively that x2n+1 is close to
both x̄ and x2n, since ŵ ∈ NF (x2n+1), and

u =
x2n+2 − x2n+1

‖x2n+2 − x2n+1‖
∈ −NC(x2n+2) ∩B,

we deduce
〈ŵ, u〉 ≤ c′.

We now see that, on the unit sphere, the arc distance between the unit
vectors ŵ and z is no more than arccos(

√
1− ε2), whereas the arc distance

between ŵ and the unit vector u is at least arccos c′. Hence by the triangle
inequality, the arc distance between z and u is at least

arccos c′ − arccos(
√

1− ε2),

so

〈z, u〉 ≤ cos
(

arccos c′ − arccos(
√

1− ε2)
)

= c′
√

1− ε2 + ε
√

1− c′2.

Some elementary calculus shows that the quantity on the right-hand side is
strictly less than one. Again as in the proof of Theorem 5.1, this inequality
shows, providing x0 is close to x̄, the inequality

‖x2n+2 − x2n+1‖ ≤
(
c
√

1− ε2 + ε
√

1− c2
)
‖x2n+1 − x2n‖,

and in conjunction with the inequality

‖x2n+1 − x2n‖ ≤ ‖x2n − x2n−1‖,

this suffices to complete the proof by induction. !

7 Local convergence for averaged projections

We now return to the problem of finding a point in the intersection of several
closed sets using the method of averaged projections. The results of the
previous section are applied to the method of averaged projections via the
well-known reformulation of the algorithm as alternating projections on a
product space. This leads to the main result of this section, Theorem 7.3,
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which shows linear convergence in a neighborhood of any point of strongly
regular intersection, at a rate governed by the associated regularity modulus.

We begin with a characterization of strongly regular intersection, relating
the condition modulus with a generalized notion of angle for several sets.
Such notions, for collections of convex sets, have also been studied recently
in the context of projection algorithms in [12,13].

Proposition 7.1 (variational characterization of strong regularity)
Closed sets F1, F2, . . . , Fm ⊂ E have strongly regular intersection at a point
x̄ ∈ ∩iFi if and only if the optimal value c̄ of the optimization problem

maximize
∑

i

〈ui, vi〉

subject to
∑

i

‖ui‖2 ≤ 1

∑

i

‖vi‖2 ≤ 1

∑

i

ui = 0

ui ∈ E, vi ∈ NFi(x̄) (i = 1, 2, . . . , m)

is strictly less than one. Indeed, we have

(7.2) c̄2 =






0 (x̄ ∈ ∩iint Fi)

1− 1

m · cond2(F1, F2, . . . , Fm|x̄)
(otherwise).

Proof When x̄ ∈ ∩iintFi, the result follows by definition. Henceforth, we
therefore rule out that case.

For any vectors ui, vi ∈ E (i = 1, 2, . . . , m), by Lagrangian duality and
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differentiation we obtain

max
ui

{∑

i

〈ui, vi〉 :
∑

i

‖ui‖2 ≤ 1,
∑

i

ui = 0
}

= min
λ∈R+, z∈E

max
ui

{∑

i

〈ui, vi〉+
λ

2

(
1−

∑

i

‖ui‖2
)

+ 〈z,
∑

i ui〉
}

= min
λ∈R+, z∈E

{λ

2
+

∑

i

max
ui

{
〈ui, vi + z〉 − λ

2
‖ui‖2

}}

= min
λ>0, z∈E

{λ

2
+

1

2λ

∑

i

‖vi + z‖2
}

= min
z∈E

√∑

i

‖vi + z‖2

=

√√√√
m∑

i=1

∥∥∥vi −
1

m

∑

j

vj

∥∥∥
2

=

√∑

i

‖vi‖2 − 1

m

∥∥∥
∑

i

vi

∥∥∥
2

.

Consequently, c̄2 is the optimal value of the optimization problem

maximize
∑

i

‖vi‖2 − 1

m

∥∥∥
∑

i

vi

∥∥∥
2

subject to
∑

i

‖vi‖2 ≤ 1

vi ∈ NFi(x̄) (i = 1, 2, . . . ,m).

By homogeneity, the optimal solution must occur when the inequality con-
straint is active, so we obtain an equivalent problem by replacing that con-
straint by the corresponding equation. By 3.3 an the definition of the condi-
tion modulus it follows that the optimal value of this new problem is

1− 1

m · cond2(F1, F2, . . . , Fm|x̄)

as required. !

Theorem 7.3 (linear convergence of averaged projections) Suppose
closed sets F1, F2, . . . , Fm ⊂ E have strongly regular intersection at a point
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x̄ ∈ ∩iFi. Define a constant c̄ ∈ [0, 1) by equation (7.2), and fix any constant
c ∈ (c̄, 1). Then for any initial point x0 ∈ E close to x̄, the method of averaged
projections converges to a point in the intersection ∩iFi, with R-linear rate
c (and if each set Fi is super-regular at x̄, or in particular, prox-regular or
amenable there, then the convergence rate is c2). Furthermore, for any small
perturbations di ∈ E for i = 1, 2, . . . , m, the method of averaged projections
applied to the sets di + Fi, with the initial point x̄, converges linearly to a
nearby point in the intersection, with R-linear rate c.

Proof In the product space Em with the inner product

〈(u1, u2, . . . , um), (v1, v2, . . . , vm)〉 =
∑

i

〈ui, vi〉,

we consider the closed set
F =

∏

i

Fi

and the subspace
L = {Ax : x ∈ E},

where the linear map A : E → Em is defined by Ax = (x, x, . . . , x). Notice
Ax̄ ∈ F ∩ L, and it is easy to check

NF (Ax̄) =
∏

i

NFi(x̄)

and
L⊥ =

{
(u1, u2, . . . , um) :

∑

i

ui = 0
}

.

Hence F1, F2, . . . , Fm have strongly regular intersection at x̄ if and only if F
and L have strongly regular intersection at the point Ax̄. This latter property
is equivalent to the constant c̄ defined in Theorem 5.15 (with C = L) being
strictly less than one. But that constant agrees exactly with that defined
by equation (7.2), so we show next that we can apply Theorem 5.15 and
Theorem 5.19.

To see this note that, for any point x ∈ E, we have the equivalence

(z1, z2, . . . , zm) ∈ PF (Ax) ⇔ zi ∈ PFi(x) (i = 1, 2, . . . , m).

Furthermore a quick calculation shows, for any z1, z2, . . . , zm ∈ E,

PL(z1, z2, . . . , zm) =
1

m
(z1 + z2 + · · · + zm).
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Hence in fact the method of averaged projections for the sets F1, F2, . . . , Fm,
starting at an initial point x0, is essentially identical with the method of
alternating projections for the sets F and L, starting at the initial point Ax0.
If x0, x1, x2, . . . is a possible sequence of iterates for the former method, then a
possible sequence of even iterates for the latter method is Ax0, Ax1, Ax2, . . ..
For x0 close to x̄, this latter sequence must converge to a point Ax̂ ∈ F ∩ L
with R-linear rate c, by Theorem 5.15 and its corollary. Thus the sequence
x0, x1, x2, . . . converges to x̂ ∈ ∩iFi at the same linear rate. When each of the
sets Fi is super-regular at x̄, it is easy to check that the Cartesian product F
is super-regular at Ax̄, so the rate is c2. The last part of the theorem follows
from Theorem 5.19. !

Applying Theorem 6.1 to the product-space formulation of averaged projec-
tions shows in a similar fashion that an inexact variant of the method of
averaged projections will also converge linearly.

Remark 7.4 (strong regularity and local extremality) We notice, in
the language of [26], that we have proved algorithmically that if closed sets
have strongly regular intersection at a point, then that point is not “locally
extremal”.

Remark 7.5 (alternating versus averaged projections) Consider a
feasibility problem involving two super-regular sets F1 and F2. Assume that
strong regularity holds at x̄ ∈ F1 ∩ F2 and set κ = cond(F1, F2|x̄). Theorem
7.3 gives a bound on the rate of convergence of the method of averaged
projections as

rav ≤ 1− 1

2κ2
.

Notice that each iteration involves two projections: one onto each of the sets
F1 and F2. On the other hand, Corollary 5.17 and (5.18) give a bound on
the rate of convergence of the method of alternating projections as

ralt ≤ 1− 1

κ2
,

and each iteration involves just one projection. Thus we note that our bound
on the rate of alternating projections ralt is always better than the bound
on the rate of averaged projection rav. At least from the perspective of
this analysis, averaged projections seems to have no advantage over alter-
nating projections, although our proof of linear convergence for alternating
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projections needs a super-regularity assumption not necessary in the case of
averaged projections.

8 Prox-regularity and averaged projections

If we assume that the sets F1, F2, . . . , Fm are prox-regular, then we can refine
our understanding of local convergence for the method of averaged projec-
tions using a completely different approach, explored in this section.

Proposition 8.1 Around any point x̄ at which the set F ⊂ E is prox-regular,
the squared distance to F is continuously differentiable, and its gradient
∇d2

F = 2(I − PF ) has Lipschitz constant 2.

Proof This result corresponds essentially to [31, Prop 3.1], which yields
the smoothness of d2

F together with the gradient formula. This proof of this
proposition also shows that for any small δ > 0, all points x1, x2 ∈ E near x̄
satisfy the inequality

〈x1 − x2, PF (x1)− PF (x2)〉 ≥ (1− δ)‖PF (x1)− PF (x2)‖2

(see “Claim” in [31, p. 5239]). Consequently we have

‖(I − PF )(x1)− (I − PF )(x2)‖2 − ‖x1 − x2‖2

= ‖(x1 − x2)− (PF (x1)− PF (x2))‖2 − ‖x1 − x2‖2

= −2〈x1 − x2, PF (x1)− PF (x2)〉+ ‖PF (x1)− PF (x2)‖2

≤ (2δ − 1)‖PF (x1)− PF (x2)‖2

≤ 0,

provided we choose δ ≤ 1/2. !

As before, consider sets F1, F2, . . . , Fm ⊂ E and a point x̄ ∈ ∩iFi, but
now let us suppose moreover that each set Fi is prox-regular at x̄. Define a
function f : E→ R by

(8.2) f =
1

2m

m∑

i=1

d2
Fi

.
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This function is half the mean-squared-distance from the point x to the set
system {Fi}. According to the preceding result, f is continuously differen-
tiable around x̄, and its gradient

(8.3) ∇f =
1

m

m∑

i=1

(I − PFi) = I − 1

m

m∑

i=1

PFi

is Lipschitz continuous with constant 1 on a neighborhood of x̄. The method
of averaged projections constructs the new iterate x+ ∈ E from the old iterate
x ∈ E via the update

(8.4) x+ =
1

m

m∑

i=1

PFi(x) = x−∇f(x),

so we can interpret it as the method of steepest descent with a step size of
one when the sets Fi are all prox-regular. To understand its convergence, we
return to our strong regularity assumption.

The condition modulus controls the behavior of normal vectors not just
at the point x̄ but also at nearby points.

Proposition 8.5 (local effect of condition modulus) Consider closed
sets F1, F2, . . . , Fm ⊂ E having strongly regular intersection at a point x̄ ∈
∩Fi, and any constant

k > cond(F1, F2, . . . , Fm|x̄).

Then for any points xi ∈ Fi near x̄, any vectors yi ∈ NFi(xi) (for i =
1, 2, . . . , m) satisfy the inequality

√∑

i

‖yi‖2 ≤ k
∥∥∥

∑

i

yi

∥∥∥.

Proof If the result fails, then we can find sequences of points xr
i → x̄ in

Fi and sequences of vectors yr
i ∈ NFi(xi) (for i = 1, 2, . . . , m) satisfying the

inequality √∑

i

‖yr
i ‖2 > k

∥∥∥
∑

i

yr
i

∥∥∥
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for all r = 1, 2, . . .. Define new vectors

ur
j =

1√∑
i ‖yr

i ‖2
yr

j ∈ NFi(xi)

for each index j = 1, 2, . . . , m and r. Notice

∑

i

‖ur
i‖2 = 1 and

∥∥∥
∑

i

ur
i

∥∥∥ <
1

k
.

For each i = 1, 2, . . . , the sequence u1
i , u

2
i , . . . is bounded, so after taking

subsequences we can suppose it converges to some vector ui ∈ E, and since
the normal cone NFi is closed as a set-valued mapping from Fi to E, we
deduce ui ∈ NFi(x̄). But then we have

∑

i

‖ui‖2 = 1 and
∥∥∥

∑

i

ui

∥∥∥ ≤
1

k
,

contradicting the definition of the condition modulus cond(F1, F2, . . . , Fm|x̄).
The result follows. !

The size of the gradient of the mean-squared-distance function f , defined
by equation (8.2), is closely related to the value of the function near a point
of strongly regular intersection. To be precise, we have the following result.

Proposition 8.6 (gradient of mean-squared-distance) Consider prox-
regular sets F1, F2, . . . , Fm ⊂ E having strongly regular intersection at a point
x̄ ∈ ∩Fi, and any constant

k > cond(F1, F2, . . . , Fm|x̄).

Then on a neighborhood of x̄, the mean-squared-distance function

f =
1

2m

m∑

i=1

d2
Fi

satisfies the inequalities

(8.7)
1

2
‖∇f‖2 ≤ f ≤ k2m

2
‖∇f‖2.
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Proof Consider any point x ∈ E near x̄. By equation (8.3), we know

∇f(x) =
1

m

m∑

i=1

yi,

where
yi = xi − PFi(xi) ∈ NFi(PFi(xi))

for each i = 1, 2, . . . , m. By definition, we have

f(x) =
1

2m

m∑

i=1

‖yi‖2.

Using inequality (2.4), we obtain

m2‖∇f(x)‖2 =
∥∥∥

m∑

i=1

yi

∥∥∥
2

≤ m
m∑

i=1

‖yi‖2 = 2m2f(x)

On the other hand, since x is near x̄, so are the projections PFi(x), so

2mf(x) =
∑

i

‖yi‖2 ≤ k2
∥∥∥

∑

i

yi

∥∥∥
2

= k2m2‖∇f(x)‖2.

by Proposition 8.5. The result now follows. !

A standard argument now gives the main result of this section.

Theorem 8.8 (Q-linear convergence for averaged projections)
Consider prox-regular sets F1, F2, . . . , Fm ⊂ E having strongly regular in-
tersection at a point x̄ ∈ ∩Fi, and any constant k > cond(F1, F2, . . . , Fm|x̄).
Then, starting from any point near x̄, one iteration of the method of averaged
projections reduces the mean-squared-distance

f =
1

2m

m∑

i=1

d2
Fi

by a factor of at least 1− 1
k2m .
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Proof Consider any point x ∈ E near x̄. The function f is continuously
differentiable around the minimizer x̄, so the gradient ∇f(x) must be small,
and hence the new iterate x+ = x −∇f(x) must also be near x̄. Hence, as
we observed after equation (8.3), the gradient ∇f has Lipschitz constant one
on a neighborhood of the line segment [x, x+]. Consequently,

f(x+)− f(x)

=

∫ 1

0

d

dt
f(x− t∇f(x)) dt

=

∫ 1

0

〈−∇f(x),∇f(x− t∇f(x))〉 dt

=

∫ 1

0

(
− ‖∇f(x)‖2 + 〈∇f(x),∇f(x)−∇f(x− t∇f(x))〉

)
dt

≤ −‖∇f(x)‖2 +

∫ 1

0

‖∇f(x)‖ · ‖∇f(x)−∇f(x− t∇f(x))‖ dt

≤ −‖∇f(x)‖2 +

∫ 1

0

‖∇f(x)‖2t dt

= −1

2
‖∇f(x)‖2

≤ − 1

k2m
f(x),

using Proposition 8.6. !

A simple induction argument now gives an independent proof in the prox-
regular case that the method of averaged projections converges linearly to a
point in the intersection of the given sets. Specifically, the result above shows
that mean-squared-distance f(xk) decreases by at least a constant factor at
each iteration, and Proposition 8.6 shows that the size of the step ‖∇f(xk)‖
also decreases by a constant factor. Hence the sequence (xk) must converge
R-linearly to a point in the intersection.

Comparing this result to Theorem 7.3 (linear convergence of averaged
projections), we see that the predicted rates of linear convergence are the
same. Theorem 7.3 guarantees that the squared distance to the intersection
converges to zero with R-linear rate c2 (for any constant c ∈ (c̄, 1)). The
argument gives no guarantee about improvements in a particular iteration:
it only describes the asymptotic behavior of the iterates. By contrast, the
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argument of Theorem 8.8, with the added assumption of prox-regularity,
guarantees the same behavior but with the stronger information that the
mean-squared-distance decreases monotonically to zero with Q-linear rate
c2. In particular, each iteration must decrease the mean-squared-distance.

9 A Numerical Example

In this final section, we give a numerical illustration showing the linear con-
vergence of alternating and averaged projections algorithms. Some major
problems in signal or image processing come down to reconstructing an ob-
ject from as few linear measurements as possible. Several recovery procedures
from randomly sampled signals have been proved to be effective when com-
bined with sparsity constraints (see for instance the recent developments of
compressed sensing [16], [14]). These optimization problems can be cast as
linear programs. However for extremely large and/or nonlinear problems,
projection methods become attractive alternatives. In the spirit of com-
pressive sampling we use projection algorithms to optimize the compression
matrix. This speculative example is meant simply to illustrate the theory
rather than make any claim on real applications.

We consider the decomposition of images x ∈ Rn as x = Wz where
W ∈ Rn×m (n < m) is a “dictionary” (that is, a redundant collection of
basis vectors). Compressed sensing consists in linearly reducing x to y =
Px = PWz with the help of a compression matrix P ∈ Rd×n (with d 6 n);
the inverse operation is to recover x (or z) from y. Compressed sensing theory
gives sparsity conditions on z to ensure exact recovery [16], [14]. Reference
[16] in fact proposes a recovery algorithm based on alternating projections
(on two convex sets). In general, we might want to design a specific sensing
matrix P adapted to W , to ease this recovery process. An initial investigation
on this question is [17]; we suggest here another direction, inspired by [6]
and [18], where averaged projections naturally appear.

Candes and Romberg [6] showed that, under orthogonality conditions,
sparse recovery is more efficient when the entries |(PW )ij| are small. One
could thus use the componentwise '∞ norm of PW as a measure of quality
of P . This leads to the following feasibility problem: to find U = PW such
that UU* = I and with the infinity norm constraint ‖U‖∞ ≤ α (for a fixed
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tolerance α). The sets corresponding to these constraints are given by

L = {U ∈ Rd×m : U = PW},
M = {U ∈ Rd×m : UU* = I},
C = {U ∈ Rd×m : ‖U‖∞ ≤ α}.

The first set L is a subspace, the second set M is a smooth manifold while the
third C is convex; hence the three are prox-regular. Moreover we can easily
compute the projections. The projection onto the linear subspace L can be
computed with a pseudo-inverse. The manifold M corresponds to the set of
matrices U whose singular values are all ones; it turns out that naturally the
projection onto M is obtained by computing the singular value decomposition
of U , and setting singular values to 1 (apply for example Theorem 27 of [25]).
Finally the projection onto C comes by shrinking entries of U (specifically, we
operate min{max{uij,−α}, α} for each entry uij). This feasibility problem
can thus be treated by projection algorithms, and hopefully a matrix U ∈
L ∩M ∩ C will correspond to a good compression matrix P .

To illustrate this problem, we generate random entries (normally dis-
tributed) of the dictionary W (size 128 × 512, redundancy factor 4) and of
an initial iterate U0 ∈ L. We fix α = 0.1, and we run the averaged projection
algorithm which computes a sequence of Uk. Figure 9 shows

log10 f(Uk) with f(U) =
1

6
(d2

L(U) + d2
M(U) + d2

C(U))

for each iteration k. We also observe that the ratio

f(Uk+1)/f(Uk+1) < 0.9627

for all iterations k, showing the expected Q-linear convergence. We note that
working on random test cases is of interest for our simple testing of averaged
projections: though we cannot guarantee in fact that the intersection of
the three sets is strongly regular, randomness seems to prevent irregular
solutions, providing α is not too small. So in this situation, it is likely
that the algorithm will converge linearly; this is indeed what we observe in
Figure 9. We note furthermore that we tested alternating projections on this
problem (involving three sets, so not explicitly covered by Theorem 5.15).
We observed that the method is still converging linearly in practice, and
again, the rate is better than for averaged projections.
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Figure 1: Convergence of averaged projection algorithm for designing com-
pression matrix in compressed sensing.

This example illustrates how the projection algorithm behaves on random
feasibility problems of this type. However the potential benefits of using
optimized compression matrix versus random compression matrix in practice
are still unclear. Further study and more complete testing have to be done
for these questions; this is beyond the scope of this paper.
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