
1

A Compact Representation for Least Common

Subsumers in the Description Logic ALE

Chan Le Duc a,∗, Nhan Le Thanh b, Marie-Christine Rousset c

a LSIS (UMR-CNRS 6186), Université du Sud Toulon-Var, Bât. R, BP.20132, 83957 La Garde - Cedex,
France

E-mail: {chan.leduc}@univ-tln.fr
b Laboratoire I3S, UNSA-CNRS, 2000 route des lucioles, Les Algorithmes - bât. Euclide B, BP.121,
06903 Sophia Antipolis - Cedex, France

E-mail: {nhan.le-thanh}@unice.fr
c LSR-IMAG, BP 72, 38402 St Martin d’Heres - Cedex, France

E-mail: {marie-christine.rousset}@imag.fr

Abstract
This paper introduces a compact representation

which helps to avoid the exponential blow-up in space
of the Least Common Subsumer (lcs) of two ALE-
concept descriptions. Based on the compact represen-
tation we define a space of specific graphs which rep-
resents all ALE-concept descriptions including the lcs.
Next, we propose an algorithm exponential in time
and polynomial in space for deciding subsumption be-
tween concept descriptions represented by graphs in
this space. These results provide better understanding
of the double exponential blow-up of the approxima-
tion of ALC-concept descriptions by ALE-concept de-
scriptions: double exponential size of the approxima-
tion in the ordinary representation is unavoidable in
the worst case.

Keywords: Description Logics, Least Common Sub-
sumer, Approximation.

1. Introduction

Description logics can be used as a formalism for
representing ontologies. The OWL language [10],
which is becoming a standard language for on-
tologies, is founded on description logics. If we ig-
nore role constructors and general concept inclu-
sions, the OWL-Lite and OWL-DL [10] languages
are respectively comparable to the ALE and ALC

*Corresponding author: Chan Le Duc, LSIS (UMR-
CNRS 6186), Université du Sud Toulon-Var, Bât. R,
BP.20132, 83957 La Garde - Cedex, France

description logics. The major difference between
ALE and ALC is that the disjunction construc-
tor is absent from ALE . As a result, deciding sub-
sumption in ALE is np-complete [6] while it is
pspace-complete for ALC [7].
In this paper, we revisit two problems which have
been recently addressed in description logics: the
computation of the least common subsumer (lcs)
of two concept descriptions and the approximation
from a description logic L1 to a description logic
L2.
As mentioned in recent work [3], computing the lcs
is a useful inference task for the bottom-up con-
struction of knowledge bases in description logics.
It also can be used for computing similarity be-
tween concept description of different ontologies.
Finally, it plays a central role for computing ap-
proximations. An algorithm for computing the ap-
proximation where L1 = ALC and L2 = ALE is
presented in [1]. It returns a concept description
whose size may be double exponential in the size
of the input. This algorithm is based on an expo-
nential algorithm which computes the lcs of con-
cept descriptions in ALE . As shown in [4], the ex-
ponential size of lcs cannot be avoided if we use
the ordinary representation of normalized concept
descriptions, whose size may be exponential com-
pared to the initial (not normalized) concept de-
scriptions.
Some recent results extend those presented in [3]
and [1] to more expressive description logics. For

AI Communications

ISSN 0921-7126, IOS Press. All rights reserved

2

instance a double exponential algorithm for com-
puting lcs in ALEN is presented in [11]. It yields
a double exponential upper bound for the size of
the lcs of two ALEN -concept descriptions. An-
other result described in [12] provides an algorithm
for computing lcs in FLE+ (FLE with transitive
roles). Nevertheless, the complexity of this algo-
rithm is not given.
The first contribution of this paper is a com-
pact representation for ALE-concept descriptions
which avoids the exponential blow-up of the size
of the description trees built from normalized con-
cept descriptions as in [3]. This (polynomial) com-
pact representation is a graph, which is directly
built from the description trees obtained from the
weakly normalized concept descriptions. A weakly
normalized concept description is obtained by ap-
plying the normalization rules presented in [3] ex-
cept for the normalization rule responsible of the
exponential blow-up of the size of the normal-
ized concept description (and thus of the result-
ing description tree). This new representation of
a weakly normalized concept description is called
its ǫ-tree because it replaces the effective applica-
tion of the expansive normalization rule by adding
what we have called ǫ-edges to the description trees
corresponding to the weakly normalized concept
descriptions. Then, normalization graphs are built
from ǫ-trees by making explicit bottom-concepts
in labels of nodes in ǫ-trees (as ALE allows for
the bottom-concept and negated concept names).
We also obtain a polynomial compact representa-
tion of the lcs of two ALE-concept descriptions by
defining the product of two normalization graphs.
Finally, we exploit this compact representation for
providing an algorithm for checking subsumption
between concept descriptions or lcs of concept
descriptions in polynomial space and exponential
time.
The second contribution of this paper is to show
that the lower bound for computing the approx-
imation of ALC-concept descriptions by ALE-
concept descriptions is double exponential in the
size of the input. This result answers partially1 the
question left open in [1] on the existence of an ex-
ponential algorithm for the approximation of ALC
by ALE . It also shows the limit of the compact
representation that we have introduced: it cannot
prevent the exponential blow-up resulting from n-
ary lcs computation.

1This will be discussed in Section 6

The paper is organized as follows.
In Section 2, we provide the formal background on
which this paper is based. In particular, we distin-
guish the weak normal form and the strong nor-
mal form of a concept description, depending on
the normalization rules that are applied. We also
recall the definition of description trees introduced
in [3].
In Section 3, we define the ǫ-tree of a weakly nor-
malized concept description, and the normaliza-
tion graph resulting from the ǫ-tree. Next, we pro-
vide the transformation algorithm from a normal-
ization graph into the description tree of the corre-
sponding normalized concept description. We also
provide a polynomial space (and exponential time)
algorithm exploiting the normalization graphs for
checking subsumption in ALE .
In Section 4, we define the product of normal-
ization graphs and we show how it can be ex-
ploited for computing a polynomial representation
of the lcs of two ALE-concept descriptions. We
also show that the algorithms introduced in Sec-
tion 3 for normalization graphs can be extended
to their products.
In Section 5, we prove that the lower bound of
the size of the approximation of an ALC- concept
description by an ALE-concept description in the
compact graph representation (and a fortiori in the
ordinary representation) is double exponential in
the size of the input. The reason is that the double
exponential blow-up is due to the computation of
the n-ary lcs, and the compact graph representa-
tion that we have introduced in this paper cannot
prevent the exponential blow-up resulting from the
computation of the n-ary lcs.
Finally, Section 6 concludes and provides a brief
discussion on the results obtained in this paper.

2. Formal background

In this section we will briefly present important
notions of description logics and existing results
about the lcs computation. Details of this formal-
ism can be found in [9]. Let NC be a set of prim-
itive concepts and NR be a set of primitive roles.
The logic FLE uses the following constructors to
build concept descriptions : conjunction (C ⊓ D),
value restriction ∀r.C, existential restriction ∃r.C
and the top-concept ⊤. The logic ALE is extended
from FLE by further adding primitive negation

3

¬P and the bottom-concept ⊥. The logic ALC is
extended from ALE by allowing for disjunction
(C⊔D). Let ∆I be a non-empty set of individuals.
Let .I be a function that transforms each primitive
concept P ∈ NC into P I ⊆ ∆I and each primitive
role r ∈ NR into rI ⊆ ∆I×∆I . The semantics of a
concept description are inductively defined owing
to the interpretation I = (∆I , .I) as in the table
below.

Syntax Semantics

⊤ ∆I

⊥ ∅

C ⊓ D CI ∩ DI

C ⊔ D CI ∪ DI

∀r.C {x ∈ ∆I |∀y:(x,y)∈ rI → y ∈ CI}

¬C ∆I \ CI

∃r.C {x ∈ ∆I |∃y:(x,y) ∈ rI ∧ y ∈ CI}

– Subsumption. Let C, D be concept descrip-
tions. C subsumes D, C ⊑ D, iff CI ⊆ DI for
all interpretation I.

– Least Common Subsumer. Let C1, C2 be con-
cept descriptions in a description logic. C is a
least common subsumer of C1, C2 (lcs(C1, C2)
for short) iff Ci ⊑ C for all i ∈ {1, 2}, and if
C′ is a concept description such that Ci ⊑ C′

for all i ∈ {1, 2}, then C ⊑ C′.
– Approximation. Let C be a concept descrip-

tion in a L1 and D be a concept description
in a L2 where L1, L2 are description logics.
D is called upper L2-approximation of C (D
= approxL2

(C) for short) iff C ⊑ D and, if
C ⊑ D′ and D′ ⊑ D, then D′ ≡ D for all
L2-concept description D′.

The depth of an ALE-concept description C
is inductively defined as follows: i) depth(P)
= depth(¬P) = depth(⊤) = depth(⊥) := 0
(P ∈ NC); ii) depth(C ⊓ D) := max(depth(C),
depth(D)); iii) depth(∃r.C) = depth(∀r.C) :=
depth(C) + 1.

Definition 1 (ALE-description tree) [3] Given a
set NC of primitive concepts and a set NR of prim-
itive roles. A description tree is of the form G =
(V, E, v0, l) where

– V is the set of nodes of G;

– E ⊆ V × (NR ∪ ∀NR) × V is a finite set of
edges labeled with role names r (∃-edges) or
with ∀r (∀r-edges); ∀NR:= {∀r | r ∈ NR};

– v0 is the root of G;
– l is a labeling function mapping the nodes in

V to finite set {P1, ..., Pk} where each Pi,
1 ≤ i ≤ k, is one of the following forms :
Pi ∈ NC , Pi = ¬P for some P ∈ NC, or
Pi = ⊥. The empty label corresponds to the
top-concept ⊤.

In [3], the authors have proposed a procedure
for transforming an ALE-concept description C
into the corresponding ALE-description tree G(C)
= (V, E, v0, l) as follows. Every ALE-concept de-
scription C can be written as C = P1 ⊓ ... ⊓ Pn

⊓ ∃r1.C1⊓ ... ⊓ ∃rm.Cm ⊓ ∀s1.D1⊓ ... ⊓ ∀sk.Dk

where Pi ∈ NC ∪ {¬P |P ∈ NC} ∪ {⊤,⊥}. Then,
If depth(C) = 0 then V := {v0}, E := ∅ and l(v0)
:= {P1, ..., Pn} \ {⊤}.
If depth(C) > 0 then for 1 ≤ i ≤ m, let Gi

= (Vi, Ei, v
0
i , li) be the inductively defined ALE-

description tree corresponding to Ci, and for 1 ≤
j ≤ k, let G′

j = (V ′
j , E′

j , w
0
j , l

′
j) be the inductively

defined ALE-description tree corresponding to Dj

where Vi and V ′
j are pairwise disjoint. Then,

– V := {v0} ∪ Vi ∪ V ′
j ,

– E := {(v0riv
0
i)|1 ≤ i ≤ m} ∪ {(v0∀sjw

0
j)|1 ≤

j ≤ k} ∪
⋃

1≤i≤m Ei ∪
⋃

1≤j≤k E′
j ,

– l(v) :=

{P1, ..., Pn} \ {⊤}, v = v0

li(v), v ∈ Vi, 1 ≤ i ≤ m
l′j(v), v ∈ V ′

j , 1 ≤ j ≤ k

Conversely, every ALE-description tree G(C) =
(V, E, v0, l) can be transformed into an ALE-
concept description CG as follows.
If depth(G(C)) = 0 then V = {v0} and E = ∅. If
l(v0) = ∅ then CG = ⊤, otherwise, we have l(v0)
= {P1, ..., Pn}, n ≥ 1, Pi ∈ NC ∪ {¬P |P ∈ NC} ∪
{⊥} and define CG := P1 ⊓ ... ⊓ Pn.
If depth(G(C)) > 0 then l(v0) = {P1, ..., Pn}, n ≥ 0
, Pi ∈ NC ∪ {¬P |P ∈ NC} ∪ {⊥} and let {v1,
..., vm} be the set of all successors of v0 where
(v0rivi) ∈ E, 1 ≤ i ≤ m for some ri ∈ NR,
and let {w1, ..., wk} be the set of all successors
of v0 where (v0∀siwi) ∈ E, 1 ≤ i ≤ k for some
si ∈ NR. Furthermore, let C1, ...,Cm (D1, ...,Dk)
the inductively defined ALE-concept descriptions
corresponding to the subtrees of G with roots vi,
1 ≤ i ≤ m (wi, 1 ≤ i ≤ k). We define CG :=

4

P1 ⊓ ... ⊓ Pn ⊓ ∃r1.C1⊓ ... ⊓ ∃rm.Cm ⊓ ∀s1.D1⊓
... ⊓ ∀sk.Dk.
The definition of the depth for ALE-concept de-
scriptions corresponds to the depth of its descrip-
tion tree. In addition, a node v ∈ V of a description
tree is called ∀r-successor (r-successor) if there ex-
ists an edge (w∀rv) ∈ E ((wrv) ∈ E). In this case,
we also say that v is a ∀r-successor (r-successor)
of w.

Definition 2 (normalization rules) [3] The normal
form of an ALE-concept description C is obtained
from C by exhaustively applying the following nor-
malization rules:

1. ∀r.E ⊓ ∀r.F → ∀r.(E ⊓ F)
2. ∀r.E ⊓ ∃r.F → ∀r. E ⊓ ∃r.(E ⊓ F)
3. ∀r.⊤ → ⊤
4. E ⊓ ⊤ → E
5. P ⊓ ¬P → ⊥ for each P ∈ NC

6. ∃r.⊥ → ⊥
7. E ⊓ ⊥ → ⊥

where E, F are two ALE-concept descriptions and
r ∈ NR.

Note that rules 3, 4 as specified in Definition 2
need to be applied once to ALE-concept descrip-
tions. However, the application of rule 2 (rule 1)
can lead to the application of rules 1 (rule 2), 5,
6, 7 several times. The normalization of an ALE-
concept description C can be carried out in two
steps. The first step consists of the application of
all rules as specified in Definition 2 except for rule
2. This step yields an ALE-concept description C′

where C′ ≡ C , whose each conjunction contains
at most one value restriction (at the same depth as
the conjunction). The second step consists of the
application of rules 1, 2, 5, 6, 7 to the concept de-
scription C′. In the second step, rules 1, 2 need to
be exhaustively applied once since the application
of rules 5, 6, 7 does not lead to the application of
rules 1, 2 again. The concept description obtained
from the second step is in the normal form accord-
ing to Definition 2.
From these remarks, we introduce weak and strong
normal forms for ALE-concept descriptions, corre-
sponding to the two normalization steps described
above.

Definition 3 An ALE-concept description C is in
weak normal form if C is obtained from an ALE-
concept description by exhaustively applying all

rules as specified in Definition 2, with the excep-
tion of rule 2.. An ALE-concept description C′ is
in strong normal form if C′ is obtained from an
ALE-concept description in weak normal form by
applying exhaustively rules 1, 2, 5, 6, 7 as specified
in Definition 2.

It is obvious that the application of all rules (as
specified in Definition 2) with the exception of rule
2, does not increase the size of concept descrip-
tions. However, as shown in [4], the size of ALE-
concept descriptions in strong normal form may
increase exponentially. This exponential blow-up
in space is caused by the application of rule 2. Ex-
ample 1, which is taken from [4], demonstrates this
effect.

Example 1 We define the following sequence C1,
C2, C3, ... of ALE-concept descriptions.

Cn:=

{

∃r.P ⊓ ∃r.Q n = 1
∃r.P ⊓ ∃r.Q ⊓ ∀r.Cn−1, n ≥ 1

For each 1 < k < n, the application of rule 2.
leads to copy Ck−1 to the two existential restric-
tions ∃r.P and ∃r.Q. This implies that for each
1 < k < n, the two existential restrictions in
the expression under the value restriction of Ck−1

are inductively copied to each existential restric-
tion ∃r.P and ∃r.Q. Therefore, the normal form
of Cn has at least 2n existential restrictions.

Accordingly with the notation introduced in [3],
we denote GC the description tree obtained from a
concept description C in strong normal form, and
we denote G(C) the description tree obtained from
a concept description C in weak normal form. We
transfer the semantics of concept descriptions to
description trees as follows: for an interpretation
(∆I , .I), and a concept description C in strong
(respectively weak) normal form: GI

C := CI (re-
spectively G(C)I := CI). Note that C ≡ CGC

and
C ≡ CG(C) since the normalization rules preserve
equivalence.
In addition, let G = (V, E, v0, l) be an ALE-
description tree. We denote G(vi) = (VG(vi), EG(vi),
vi, lG(vi)) as the subtree of G whose root is vi ∈ V .

Definition 4 [3] (homomorphism) A mapping ϕ :
VH → VG from an ALE-description tree H =
(VH , EH , m0, lH) to an ALE-description tree G =
(VG, EG, n0, lG) is called homomorphism iff, the
following conditions are satisfied:

1. ϕ(m0)=n0;

5

2. For all n ∈ VH , we have lH(n) ⊆lG(ϕ(n)) or
lG(ϕ(n))={⊥};

3. For all (nrm) ∈ EH , either ϕ(n)rϕ(m) ∈
EG, or ϕ(n) = ϕ(m) and lG(ϕ(n))={⊥}; and

4. For all (n∀rm) ∈ EH , either ϕ(n)∀rϕ(m) ∈
EG, or ϕ(n) = ϕ(m) and lG(ϕ(n))={⊥}.

Additionally, if ϕ is a bijection and ϕ−1 is also
a homomorphism from G to H, then ϕ is called
isomorphism.
Note that the existence of two homomorphisms: ϕ
from H to G and ϕ′ from G to H, does not imply
that there exists an isomorphism from H to G. In
general, it is not necessary that ϕ′ = ϕ−1.
A polynomial algorithm for checking the existence
of a homomorphism between two ALE-description
trees has been proposed in [3]. Moreover, the au-
thors have shown that the characterization of sub-
sumption by homomorphisms requires that de-
scription trees must be built from ALE-concept
descriptions in strong normal form.

Theorem 1 [3] Let C, D be ALE-concept descrip-
tions, then C ⊑ D if and only if there exists a
homomorphism from GD to GC .

Therefore, if we use directly the algorithm in [3]
for checking whether there exists a homomorphism
between such two ALE-description trees GC and
GD, it will take an exponential space in the worst
case since the size of these trees may be exponen-
tial in the size of input concept descriptions.
Concerning the lcs, according to the work in [3],
there always exists a lcs of ALE-concept descrip-
tions and it is unique. The computing of the lcs for
two ALE-concept descriptions C, D requires that
C, D are in strong normal form. Next, the normal-
ized concept descriptions have to be transformed
into ALE-description trees GC and GD. The ALE-
description tree for the lcs will be the product tree
of trees GC and GD.

3. E-tree and normalization graphs

This section introduces a specific data structure,
called normalization graph, for representing strong
normal ALE-concept descriptions in polynomial
space.
We first introduce ǫ-trees, denoted as Gǫ(C), which
are built from description trees corresponding to
ALE-concept descriptions in weak normal form.

This structure allows for substituting the appli-
cation of rules 1, 2 (as specified in Definition 2)
to ALE-concept descriptions by adding ǫ-edges to
the corresponding description trees. Normalization
graphs, denoted as Gǫ

C , are formed from ǫ-trees by
adding some elements in order to capture rules 5,
6, 7 (as specified in Definition 2). Next, we pro-
vide an algorithm for transforming normalization
graphs into ALE-description trees. We will show
that description trees obtained from normalization
graphs by applying this algorithm are isomorphic
to description trees built from ALE-concept de-
scriptions in strong normal form. We end this sec-
tion by an algorithm for deciding subsumption be-
tween concept descriptions represented by normal-
ization graphs.
We need the following notations. We denote N ′

C

as the union NC ∪ {¬P | P ∈ NC } ∪ {⊥}. Let
G = (VG, EG, v0, lG) be an ALE-description tree.
We denote |G| as the depth of G and vk as a node
at level k of G where vk ∈ VG. Hence, we can write
(vkevk+1) ∈ EG for all 0 ≤ k ≤ G. For the sake
of simplicity, we can assume that NR = {r}. All
result obtained can be applied to a general set NR.

Definition 5 (ǫ-tree) Let C be an ALE-concept
description in weak normal form and G(C) =
(V, E, v0, l) be its description tree. The ǫ-tree
Gǫ(C) = (V , E ∪ Eǫ, l) is built from G(C) as fol-
lows.

1. For each v ∈ V , an ǫ-edge (vǫv) is added to
Eǫ.

2. For each level k where 0 ≤ k ≤ |G(C)| − 1,
for each ǫ-edge (vk

i ǫvk
j) at level k,

(a) If there exist two edges (vk
i ∀rvk+1

i),
(vk

j ∀rvk+1
j) ∈ E and vk+1

i 6= vk+1
j , then

the ǫ-edge (vk+1
i ǫvk+1

j) is added to Eǫ.

(b) If there exist two edges (vk
i rvk+1

i),
(vk

j ∀rvk+1
j) ∈ E (or (vk

i ∀rvk+1
i), (vk

j rvk+1
j)

∈ E) and vk+1
i 6= vk+1

j , then the ǫ-edge

(vk+1
i ǫvk+1

j) (or (vk+1
j ǫvk+1

i)) is added to
Eǫ.

3. Node v0 is called the root of the ǫ-tree Gǫ(C).
For each node v ∈ V , its predecessor in
Gǫ(C), denoted as p(v), is its predecessor in
G(C). The level of a node v ∈ V in Gǫ(C)
is defined as being the depth of the node v in
G(C).

6

Note that Gǫ(C) as defined in Definition 5 is an
oriented graph. However, it becomes a tree if the ǫ-
edges are deleted from that graph. Let (vev′) ∈ E
where e ∈NR ∪ {∀r|r ∈ NR}. We say that v′ is an
e-successor of v, or v is an e-predecessor of v′. If
(vǫv′) ∈ Eǫ, we say that v′ is an ǫ-successor of v.
We denote p(p(...p(v)...) (n times) as pn(n), v ∈ V
and p0(v) = v.

Remark 1 The transformation of an ALE-concept
description C into the ǫ-tree as described in Defi-
nition 5 takes at most a polynomial time in the size
of C. In fact, it holds that the size of the weak nor-
mal form of C is bounded by the size of C and the
number of added ǫ-edges is bounded by |V |2 where
|V | is the number of nodes of the description tree
obtained from the weak normal form of C.

According to the work in [3], if ALE-concept
descriptions are represented by ALE-description
trees, the normalization by the rules in Defini-
tion 2 leads to copy ∀r-subtrees to r-successors
in ALE-description trees. The aim of ǫ-trees is to
avoid the copying of subtrees by memorizing refer-
ences to subtrees to be copied. These references are
represented as ǫ-edges in ǫ-trees. However, a ∀r-
subtree can be copied to many r-successors, i.e.,
one node may be connected to many nodes by ǫ-
edges. Hence, the predecessor function p, involved
in Definition 5, allows one to determine the “right
neighbours” of a node thanks to its predecessor. It
means that a node at level k may belong to sev-
eral k-neighbourhoods, which is composed of right
neighbour nodes. Definition 6 will formalize this
idea.

Definition 6 (neighbourhood) Let Gǫ(C) = (V ,E ∪
Eǫ,l) be an ǫ-tree where v0 ∈ V is its root. At
level 0 of Gǫ(C), there is a unique 0-neighbourhood,
denoted N0 = {v0}.
For each (k − 1)-neighbourhood nk−1, nk−1 =
{vk−1

1 , ..., vk−1
m } ⊆ V (0 < k ≤ |Gǫ(C)|) such that

⊥ /∈ l(vk−1
1) ∪ ... ∪ l(vk−1

m), the set N(nk−1) of k-
neighbourhoods generated from nk−1 is defined as
follows.

1. If there exists an edge (vk−1∀rvk) ∈ E
such that vk−1 ∈ nk−1 then we obtain a k-
neighbourhood nk ∈ N(nk−1),
nk := {vk|(vk−1∀rvk) ∈ E, vk−1 ∈ nk−1}

2. For each r-successor vk of all vk−1
i ∈ nk−1,

we obtain a k-neighbourhood nk ∈ N(nk−1),
nk:={vk} ∪ V ǫ

vk where
V ǫ

vk :={vk
i | (vkǫvk

i) ∈ Eǫ, p(vk
i) ∈ nk−1}

(v4 : v3)
{A}{B}

rr

r∀r∀r

{C}{B}{A}

∀r

(v2 : v0) (v3 : v0)

(v6 : v2)(v5 : v1)
{C}

(v1 : v0)

{∅}
(v0 : v0)

Figure 1. ǫ-tree Gǫ(D)

The unique k-neighbourhood nk ∈ N(nk−1) gen-
erated from ∀r-successors (as defined by item 1.
of Definition 6), is called ∀r-neighbourhood of
nk−1. The k-neighbourhoods nk ∈ N(nk−1) gen-
erated from r-successors (as defined by item 2.
of Definition 6), are called r-neighbourhoods of
nk−1. If there is not any confusion, we say k-
neighbourhood, ∀r-neighbourhood and r-neighbour-
hood respectively for neighbourhood at level k,
neighbourhood generated from ∀r-successors and
neighbourhood generated from r-successors of nodes
in a (k − 1)-neighbourhood.
In addition, for each k-neighbourhood nk (k > 0)
a (k − 1)-neighbourhood nk−1 is uniquely deter-
mined such that nk ∈ N(nk−1). Hence, for each
k-neighbourhood nk (k > 0) we denote N−1(nk)
as the (k − 1)-neighbourhood such that nk ∈
N(N−1(nk)), and N−n(nk) as N−1(...(N−1(nk))...)
(n times).
In the following, we denote label(nk) as the la-
bel of a k-neighbourhood nk={vk

1 ,...,vk
m} where la-

bel(nk):=l(vk
1) ∪ ... ∪ l(vk

m) if ⊥ /∈ l(vk
1) ∪ ... ∪

l(vk
m) and label(nk):={⊥}, otherwise.

Example 2 Let D:=∃r.(A⊓∀r.C) ⊓ ∃r.(B ⊓∀r.B)
⊓ ∃r.(C ⊓ ∀r.A). The ǫ-tree Gǫ(D) is illustrated in
Figure 1.

In this figure, each node is associated with its
name, predecessor and label (note that all ǫ-cycles
in the figure are hidden for simplifying the presen-
tation). For example, the node v1 has predecessor

7

v0 and label {A}. Since there is an ǫ-edge (v0ǫv0),
v2 is a r-successor of v0 and v3 is a ∀r-successor
of v0, hence the ǫ-edge (v2ǫv3) is added according
to the condition 2.(b) of Definition 5. In contrast,
since there is not any ǫ-edge between v1 and v2,
no ǫ-edge connects nodes v5 and v6. The value of
the predecessor function p(vi) is the r-predecessor
or the ∀r-predecessor of vi.
Intuitively, the neighbourhood notion allows us to
determine nodes that have to be grouped when ap-
plying rules 1, 2. More precisely, computing the
neighbourhoods of an ǫ-tree Gǫ(C) yields the nodes
of the description tree corresponding to the con-
cept description C′ obtained from C by applying
exhaustively rules 1 and 2. The following algorithm
performs this transformation, i.e., the algorithm
transforms a graph, in which the notions of level
and neighbourhood are well defined, into an ALE-
description tree. To get started, we consider that
the input graph of Algorithm 1 is an ǫ-tree.

Algorithm 1 B(Gǫ)

Require: Gǫ = (V, E ∪ Eǫ, l)
Ensure: Description tree B(Gǫ)=(V ′, E′, w0, l′)
1: V ′ = ∅, E′ = ∅
2: Function φ from the set of subsets of V into

V ′.
3: At level 0, for the unique 0-neighbourhood of

n0 of Gǫ , we set l′(w0):=l(v0) and φ(n0):=w0.
4: for all (k−1)-neighbourhood nk−1 of Gǫ where

1 ≤ k ≤ |Gǫ| and wk−1= φ(nk−1) do

5: if there exists at least one node vk−1 ∈ nk−1

such that (vk−1∀rvk) ∈ E then

6: Let nk ∈ N(nk−1) be the ∀r-
neighbourhood of nk−1

7: A node wk is created and φ(nk):=wk

8: V ′:=V ′∪wk and E′:= E′ ∪ {(wk−1∀rwk)}
9: l′(wk):=label(nk)

10: end if

11: for all r-neighbourhood nk ∈ N(nk−1) do

12: A node wk is created and φ(nk):=wk

13: V ′:=V ′∪wk and E′:= E′ ∪ {(wk−1rwk)}
14: l′(wk):=label(nk)
15: end for

16: end for

Figure 2 illustrates the ALE-description tree
B(Gǫ(D)) = (V ′,E′,w0,l) obtained from executing
Algorithm 1 for the ǫ-tree Gǫ(D)=(V ,E ∪ Eǫ,l) in

{C}

r ∀r

∅
w0

w1 w3w2

{A, C} {B, C}

rr ∀rr∀r

w4 w5 w7 w8w6

{A, B}

r

{C}

{A, C} {A}{B}

Figure 2. Description tree B(Gǫ)

Figure 1. At level 0, Gǫ(D) has only one 0- neigh-
bourhood (v0). Thus, B(Gǫ(D)) has root w0 where
l′(w0)=l(v0). From the 0-neighbourhood (v0) of
Gǫ(D), we obtain three 1-neighbourhoods: one
∀r-neighbourhood (v3) and two r-neighbourhoods
(v1, v3) and (v2, v3) (since (v1ǫv3) ∈ Eǫ; p(v1), p(v3)
∈ {v0} and (v2ǫv3) ∈ Eǫ; p(v2), p(v3) ∈ {v0}).
Thus, we obtain two nodes w1, w2 ∈ V ′ which are
r-successors of w0, and a node w3 ∈ V ′ which is
∀r-successor of w0 where
l′(w1)=label{v1, v3}= {{A} ∪ {C}} = {A,C}
l′(w2)=label{v2, v3}= {{B} ∪ {C}} = {B,C} and
l′(w3)=label{v3}= {C}
From the 1-neighbourhood (v1, v3), we obtain
two 2-neighbourhoods: a ∀r-neighbourhood (v5)
(since (v1∀rv5) ∈ E) and (v4, v5) ((v4ǫv5) ∈
Eǫ; p(v4), p(v5) ∈ {v1, v3}). Thus, we have two
successors: w5 is the ∀r-successor of w1 where
l′(w5)= label{v5}= {C} and w4 is a r-successor
of w1 where l′(w4)= label{v4, v5}= {A, C}. Simi-
larly, from the 1-neighbourhood (v2, v3), we obtain
a ∀r-neighbourhood (v6) and a r-neighbourhood
(v4, v6). Thus, we have two successors: w7 is the
∀r-successor of w2 where l′(w7)= label{v6}= {B}
and w6 is a r-successor of w2 where l′(w6)= la-
bel{v4, v6}= {A, B}. Finally, from the 1-neighbour-
hood (v3), we obtain the r-neighbourhood (v4).
Thus, we have a successor w8 that is the r-
successor of w3 where l′(w8)= label{v4}= {A}.

As mentioned in Section 2, rules 5, 6, 7 (in Def-
inition 2) need to be applied after applying rules
1, 2. This means that the normalization (by rules
1, 2, 5, 6, 7) makes explicit the bottom-concept
⊥ in the labels of nodes in the description tree.

8

More precisely, rule 5 makes occurring the bottom-
concept ⊥ in labels that contain P and ¬P for
some P ∈ NC . Rules 6, 7 propagate the bottom-
concept ⊥ from nodes whose label contains the
bottom-concept ⊥ to their r-ancestors (a node w
is called r-ancestor of a node v if the path from w
to v includes only r-edges).
From Algorithm 1, a neighbourhood in ǫ-tree Gǫ

corresponds to a node of description tree B(Gǫ),
i.e., Algorithm 1 builds a mapping φ (cf. Algo-
rithm 1) from the set of neighbourhoods to the
nodes of the description tree. In particular, a
path from a node vl to a node vk: (vlrvl+1),...,
(vk−1rvk) (l < k) in description tree B(Gǫ) corre-
sponds to the following neighbourhoods nl, nl+1,
..., nk in Gǫ such that nl+1 ∈ N(nl), ..., nk ∈
N(nk−1), φ(nl)=vl,..., φ(nk)=vk and nm+1 is a r-
neighbourhood of nm for all l ≤ m < k.
On the other hand, the application of rules 5, 6,
7 implies that the label of a node v1 in the de-
scription tree (that corresponds to a weak normal
concept description after applying rules 1 and 2)
contains the bottom-concept ⊥ iff either the label
of vl contains explicitly ⊥ (or P , ¬P for some
P ∈ NC) or there exists a path composed of r-
edges from vk to a node vl (k > l) such that the
label of vk contains explicitly ⊥ (or P , ¬P for
some P ∈ NC).
From these remarks, we conclude that a neigh-
bourhood nl in ǫ-tree Gǫ corresponding to a node
containing (explicitly and implicitly) the bottom-
concept ⊥ in the tree B(Gǫ) iff either the label of nl

contains explicitly ⊥ (or P , ¬P for some P ∈ NC)
or there exist the following neighbourhoods nl,
nl+1, ..., nk in Gǫ such that nl+1 ∈ N(nl), ...,
nk ∈ N(nk−1); φ(nl)=vl,..., φ(nk)=vk; nm+1 is a
r-neighbourhood of nm for all l ≤ m < k and the
label of nk contains explicitly ⊥ (or P , ¬P for
some P ∈ NC). We say that such neighbourhoods
nl in Gǫ contain a clash.
The following definition formalizes the notion of
clash.We recall that the predecessor function p(vk)
defined as the r- predecessor or ∀r- predecessor of
vk in ǫ-trees, allows us to access to an ancestor vl

of vk, i.e., vl = pk−l(vk).

Definition 7 (clash) Let Gǫ(C)= (V ,E∪Eǫ,l) be an
ǫ-tree and v0 is its root.

1. For all vk
i ∈ V such that l(vk

i) = {⊥}, we
define a 1-clash, denoted [vk

i].

2. For each pair of ∀r-successors vk
i , vk

j ∈ V if

there exist (vk
i ǫvk

j) ∈ Eǫ and P ∈ NC such

that P,¬P ∈ l(vk
i) ∪ l(vk

j), we define a 2-

clash, denoted [vk
i , vk

j].

3. Let vk
i , vk

j ∈ V such that

(a) If vk
i 6= vk

j then (vk
i ǫvk

j) ∈ Eǫ and there

exists P ∈ NC such that P,¬P ∈ l(vk
i) ∪

l(vk
j).

(b) If vk
i = vk

j then l(vk
i)={⊥}.

We define a q-clash, denoted [vl
1, ..., v

l
q],

{vl
1, ..., v

l
q} ⊆ nl where nl is a ∀r-neighbour-

hood or nl = {v0} if there exist neighbour-
hoods nl+1 ∈ N(nl), ..., nk−1 ∈ N(nk−2),
nk ∈ N(nk−1) and r-edges (vm−1

1 rvm
2) ∈ E

such that vm
1 , vm

2 ∈ nm for all l < m < k ,
(vk−1

1 rvk
2) ∈ E, vl

1 ∈ nl and vk
i , vk

j ,vk
2 ∈ nk.

Remark 2 A clash [vl
1, ..., v

l
q] can be contained in

one or several neighbourhoods. The neighbourhoods
determined by item 3. of Definition 7 are reach-
able by the propagation of the bottom-concept ⊥
(or a pair of P,¬P where P ∈ NC) via r-
neighbourhoods. In addition, q is uniquely deter-
mined from nodes vk

i , vk
j and a neighbourhood nl

that satisfy the conditions described in Definition
7.

{¬P}

r

r

∅ ∅ ∅

∅ ∅ ∅

∅ {P}

∀r ∀r ∀r

∀r ∀rr

(v0 : v0)
∅

(v1 : v0) (v2 : v0)

∀r

∀r

∅

(v5 : v2)(v4 : v1)

(v7 : v4) (v8 : v5)

(v11 : v8)(v10 : v7)(v9 : v6)

(v6 : v3)

(v3 : v1)

∅
∀r

Figure 3. Clashes in ǫ-tree Gǫ(C)

9

Example 3 Let C:= ∃r.(∃r.∀r.∃r.⊤ ⊓ ∀r.∀r.∀r.P)
⊓ ∀r.∀r.∀r.∀r.(¬P). We have two clashes in ǫ-tree
Gǫ(C) as illustrated in Figure 3. According to Def-
inition 7, first, there is a 2-clash [v10, v11] since v10

and v11 are ∀r-successors such that there exists an
ǫ-edge (v10ǫv11) and P,¬P ∈ l(v10) ∪ l(v11). Sec-
ond, [v6, v7v8] is a 3-clash since,

– there exists a neighbourhood n4 where v9, v10, v11

∈ n4 and P,¬P ∈ l(v10) ∪ l(v11) since there
are ǫ-edges (v9ǫv10), (v9ǫv11) and (v10ǫv11);

– there exists a neighbourhood n3 where v6, v7, v8

∈ n3 since there are ǫ-edges (v6ǫv7), (v6ǫv8)
and (v7ǫv8);

– n4 is a r-neighbourhood generated from n3

since there is a r-edge (v6rv9) and ∀r-edges
(v7∀rv10) and (v8∀rv11).

According to Definition 7, each q-clash propagated
from a 1-clash [vk] where l(vk) = {⊥} or from a
2-clash [vk

i , vk
j] where P,¬P ∈ l(vk

i) ∪ l(vk
j), is as-

sociated with a r-predecessor (the r-predecessor
vl
1 in Definition 7). In general, the number of

clashes propagated from these 1-clash and 2-clash
is bounded by an exponential function with the
size of Gǫ(C). In particular, if there exists 1-clash
[v0] where v0 is the root of an ǫ-tree Gǫ(C), then
C is unsatisfiable. A well-known result in [6] shows
that the unsatisfiability in ALE is np-complete.
For this reason, we do not expect that the detec-
tion of all clashes in an ǫ-tree is polynomial.
In the reminder of this section, however, we will
construct a polynomial structure from an ǫ-tree,
namely normalization graph (Definition 8), allow-
ing for storing all clashes in the ǫ-tree.
The construction of normalization graphs from ǫ-
trees is based heavily on the following lemma.

Lemma 1 Let Gǫ(C) = (V ,E ∪ Eǫ,l) be an ǫ-tree.
Let ck = [vk

1 , ..., vk
q] (q > 1) be a clash in Gǫ(C).

1. There exists a node vl ∈ V of ck such that
vl=pk−l(vk

i) for all 1 ≤ i ≤ q. Furthermore,
for each level l ≤ j ≤ k there exists at most
a r-successor vj such that vj = pk−j(vk

i) for
some vk

i ∈ {vk
1 , ..., vk

q }.
2. There exist exactly (q − 1) pairs of nodes

(vl1 , ul1),..., (vlq−1 , ulq−1) such that vl1 ,...,
vlq ∈ V are r-successors; ul1 , ..., ulq−1 ∈
V are ∀r-successors; p(vli) = p(uli) for all
i ∈ {1, ..., q − 1} and vl1=pk−l1(vk

i1
), ... ,

vlq−1=pk−lq−1(vk
iq−1

) for some (q − 1) nodes

vk
i1

, ..., vk
iq−1

∈ {vk
1 , ..., vk

q }.

Item 1. of Lemma 1 allows us to determine a r-
predecessor vl and r-successors vl+1, ... , vh from
a clash ck where l ≤ h < k. The nodes vl and vh

are called head and tail of ck, respectively. A proof
of Lemma 1 can be found in Appendix.

Definition 7 (clash) allows us to detect all clashes
in an ǫ-tree. It does not show, however, how these
clashes are stored in the ǫ-tree. In Example 3, from
the existence of 2-clash [v10, v11] it is required that
the label of all neighbourhoods containing nodes
v10, v11 must contain the bottom-concept ⊥. Thus,
we need a node to store the bottom-concept ⊥ for
this clash. However, it is not possible to use, for
example, node v11 for this purpose since v11 be-
longs to neighbourhood (v11) which does not in-
clude both nodes v10, v11. In addition, from 3-clash
[v6, v7, v8] it is required that the label of all neigh-
bourhoods containing nodes v6, v7, v8 must contain
the bottom-concept ⊥. Therefore, we need node(s)
to store bottom-concepts ⊥ for this clash. Simi-
larly, we cannot store the bottom-concept ⊥ to the
label of node v8.
This problem is solved by extending the neigh-
bourhood notion given in Definition 6 and propos-
ing a structure, called normalization graph. This
structure, denoted Gǫ

C , is extended from ǫ-tree
Gǫ(C) by adding some nodes and edges such that it
can store bottom-concepts ⊥ for clashes [vk

1 , ..., vk
q]

in preserving the other neighbourhoods in ǫ-tree
Gǫ(C). It is necessary to add new nodes in order to
store bottom-concepts ⊥ for q-clash since, as ex-
plained above, nodes in ǫ-trees can be shared by
several neighbourhoods and a node belonging to a
q-clash may belong to a neighbourhood which does
not include this q-clash.
To sum up, the neighbourhood notion for the nor-
malization graph built from an ǫ-tree has to be
redefined such that i) it preserves the neighbour-
hoods in the ǫ-tree if these neighbourhoods do not
contain any clash, and ii) it yields a new neigh-
bourhood for each neighbourhood that contains a
clash in the ǫ-tree. The neighbourhood notion de-
fined in this way allows not only for guaranteeing a
correct transformation (by Algorithm 1) from nor-
malization graphs into description trees but also
for extending naturally the product operation of
description trees presented in [3] to the product
operation of normalization graphs. More precisely,

– The ∀r-neighbourhood nk of a (k − 1)-neigh-
bourhood nk−1 is defined as a set of all ∀r-

10

successors of all nodes belonging to nk−1 if
there does not exist any node wk such that
p(wk) ∈ nk−1 and there exists an ǫ-edge
(vkǫwk) where vk a ∀r-successor of a node
belonging to nk−1. Otherwise, nk includes
such a node wk. Furthermore, for each r-
successor vk of all nodes belonging to nk−1, a
r-neighbourhood nk of nk−1 is defined as a set
including vk and all nodes wk such that there
exists an ǫ-edge (vkǫwk) and p(wk) ∈ nk−1.

Now we show how to construct the normalization
graph Gǫ

C from a ǫ-tree Gǫ(C) by using the ex-
tended neighbourhood notion described above and
Lemma 1.

r

∀r
=⇒ ∀r

{⊥}
vk
1

vk
1

(wk:p(vk
1
))

(a) Normalization for 1-clash

vm
1

vm
2

∀r ∀r

∀r ∀r

vm
2

∀r

∀r

=⇒
.
..

.

..
.
..

vm
1

∀r ∀r

∀r ∀r

.

..
.
..

(wm:p(vm
1

))

vk
1

wk
1

vk
2

{⊥}
(b) Normalization for 2-clash

vk
1

vk
2

1-clash

2-clash
(wk

2
:p(wk

1
))

∀rr∀r

Figure 4. Normalization for clashes

Let ck be a clash at level k such that there does
not exist any clash c′k where c′k ⊂ ck. The aim
of the construction is to obtain a node wk in Gǫ

C

for each ck such that i) l′(wk) = {⊥}, ii) there is
a (k − 1)-neighbourhood nk−1 in Gǫ(C) such that
a k-neighbourhood nk ∈ N(nk−1) includes ck iff
there is a (k − 1)-neighbourhood n′k−1 in Gǫ

C such
that nk−1 ⊆ n′k−1 and a k-neighbourhood n′k ∈
N(n′k−1) includes wk. For example,

1. Let [vk
1] be a 1-clash in Gǫ(C) (Figure 4). As-

sume that vk
1 is a ∀r-successor (from Defi-

nition 7, vk
1 must be a ∀r-successor or the

root of Gǫ(C)). If we add to Gǫ(C) a node
wk such that l′(wk):={⊥}, p(wk):=p(vk

1) and
an ǫ-edge (vk

1 ǫwk), then wk belongs to the
∀r-neighbourhood of a neighbourhood n′k−1

that contains p(vk
1).

2. Let [vk
1 , vk

2] be a 2-clash in Gǫ(C) (Fig-
ure 4). We have vk

1 , vk
2 are ∀r-successors

and the r-successor vm
1 is determined by

item 1. of Lemma 1. If we add to Gǫ(C)
nodes wm, ..., wk

1 , wk
2 such that l′(wm)= ...

= l′(wk
1):= ∅, l′(wk

2):={⊥}; p(wm):=p(vm
2),

..., p(wk
1):=wk−1, p(wk

2):=p(wk
1) and ǫ-edges

(vm
1 ǫwm), (wk

1 ǫwk
2), then wk

2 belongs to the
∀r-neighbourhood of a neighbourhood n′k−1

that contains p(vk
1). In fact, by the con-

struction, there exist a m-neighbourhood n′m

and a (k − 1)-neighbourhood n′k−1 such
that vm

1 , vm
2 , wm ∈ n′m; p(vk

1), p(vk
2), p(wk

1)
∈ n′k−1 and n′m ∈ N−(k−1−m)(n′k−1).
From the extended neighbourhood notion de-
scribed above, we obtain wk

2 ∈ n′k where n′k

is the ∀r-neighbourhood of n′k−1.

Since the number of clashes in an ǫ-tree may be ex-
ponential, the size of the graph obtained from the
ǫ-tree by the normalization may increase exponen-
tially if a new path of ∀r-edges is added for each
clash. To avoid the exponential blow-up caused by
the normalization, we extend the predecessor func-
tion p for nodes in normalization graphs by allow-
ing p to be a set function, i.e., p(v) is a set of
nodes. This extension leads to redefine the notion
of neighbourhood for normalization graphs since
the notion of neighbourhood relies on the the pre-
decessor function p. The extension of predecessor
function p will be described in Definition 8 (nor-
malization graph).

Before normalizing an ǫ-tree Gǫ(C) = (V ,E∪Eǫ,l)
by Definition 8, Gǫ(C) needs to be simplified as
follows:

– Let [vl
1, ..., v

l
a] and [wk

1 , ..., wk
b] be clashes in

Gǫ(C) such that l < k and pk−l(wk
i) ∈

{vl
1, ..., v

l
a} for all wk

i ∈ {wk
1 , ..., wk

b }. From
the neighbourhood definition, it holds that for
each k-neighbourhood nk such that {wk

1 , ..., wk
b }

⊆ nk, there exist neighbourhoods nl, ..., nk−1

such that nl, nl+1 ∈ N(nl), ... , nk ∈ N(nk−1)
and {vl

1, ..., v
l
a} ⊆ nl. From this claim, if [vk

1] is

11

a 1-clash in Gǫ(C) then the subtree Gǫ(C)(vk
1)

can be deleted from Gǫ(C). This can be per-
formed by deleting all nodes vh ∈ V , h > k
such that ph−k = vk

1 and all edges such that
one of two endpoints belongs to the set of
deleted nodes. Additionally, vk

1 is relabeled
with ∅.

Notice that we need only to consider clashes ck in
Gǫ(C) such that there does not exist any clash c′k

where c′k ⊂ ck since if a neighbourhood nk con-
tains ck and c′k ⊆ ck then nk contains c′k. This
implies that if c′k is normalized, i.e. any neigh-
bourhood that contains c′k includes the bottom-
concept ⊥ in its label, then ck is normalized as
well. In addition, according to Lemma 1, each clash
ck has nodes vl, vh as its head and tail. If we nor-
malized all subsets of clashes that are grouped ac-
cording to its head and tail, then every clash in
Gǫ(C) will be normalized once.

Definition 8 (normalization graph) Let Gǫ(C) =
(V ,E ∪ Eǫ,l) be an ǫ-tree and v0 is its root. The
normalization graph of C is denoted as Gǫ

C =
(V ′,E′ ∪ E′ǫ,l′) where V ⊆ V ′, E ⊆ E′, Eǫ ⊆ E′ǫ

and l′(v):=l(v) if v ∈ V . Furthermore, we define
a predecessor function P(v), v ∈ V ′ where P(v) is
a set of predecessors of v in Gǫ

C and P(v):={p(v)}
if v ∈ V . The normalization graph Gǫ

C is obtained
from Gǫ(C) as follows. If there exists a 1-clash [v0]
then Gǫ

C :=G(⊥). Otherwise,

1. For each 1-clash ck=[vk
1] in Gǫ(C), we add

a node wk and an ǫ-edge (vk
1 ǫwk) where

P(wk):={p(vk
1)} and l′(wk):={⊥}.

2. For each pair of nodes vl, vh (l < h) where
vl is a r-predecessor and vh is a r-successor,
let ck

1 , ..., ck
n be clashes at level k such that

vl, vh are their head and tail, respectively. For
each ck

i , we denote V (ck
i) for the set of the

r-successors determined by item 1. of Lemma
1 from ck

i .

(a) For each level l < m ≤ h, if there
exists a r-successor v′m ∈

⋃n

i=1 V (ck
i)

then we add to Gǫ(C) a path of ∀r-edges
{(wm∀rwm+1),... , (wk−1∀rwk)}, denoted
Pm, where l′(wm)= l′(wm+1)= ...=l′(wk)
:=∅. Furthermore, for each r-successors
vm ∈

⋃n

i=1 V (ck
i) at level m, we add to

Gǫ(C) an ǫ-edge (vmǫwm).
If m = l + 1 then we set P(wm):={vl}.
Otherwise, let vh1 , ... , vhs ∈

⋃n

i=1 V (ck
i)

be nodes at the highest level in Gǫ(C) such
that hi < m and vm, vhi ∈ ck

j for some

ck
j ∈ {ck

1 , ..., c
k
n}. Let um−1

1 ,... , um−1
s be

nodes, respectively, on the paths Ph1
,... ,

Phs
added by this item. We set P(wm) :=

{um−1
1 , ... , um−1

s }, P(wm+1):={wm},...,
P(wk):= {wk−1}.

(b) We add a node uk and an ǫ-edge (wkǫuk)
where P(wk):=P(uk), l′(uk):={⊥} and
wk is on the path Ph added by item 2.(a).

The root of Gǫ
C is the root of Gǫ(C). The level of a

node is defined as the number of ordinary edges of
a path from the root to that node since the number
of ordinary edges of all paths from the root to a
node is constant. In addition, in a normalization
graph Gǫ

C=(V ′,E′∪E′ǫ,l′) we can define Pn(vk) :=
⋃

vk−n+1∈Pn−1(vk) P(vk−n+1), 1 < n ≤ k for each

vk ∈ V ′. We denote pn(vk) for Pn(vk) if Pn(vk)
is singleton, i.e., Pn(vk)={pn(vk)}. Note that if
vk is a r-successor or ∀r-successor of vk−1 where
vk−1 and vk in Gǫ

C then P(vk)={vk−1}. Therefore,
P(vk) is not singleton iff vk is added by Definition
8 and vk is neither r-successor nor ∀r-successor.
Notice that the condition ci 6⊆ cj for all clashes
ci, cj considered in Definition 8 (normalization
graph) guarantees that any neighbourhood n′k in
Gǫ

C containing a clash includes uniquely a node
uk ∈ V ′ \ V such that l′(uk)={⊥}.

Remark 3 It is obvious that the number of clashes
propagated from clashes containing the bottom-
concept ⊥ or a pair of P,¬P where P ∈ NC , is
bounded by an exponential function with the size
of Gǫ(C) (for instance, 2|V | where |V | is the num-
ber of nodes in Gǫ(C)). However, the number of
nodes and edges (∀r-edges and ǫ-edges) added by
Definition 8 (normalization graph) is polynomial
in the size of Gǫ(C) = (V ,E ∪ Eǫ,l). In fact, for
each pair of r-successor and r-predecessor vl, vh

and for each level l ≤ m ≤ h, item 2.(a) in Defi-
nition 8 adds at most i) |Gǫ(C)| ∀r-successors, ii)
|Gǫ(C)| ∀r-edges, iii) |V | ǫ-edges from r-successors
to the ∀r-predecessor added at level m. In addi-
tion, |P(wm)| is bounded by (m − (l + 1)) where
wm is a ∀r-predecessor but neither ∀r-successor
nor r-successor. Note that if wk is a ∀r-successor
or r-successor then P(wk) is singleton. There-
fore, for each pair of r-successor and r-predecessor
vl, vh the number of added nodes is bounded by
|Gǫ(C)| × (h − l) ≤ |Gǫ(C)|2. Since the number of

12

pairs of nodes vl, vh in Gǫ(C) is bounded by |V |2,
the number of nodes added by the normalization is
bounded by |Gǫ(C)|2 × |V |2 ≤ |V |4.

The normalization of ǫ-trees by Definition 8 adds
nodes that are neither r-successor nor ∀r-successor.
Moreover, the predecessor function p is redefined
for normalization graphs such that p(v) (denoted
P(v) in Definition 8) may be a set of nodes. By
consequent, the neighbourhood notion needs to be
redefined for normalization graphs in order to take
into account the new elements that are brought
from the normalization.

Definition 9 (extended-neighbourhood) Let Gǫ
C =

(V ,E ∪Eǫ,l) be a normalization graph where v0 ∈
V is its root. At level 0 of Gǫ

C , there is a unique
0-neighbourhood, denoted N0 = {v0}.
For each (k − 1)-neighbourhood nk−1, nk−1 =
{vk−1

1 , ..., vk−1
m } ⊆ V (0 < k ≤ |Gǫ

C |) such that ⊥
/∈ l(vk−1

1) ∪ ... ∪ l(vk−1
m), the set N(nk−1) of k-

neighbourhoods generated from nk−1 is defined as
follows.

1. If there exists an edge (vk−1∀rvk) ∈ E
such that vk−1 ∈ nk−1 then we obtain a k-
neighbourhood nk ∈ N(nk−1),

nk :=

{

V ǫ(nk−1), V ǫ(nk−1) 6= ∅
V ∀(nk−1), V ǫ(nk−1) = ∅

where
V ∀(nk−1):={vk|(vk−1∀rvk) ∈ E,vk−1 ∈ nk−1}
V ǫ(nk−1):={vk

i |(v
kǫvk

i) ∈ Eǫ, vk ∈ V ∀(nk−1),

vk
i /∈ V ∀(nk−1), P(vk

i) ∩ nk−1 6= ∅}

2. For each r-successor vk of all vk−1
i ∈ nk−1,

we obtain a k-neighbourhood nk ∈ N(nk−1),
nk:={vk} ∪ V ǫ

vk where
V ǫ

vk :={vk
i | (vkǫvk

i) ∈ Eǫ, P(vk
i) ∩ nk−1 6= ∅}

Remark 4 From Definition 8 and Definition 9, it
holds that if nl= {vl

1, ..., v
l
p} and nk = {vk

1 , ..., vk
q }

(l < k) are neighbourhoods in a normaliza-
tion graph Gǫ

C such that N−(k−l)(nk) = nl then
Pk−l(vk

i) ∩ nl 6= ∅ for all vk
i ∈ nk. This property

holds also for ǫ-trees Gǫ(C) where P(vk) is single-
ton for all nodes vk in Gǫ(C).

Figure 5 shows how to normalize an ǫ-tree Gǫ(C)
by Definition 8 where
C := ∀r.∀r.∀r.∃r.∀r.P ⊓ ∃r.(∃r.∀r.∀r.∀r.¬P ⊓

∀r.(∃r.∀r.∀r.¬P ⊓ ∀r.∀r.∀r.Q))

According to Definition 7 (clash), there are two
clashes [v15, v17] and [v16, v17] in Gǫ(C). Lemma 1
allows us to determine that V ([v15, v17])={v1, v7, v13},
V ([v15, v17])={v1, v4, v13} (cf. the notation in Defi-
nition 8) and v0, v13 are the head and tail of clashes
[v15, v17] and [v16, v17]. Paths (w0, w1, w2, w3, w4),
(w5, w6, w7, w8), (w9, w10, w11), (w12, w13) and ǫ-
edges (v1ǫw0), (v4ǫw5), (v7ǫw9), (v13ǫw12) are
added by item 2.(a) of Definition 8 from the sets
V ([v15, v17]) and V ([v15, v17]). Next, item 2.(a) de-
termines predecessor function for nodes w0, w5, w9

and w12: P(w0)={v1}, P(w5)={w0}, P(w9)={w1}
and P(w12)={w6, w9}. Finally, a node w14 where
l′(w14) = {⊥} and an ǫ-edge (w13ǫw14) are added
by item 2.(b) .
As a result, we obtain that i) v15, v17 ∈ V ∀(n4)
iff w14 ∈ V ǫ(n4) for some 4-neighbourhood n4

in the normalization graph Gǫ
C (Figure 5), ii)

v16, v17 ∈ V ∀(m4) iff w14 ∈ V ǫ(m4) for some 4-
neighbourhood m4 in the normalization graph Gǫ

C .
To sum up, a normalization graph Gǫ

C preserves
all neighbourhoods in its ǫ-tree Gǫ(C) and yields
new neighbourhoods, represented by V ǫ, which
correspond to neighbourhoods containing clashes
in Gǫ(C). The following lemma assert this impor-
tant property of normalization graphs.

Lemma 2 Let Gǫ(C) = (V, E ∪ Eǫ, l) be an ǫ-tree
where v0 ∈ V is its root and Gǫ

C=(V ′, E′∪E′ǫ, l′) be
its normalization graph. Let n′k be a k-neighbour -
hood in Gǫ

C . If k = 0 then label(n′0) 6= {⊥} iff
n′0 does not contain any clash. For all k > 0, the
following claims are equivalent:

1. label(n′k) 6= {⊥}.
2. There exists a neighbourhood nk in Gǫ(C)

such that nk = n′k ∩ V and label(nk) =
label(n′k).

3. There does not exist any q-clash [vk
1 , .., vk

q]

such that {vk
1 , .., vk

q } ⊆ nk, nk = V ∀(n′k−1)

∩ V and n′k ∈ N(n′k−1) where nk is a ∀r-
neighbourhood in Gǫ(C).

A proof of Lemma 2 can be found in Appendix.
Algorithm 1 can transform ǫ-trees Gǫ(C) and nor-
malization graphs Gǫ

C(C) into description trees
since the neighbourhood, level, predecessor notions
are well defined for both graphs. In general, the
description tree B(Gǫ

C) is different from B(Gǫ(C)).
However, B(Gǫ

C) can be obtained from B(Gǫ(C))
by applying the following normalization rules (5g),
(6g) and (7g) (g stands for graph) which are de-

13

{⊥}

∀rr

∅

∀r

∀r

∀r

r

r

∅ ∅

∅

(v4:v1)(v3:v1) ∅∅ ∅ ∅

(v8:v4)(v7:v3)

(v5:v2)

(v2:v0)
∅

∀r

(v0:v0)

(v1:v0)

∀r

(v9:v5) (w2:w1)

(w1:w0)

(w6:w5)

(w0:v0)

∅∅∅∅∅∅

∅∅∅∅∅∅ ∅∅

∀r∀r ∀r∀r∀r∀r∀r

(w10:w9)(w3:w2)

r ∀r ∀r ∀r∀r ∀r∀r

∀r

(v6:v3)

(v11:v7)(v10:v6) (w7:w6)(v12:v8)

(v14:v10) (v15:v11) (v17:v13)
{P}{¬P}{¬P}{Q}

(v16:v12)
∅ ∅∅ ∅

(w4:w3) (w13:w12) (w14:w12)

∀r

(w5:w0)

(v13:v9)

∀r

∅

(w12:{w6,w9})

(w11:w10)(w8:w7)

∀r

(w9:w1)

Figure 5. Normalization graph Gǫ
C

fined for description trees. These rules must cor-
respond to rules 5, 6, 7 (Definition 2) defined for
concept descriptions.

Lemma 3 Let C be an ALE-concept description in
the weak normal form. Let Gǫ(C) and Gǫ

C be the
description tree and normalization graph of C, re-
spectively. There exists an isomorphism between
B(Gǫ

C) and the description tree H obtained from
B(Gǫ(C)) = (V3, E3, z

0, l3) by exhaustively apply-
ing the following rules:

1. P , ¬P ∈ l3(z), P ∈ NC , z ∈ V3 →
l3(z) := {⊥} (rule 5g)

2. (zrz′) ∈ E3, B(Gǫ(C))(z′) = G(⊥) →
B(Gǫ(C))(z) := G(⊥) (rule 6g)

3. ⊥ ∈ l3(z), z ∈ V3 →
B(Gǫ(C))(z) := G(⊥) (rule 7g)

A proof of Lemma 3 can be found in Appendix.
The following proposition is an important result
of this section. It establishes the equivalence be-
tween the normalization by the rules in Definition
2 for concept descriptions, and the normalization
by Definitions 5 and 8 for description trees.

Proposition 1 Let C be an ALE-concept descrip-
tion. Let GC and Gǫ

C be its description tree and

normalization graph, respectively. There exists an
isomorphism between B(Gǫ

C) and GC .

A proof of Proposition 1 can be found in Appendix.

Remark 5 Proposition 1 and Example 1 yield that
the size of B(Gǫ

C) may be exponential in the size
of Gǫ

C . In fact, Example 1 shows that GC may be
exponential in the size of C and Proposition 1 as-
serts that there exists an isomorphism between GC

and B(Gǫ
C) .

We now exploit the results have been obtained in
this section to propose a polynomial algorithm in
space for deciding subsumption between two ALE-
concept descriptions. Such an algorithm is inter-
esting since it enables us to decide subsumption
between concepts including lcs by manipulating
directly corresponding graphs.
Note that the algorithm described in [3] for check-
ing the existence of a homomorphism between two
ALE-description trees obtained from normalized
concept descriptions cannot be used for this aim
since it requires that all nodes of description trees
is explicitly represented, i.e., it requires an expo-
nential space.
The underlying idea of Algorithm 2 is that check-
ing the existence of a homomorphism from B(Hǫ)

14

to B(Gǫ) can be performed without transforming
completely Hǫ and Gǫ into B(Hǫ) and B(Gǫ). By
fixing on each neighbourhood of Hǫ from the high-
est level to the root, this process can be carried out
by checking the existence of a mapping between
neighbourhood paths from the root to neighbour-
hoods at the highest level in Hǫ and Gǫ. At each
checking step, the algorithm needs memory pieces
to store neighbourhood paths in Hǫ and Gǫ.

Algorithm 2 check(Hǫ(nk), Gǫ(mk))

Require: nk, mk are k-neighbourhoods, respec-
tively, in normalization graphs Hǫ and Gǫ.

Ensure: Answer “true” if there exists a homomor-
phism from B(Hǫ) to B(Gǫ). Otherwise, answer
“false”.
if label(mk) = {⊥} then

return true;
end if

if label(nk) 6⊆ label(mk) then

return false;
end if

Let nk+1
1 , ..., nk+1

p be (k + 1)-neighbourhoods

generated from nk;
Let mk+1

1 , ..., mk+1
q be (k + 1)-neighbourhoods

generated from mk;
for 1 ≤ i ≤ p do

found := false;
for 1 ≤ j ≤ q do

if nk+1
i , mk+1

j are ∀r-neighbourhoods and

check(Hǫ(nk+1
i), Gǫ(mk+1

j)) then

found := true;
end if

if nk+1
i , mk+1

j are r-neighbourhoods and

check(Hǫ(nk+1
i), Gǫ(mk+1

j)) then

found := true;
end if

end for

if found = false then

return false;
end if

end for

return true;

Let m0, n0 be 0-neighbourhoods of, respectively,
normalization graphs Hǫ, Gǫ. If function
check(Hǫ(n0), Gǫ(m0)) returns “true”, there ex-
ists a homomorphism from B(Hǫ) to B(Gǫ). Other-
wise, there does not exist any homomorphism from
B(Hǫ) to B(Gǫ).

Completeness of the algorithm

Assume that there exists a homomorphism ϕ
from B(Hǫ) to B(Gǫ). We have to show that
check(Hǫ(n0), Gǫ(m0)) returns “true”.
Let {w′

0, ..., w
′
n} be a post-order sequence of nodes

of B(Hǫ) (note that w′
n corresponds to the root of

Hǫ). This sequence corresponds to a sequence of
neighbourhoods of Hǫ (Algorithm 1). If there is not
any confusion, we can say w′

n for a neighbourhood
on Hǫ. We will prove the claim by induction on i
where 0 ≤ i ≤ n.

– Step i = 0. Let v = ϕ(w′
0). Since ϕ is a ho-

momorphism, it is that l(w′
0) ⊆ l(ϕ(w′

0)) or
l(ϕ(w′

0)) = {⊥} (l(w′
i) = label(nk

i) where nk
i is

the neighbourhood corresponding to w′
i). Fur-

thermore, since p, q are equal to zero in the
algorithm, no iteration is performed. Thus,
check(Hǫ(w′

0), G
ǫ(ϕ(w′

0))) returns “true”.
– Induction step (i − 1) → i. By induction

hypothesis, check(Hǫ(w′
j), G

ǫ(ϕ(w′
j))) returns

“true” for all 0 ≤ j < i. Let v = ϕ(w′
i). Since

ϕ is a homomorphism, it is l(v) = {⊥} or
l(w′

i) ⊆ l(v) . Let w′
i1

, ..., w′
ip

be the neigh-
bourhoods generated from the neighbour-
hood w′

i and the edges (w′
ir1w

′
i1

),...,(w′
irpw

′
ip

).

Since {w′
0, ..., w

′
n} is a post-order sequence,

hence i1, ...ip ∈ {0, ..., i−1}. By induction hy-
pothesis, check(Hǫ(w′

il
), Gǫ(ϕ(w′

il
))) returns

“true” for all 1 ≤ l ≤ p. Since ϕ is a homo-
morphism and w′

i1
, ..., w′

ip
are the neighbour-

hoods generated from the neighbourhood w′
i,

hence ϕ(w′
ij

) have to be the neighbourhoods
generated from the neighbourhood v and the
edges (vrlϕ(w′

ij
)) for all 1 ≤ l ≤ p. This im-

plies that check(Hǫ(w′
i), G

ǫ(v)) returns “true”
since the iteration with index j (second itera-
tion) in the algorithm does not return “false”
for all 1 ≤ j ≤ q.

Soundness of the algorithm

Assume that check(Hǫ(n0), Gǫ(m0)) returns “true”.
We have to show that there exists a homomor-
phism ϕ from B(Hǫ) to B(Gǫ).
Since check(Hǫ(n0), Gǫ(m0)) returns “true”, it is
that l(n0) ⊆ l(m0) or l(m0) = {⊥} where n0

and m0 are neighbourhoods in Hǫ and Gǫ . If
there is not any confusion, we can say node wi

for a neighbourhood on Hǫ and say node vi for a
neighbourhood on Gǫ. We start with ϕ(w0):= v0.
Let w1, ..., wp be nodes (neighbourhoods) gener-

15

ated from the neighbourhood n0 and v1, ..., vq be
nodes (neighbourhoods) generated from the neigh-
bourhood m0. Since check(Hǫ(w0), Gǫ(v0)) returns
“true”, according to the algorithm we have for
each wl, l ∈ {1, ..., p}, there exists vil ∈ {v1, ..., vq}
such that l(vil) = {⊥} or l(wl) ⊆ l(vil); edges
(w0rw

l), (v0rv
il) (or (w0∀rwl), (v0∀rvil)) and

check(Hǫ(wl), Gǫ(vil)) returns “true” . By induc-
tion hypothesis, for all 1 ≤ l ≤ p there exist homo-
morphisms ϕl between B(Hǫ(wl)) and B(Gǫ(vil)).
For all 1 ≤ l ≤ p, we define ϕ(wl):= vil and
ϕ(w):= ϕl(w) for all w in B(Hǫ(wl)). This implies
that homomorphism ϕ from B(Hǫ) to B(Gǫ) is de-
fined.

Proposition 2 Let C and D be ALE-concept de-
scriptions, and let Gǫ

C and Gǫ
D be their normaliza-

tion graphs. Algorithm 2 applied to Gǫ
C and Gǫ

D can
decide subsumption between C and D in polyno-
mial space and exponential time.

A proof of Proposition 2 can be found in Appendix.

4. Product of normalization graphs

This section introduces the product operation of
normalization graphs, which is extended from the
product operation of description trees (as defined
in [3]). In this extension, ǫ-edges including ǫ-cycles
will be treated as ordinary edges. In particular, for
an ǫ-cycle (vǫv), we say also that v is an ǫ-successor
of itself.
Additionally, we need the notion of induced sub-
graph to treat nodes whose label is equal to {⊥}.
An induced subgraph Gǫ(vk

1 ,... , vk
m) of graph Gǫ

where vk
1 ,... , vk

m are nodes at level k of Gǫ, consists
of the set of nodes vk

1 ,... , vk
m and their descendants

in Gǫ together with all edges whose endpoints are
both in this set of nodes. More precisely, let Gǫ =
(VG, EG ∪ Eǫ

G, lG) and vk
1 ,... , vk

m ∈ VG. We define
an induced subgraph Gǫ(vk

1 ,... , vk
m) = (VGk

, EGk
∪

Eǫ
Gk

, lGk
) where

VGk
:= {vl ∈ VG| P l−k(vl) ∩ {vk

1 ,... , vk
m} 6= ∅,

l ≥ k},
EGk

:= {(vlevl+1) ∈ EG| vl, vl+1 ∈ VGk
},

Eǫ
Gk

:= {(vlǫv′l) ∈ Eǫ
G| vl, v′l ∈ VGk

}, and
lGk

(v) := lG(v) for all v ∈ VGk
.

Note that, from the definition of predecessor func-
tion P for normalization graphs Gǫ, a node vl ∈ VG

is neither r-successor nor ∀r-successor but vl may

belong to an induced subgraph Gǫ(vk
1 ,... , vk

m) if
P l−k(vl) ∩ {vk

1 ,... , vk
m} 6= ∅.

In order to transform a subgraph Gǫ(vk
1 , ..., vk

m)
into a description tree, we can apply Algorithm 1
to the graph obtained from Gǫ(vk

1 ,... , vk
m) by re-

placing the nodes vk
1 ,... , vk

m with a unique node
v0 which is considered as the root of the subgraph.
The label of v0 is set to label(vk

1 , ..., vk
m), the out-

going edges of vk
1 ,... , vk

m become those of v0, and
the ǫ-edges between nodes vk

1 ,... ,vk
m become the

ǫ-cycle of v0. In particular, if {vk
1 ,... , vk

m} is a k-
neighbourhood in Gǫ then Gǫ(vk

1 , ..., vk
m) contains

all l-neighbourhoods generated from {vk
1 ,... , vk

m}
where l ≥ k. Algorithm 1 yields that the nodes and
edges of the tree B(Gǫ(vk

1 ,... , vk
m)) can be obtained

from these neighbourhoods.

Definition 10 Let Gǫ = (VG, EG ∪ Eǫ
G, lG), Hǫ =

(VH , EH ∪ Eǫ
H , lH) be two normalization graphs

where v0 and w0 are the roots respectively of Gǫ

and Hǫ. If lG(v0)={⊥} (lH(w0)={⊥}) then we de-
fine Gǫ × Hǫ as a graph obtained from Hǫ (Gǫ) by
replacing each node w in Hǫ (each node v in Gǫ)
with (v0, w) ((v, w0)). Otherwise, the node (v0, w0)
labeled with lG(v0)∩ lH(w0) is the root of Gǫ × Hǫ.
Furthermore, P(v0, w0) is set to (P(v0),P(w0))
and an ǫ-cycle ((v0, w0)ǫ(v0, w0)) is obtained from
the ǫ-cycles (v0ǫv0), (w0ǫw0).
At each level k such that 0 < k ≤ min(|Gǫ|, |Hǫ|),

1. For each r-successor (∀r-successor) vk
i of

vk−1
i in Gǫ and each r-successor (∀r-successor)

wk
j of wk−1

j in Hǫ such that (vk−1
i , vk−1

j) is
a node in Gǫ × Hǫ, we obtain a r-successor
(∀r-successor) (vk

i , wk
j) of (vk−1

i , vk−1
j) in Gǫ

× Hǫ. Additionally, for each ǫ-successor vk
l′

of vk
l in Gǫ and for each ǫ-successor wk

h′ of wk
h

in Hǫ such that (vk
l , wk

h) is a node created in
Gǫ × Hǫ, we obtain an ǫ-successor (vk

l′ , w
k
h′)

of (vk
l , wk

h) in Gǫ × Hǫ. If lG(vk
i) and lH(wk

j)

6= {⊥} (or lG(vk
l′) and lH(wk

h′) 6= {⊥}) then
the node (vk

i , wk
j) (or (vk

l′ , w
k
h′)) is labeled with

lG(vk
i) ∩ lH(wk

j) (or lG(vk
l′) ∩ lH(wk

h′)). Fur-

thermore, P(vk
i , wk

j) (or P(vk
l′ , w

k
h′)) is set to

(P(vk
i),P(wk

j)) (or (P(vk
l′),P(wk

h′))).

2. For all nodes (vk
0 , wk

1), ...,(vk
0 , wk

n) (or (vk
1 , wk

0),
...,(vk

m, wk
0)) obtained from item 1. such that

lG(vk
0) = {⊥} (or lH(wk

0) = {⊥}), we obtain
a subgraph (Gǫ × Hǫ)((vk

0 , wk
1),...,(vk

0 , wk
n))

(or (Gǫ × Hǫ)((vk
1 , wk

0),...,(vk
m , wk

0))) from
the induced subgraph Hǫ(wk

1 , ..., wk
n) (or

16

Gǫ(vk
1 , ..., vk

m)) by replacing each its node w
(or v) with (vk

0 , w) (or (v, wk
0)) where (vk

0 , w)
(or (v, wk

0)) is labeled with lH(w) (or lG(v)).
Furthermore, P(vk

0 , w) (or P(v, wk
0)) is set to

(P(vk
0),P(w)) (or (P(v),P(wk

0))).

From concept descriptions (taken from [4]) given
in Example 4, Figure 6 shows how to compute the
product graph of normalization graphs built from
these concept descriptions and the description tree
obtained from the product graph by applying Al-
gorithm 1.

Example 4 Let
C3 :=∃r.(∀r.∀r.P 0

3) ⊓ ∃r.(∀r.∀r.P 1
3)⊓

∀r.(∃r.∀r.P 0
2 ⊓ ∃r.∀r.P 1

2 ⊓ ∀r.(∃r.P 0
1 ⊓ ∃r.P 1

1))
D3 :=∃r.∃r.∃r.(P 0

1 ⊓ P 1
1 ⊓ P 0

2 ⊓ P 1
2 ⊓ P 0

3 ⊓ P 1
3)

where P i
j ∈ NC , r ∈ NR.

Note that ǫ-cycles are useful for computing prod-
uct graphs. For instance, ǫ-cycle of node u1 of tree
Gǫ

D3
and ǫ-edge (v1ǫv3) of tree Gǫ

C3
yield ǫ-edge

((v1, u1)ǫ(v3, u1)) of tree Gǫ
C3

× Gǫ
D3

.
To simplify the presentation, the ǫ-cycles are not
added to the graphs in the figures.

Remark 6 The size of the product graph of two
normalization graphs Gǫ = (VG, EG ∪ Eǫ

G, lG), Hǫ

= (VH , EH ∪Eǫ
H , lH) is bounded by the product of

the sizes of these normalization graphs. In fact, it
holds that |VG×H | ≤ |VG| × |VH |, |EG×H | ≤ |EG|
× |EH | and |Eǫ

G×H | ≤ |Eǫ
G| × |Eǫ

H |.

In the sequel, we will show that the level notion
for product graphs can be defined from those for
normalization graphs and the computation of the
product of two normalization graphs preserves im-
portant properties of the neighbourhood notion.
These notions guarantee that Algorithm 1 and Al-
gorithm 2 can be applied to product graphs.
Let (vl, wl) and (vk, wk) (l < k) be two nodes in
a product graph Gǫ × Hǫ. There is a path from
(vl, wl) to (vk, wk) iff there are nodes (vl+1, wl+1),...
, (vk−1, wk−1) such that P(vk, wk) ∩ {(vk−1, wk−1)}
6= ∅,... , P(vl+1, wl+1) ∩ {(vl, wl)} 6= ∅ where
P(vm, wm) ∩ {(vm−1, wm−1)} 6= ∅ iff P(vm) ∩
{vm−1} 6= ∅ and P(wm) ∩ {wm−1} 6= ∅. There-
fore, each path from the root (v0, w0) to a node
(vk, wk) corresponds to two paths: the one is from
v0 to vk in Gǫ and the other is from w0 to wk in
Hǫ. Moreover, the number of ordinary edges of all
paths from v0 (w0) to vk (wk) is constant since Gǫ

and Hǫ are normalization graphs. Thus, the num-
ber of ordinary edges of all paths from (v0, w0) to
(vk, wk) on Gǫ×Hǫ is constant as well. This allows
us to define the level of a node (vk, wk) as the num-
ber of ordinary edges of all paths from the root to
(vk, wk). It means that two nodes corresponding
to the endpoints of any ǫ-edges are always at the
same level.
Therefore, Definition 10 can be extended to n-ary
product of graphs as follows:
Gǫ

C1
× . . .× Gǫ

Cn
:= (Gǫ

C1
× . . .× Gǫ

Cn−1
) × Gǫ

Cn

Definition 11 We denote T E
L as the set of all nor-

malization graphs and product graphs generated
from L-concept descriptions, i.e.,

T E
L :=

⋃

n≥1{G
ǫ
C1

× . . . × Gǫ
Cn

|

C1, ..., Cn are L-concept descriptions}

In this paper, we investigate T E
L where L ∈ {FLE ,

ALE}.
We now clarify how the neighbourhood definition
(Definition 9) can be applied to product graphs.
Similarly to ∀r-neighbourhoods in normalization
graphs, the computation of the ∀r-neighbourhood
at level k of a (k − 1)-neighbourhood in product
graphs takes into account the set of nodes V ǫ in
Definition 9. Differently from ∀r-neighbourhoods
in normalization graphs where sets V ǫ 6= ∅ include
only nodes whose label is equal to {⊥}, sets V ǫ

corresponding to ∀r-neighbourhoods in product
graphs can contain nodes which have r-successors
or ∀r-successors. More precisely,

Lemma 4 Let nk−1
G = {u1, ..., um} and nk−1

H =
{w1, ..., wn} be (k − 1)-neighbourhoods respectively
in Gǫ, Hǫ ∈ T E

ALE . Let nk−1
G×H be a (k − 1)-

neighbourhood in Gǫ×Hǫ. Assume that {(u1, w1), ...,
(um, wn)} ⊆ nk−1

G×H and lG×H(ui, wj) = ∅, (ui, wj)
does not have any r-successor and ∀r-successor for
all (ui, wj) ∈ nk−1

G×H \ {(u1, w1), ..., (um, wn)}.
It holds that there exist r-neighbourhoods (∀r-
neighbourhoods) nk

G = {v1, ..., vh} and nk
H =

{z1, ..., zl} such that nk
G ∈ N(nk−1

G) and nk
H ∈

N(nk−1
H) iff there exists a r-neighbourhood (∀r-

neighbourhood) nk
G×H ∈ N(nk−1

G×H) such that

{(v1, z1), ..., (vh, zl)} ⊆ nk
G×H and lG×H(vi, zj)=∅,

(vi, zj) does not have any r-successor and ∀r-
successor for all (vi, zj) ∈ nk

G×H \ {(v1, z1), ...,
(vh, zl)}.

17

r

∀rr r

∅

∅
(v2 : v0) (v3 : v0)

∅∅

∅ ∅ ∅∅

rr
∀r∀r ∀r∀r

∀rrr∀r
∀r

(v1 : v0)

Gǫ
C3

P 1
1P 0

1P 1
2P 1

3P 0
3 P 0

2 (v12 : v7)(v11 : v6)(v10 : v5)(v9 : v4)

(u1 : u0)
∅

∅

(v0 : v0) (u0 : u0)Gǫ
D3

∅

(u3 : u2)

Gǫ
C3

× Gǫ
D3

∅
(u2 : u1)(v4 : v1) (v5 : v2) (v7 : v3)(v6 : v3) (v8 : v3)

(v13 : v8)

r

∅

B(Gǫ
C3

× Gǫ
D3

)
r

∅ ∅

r
rr

∅

A6

r

rr

A5A4A3A2

r

A1

r r r

∅ ∅

An = {P i
1 , P

j
2 , P k

3 }

A0

r

∅

A7

r

n = i.22 + j.21 + k.20; i, j, k ∈ {0, 1}

∅

rr

(v0, u0 : v0, u0)

∅ ∅ ∅
(v2, u1 :

v0, u0)

(v3, u1 :

r

∅ ∅ ∅ ∅

v1, u1)

(v4, u2 :

(v1, u1 :

v0, u0) v0, u0)

(v5, u2 : (v7, u2 :(v6, u2 :

v3, u1)v3, u1)

r

∅
(v8, u2 :

r

v2, u1)

P 1
2P 1

3P 0
3

r

(v9, u3 :

v4, u2)

(v10, u3 :

v5, u2)

(v11, u3 :

v6, u2)

P 0
2 (v12, u3 :

v7, u2)

(v13, u3 :

v8, u2)

P 0
1

v8, u2)

(v14, u3 :
P 1

1

v3, u1)

{P 0
1 , ..., P 1

3 }
(v14 : v8)

r

r

Figure 6. Product of normalization graphs

A proof of Lemma 4 can be found in Appendix.
We are now ready to formulate and prove a theo-
rem which establishes the relationship between the
product of two graphs in T E and the product of
two description trees (as defined in [3]) represented
by these two graphs.

Theorem 2 Let Gǫ, Hǫ ∈ T E
ALE . There exists an

isomorphism between B(Gǫ × Hǫ) and B(Gǫ) ×
B(Hǫ).

A proof of Theorem 2 can be found in Appendix.
This proof builds inductively on the level of graphs
an isomorphism between the trees B(Gǫ × Hǫ)
and B(Gǫ) × B(Hǫ). In fact, assume that for each

(k − 1)-neighbourhood nk−1
G×H in (Gǫ × Hǫ) we

have two corresponding (k − 1)-neighbourhoods
nk−1

G , nk−1
H on Gǫ and Hǫ, respectively. The proof

shows that nk
G = (u1, ..., um), nk

H = (w1, ..., wn)
are k-neighbourhoods respectively of nk−1

G and

nk−1
H such that label(nk

G) 6= {⊥}, label(nk
H) 6=

{⊥} iff nk
G×H is a k-neighbourhood of nk−1

G×H

such that {(u1, w1),..., (um, wn)} ⊆ nk
G×H and

lG×H(vi, zj) = ∅, (vi, zj) does not have any r-
successor and ∀r-successor for all (vi, zj) ∈ nk

G×H

\ {(v1, z1), ..., (vh, zl)}. The proof of this claim is
based heavily on Lemma 4. Additionally, if la-
bel(nk

G) = {⊥} or label(nk
H) = {⊥} then, Defini-

tion 10 yields that (Gǫ × Hǫ)(nk
G×H) is equal to

18

Hǫ(nk
H) or Gǫ(nk

G) (up to renaming nodes). Thus,
B((Gǫ × Hǫ)(nk

G×H)) is equal to B(Hǫ(nk
H)) or

B(Gǫ(nk
G)). The construction of the isomorphism

will be done by proving that label(nk
G) = {⊥} and

label(nk
H) = {⊥} iff label(nk

G×H) = {⊥}.

Proposition 1 yields that GC and GD are equal re-
spectively to B(Gǫ

C) and B(Gǫ
D) (up to renaming

nodes) and Proposition 2 shows that it is sufficient
to use normalization graphs Gǫ

C , Gǫ
D rather than

description trees GC and GD to decide subsump-
tion between two ALE-description concepts C and
D. Moreover, according to an important result in
[3], the lcs of C and D can be computed as the
product GC × GD. This result and Theorem 2 al-
low us to represent all lcs as product graphs Gǫ ×
Hǫ and decide subsumption between lcs by manip-
ulating directly the corresponding product graphs.
Thus, we can export the semantics of concept de-
scriptions to graphs of T E

ALE , i.e., for an inter-
pretation (∆, .I), we define (Gǫ)I := (CB(Gǫ))

I . By
consequent, we can talk about the subsumption,
equivalence, lcs, etc. for all graphs Gǫ ∈ T E

ALE . The
following result is a direct consequence of Theorem
2.

Corollary 1 Let Gǫ, Hǫ ∈ T E
ALE . The least common

subsumer of Gǫ, Hǫ can be computed in polynomial
space and exponential time .

Since Gǫ
C = Gǫ(C) if C is a FLE-concept descrip-

tion, the complexity for computing Gǫ
C from C is

polynomial in the size of C. Therefore,

Corollary 2 Let Gǫ, Hǫ ∈ T E
FLE . The least common

subsumer of Gǫ, Hǫ can be computed in polynomial
time.

Additionally, according to the definition of lcs, we
have C = lcs(C,⊥) for every ALE-concept de-
scription C. Therefore, Proposition 2 can be gen-
eralized as follows.

Proposition 3 Let Gǫ and Hǫ be two product graphs
corresponding to lcs(C1, C2) and lcs(D1, D2) where
C1, C2, D1 and D2 are ALE-concept descriptions,
i.e., Gǫ = Gǫ

C1
× Gǫ

C2
and Hǫ = Gǫ

D1
× Gǫ

D2
. Al-

gorithm 2 applied to Gǫ and Hǫ can decide sub-
sumption between lcs(C1, C2) and lcs(D1, D2) in
polynomial space and exponential time.

5. On the approximation ALC-ALE

In [1], a double exponential algorithm has been
proposed for the approximation ALC-ALE . In this
algorithm, the approximation is computed by us-
ing the lcs. A question left open by the authors
concerns the existence of an exponential algorithm
for computing the approximation. In the first at-
tempt at finding an answer to this question, we
hoped that if there is a method for obtaining
a polynomial representation for the lcs, such a
method may be applied for reducing the exponen-
tial blow-up caused by the distribution of disjunc-
tions over conjunctions in the normalization for
ALC-concept descriptions. However, though the
polynomial representation for the lcs presented in
Section 4 helps to reduce the size of the approxi-
mation, this representation does not allow for re-
ducing the complexity class.
In this section, we formulate and prove a theorem
which provides a tight lower bound of the size of
the approximation ALC-ALE in the ordinary rep-
resentation.

Algorithm 3 approxALE (C)

Require: C is an ALC-concept description in
ALC-normal form C = C1 ⊔ ... ⊔ Cn.

Ensure: approxALE (C)
if C ≡ ⊥ then

return ⊥;
end if

if C ≡ ⊤ then

return ⊤;
else

returnl

A∈
T

m
i=1

Prim(Ci)

A ⊓

l

(C′

1,...,C′

m)∈Ex(C1)×...×Ex(Cm)

{∃r.lcs{

approxALE (C′
j ⊓ V al(Cj))|1 ≤ j ≤ m}} ⊓

∀r.lcs{approxALE (V al(Cj))|1 ≤ j ≤ m}
end if

Theorem 3 Let C be an ALC-concept description.
The size of approxALE (C) may be double exponen-
tial in the size of C.

The following proof of Theorem 3 uses some no-
tions and the approximation algorithm described
in [1].

19

Let C is an ALC-concept description where dis-
junction only occurs within value or existen-
tial restrictions. Prim(C) denotes the set of all
(negated) concept names occurring on the top-
level conjunction of C (the top-level conjunction
is not wrapped within a value restriction or exis-
tential restriction). V al(C) is the conjunction of
all C′ occurring in value restrictions of form ∀r.C′

on top-level of C. If there is no value restriction
on top-level of C then V al(C) = ⊤. Ex(C) is the
set of all C′ occurring in existential restrictions of
form ∃r.C′ on top-level of C. The normal form of
C is defined as follows. Let C be an ALC-concept
description and C 6≡ ⊤, C 6≡ ⊥. C is in ALC-
normal form iff C is of the form C = C1 ⊔ ...⊔Cm

such that Ci = ⊓A∈Prim(Ci)A⊓
d

C′∈Ex(Ci) ∃r.C′⊓

∀r.V al(Ci), ⊥ < Ci where C′,V al(Ci) are in ALC-
normal form.
If C is in ALC-normal form, the approximation of
C can be computed by Algorithm 3 (the approxi-
mation algorithm in [1]).
Considering the algorithm, the ALC-normal form
of an ALC-concept description C may contain 2n

disjuncts (assume that the initial form of C is the
conjunction of n conjuncts and each conjunct is
a binary disjunction). Furthermore, the value and
existential restrictions in approxALE (C) may re-
quire to compute the lcs of 2n terms. If the lcs
under the existential restrictions do not subsume
each other (absorption), the approximation may
contain a double exponential number (22n

) of ex-
istential restrictions which do not subsume each
other. This remark is useful for constructing the
proof of Theorem 3.
We now characterize some properties that an ALC-
concept description C leading to the exponential
blow-up should satisfy:

(1) C is the conjunction of n conjuncts and each
conjunct is a binary disjunction. Therefore, the
ALC-normal form of C has 2n disjuncts and each
disjunct is the conjunction including n conjuncts.

(2) From Algorithm 3, the approximation contains
22n

existential restrictions ∃r.lcs{Ei1, ..., Eik} where
k = 2n, i ∈ {1, ..., 22n

}. Each Eij should be an
existential restriction ∃r.Eij where Eij is the con-
junction of concept names belonging to {Pu

l , Qv}
for u, v ∈ {1, 2}, l ∈ {1, ..., n}. Thus, each
lcs{Ei1, ..., Eik} is the conjunction of ∃r.F j

i , and

each F j
i is conjunction of concept names belong-

ing to {Pu
r , Qv} for u, v ∈ {1, 2}, r ∈ {1, ..., n}.

��� �������� ����� ���	�
…

����� ����� ���	�
≈
�� ≈
��…

rr

r r

∀rrr��� �������� ����� ���	�
…

����� ����� ���	�
≈
�� ≈
��…

rr

r r

∀rrr

Figure 7. Double exponential approxALE(C)

Each F j
i can be considered as a subset of {Pu

r , Qv

| u, v ∈ {1, 2}, l ∈ {1, ..., n}}.

(3) The essential property of ∃r.lcs{Ei1, ..., Eik}
for k = 2n, i ∈ {1, ..., 22n

} to be guaranteed,
is that they do not subsume each other. This
means that for each pair of existential restric-
tions ∃r.lcs{Ei1, ..., Eik} and ∃r.lcs{Ej1, ..., Ejk},
i, j ∈ {1, ..., 22n

}, there exists a conjunct ∃r.F r
i

of lcs{Ei1, ..., Eik} such that ∃r.F r
i 6⊑ ∃r.F s

j for
all conjuncts ∃r.F s

j of lcs{Ej1, ..., Ejk}, and vice
versa.
The difficulty in proving the property (3) is due
the computing of lcs{Ei1, ..., Eik}. This task may
become easier if we partition existential restric-
tions obtained from lcs{Ei1, ..., Eik} into groups
and identify representative elements of each group.
Therefore, we only need to consider representative
elements for deciding whether lcs{Ei1, ..., Eik} is
absorbed by lcs{Ej1, ..., Ejk}.
The proof of Theorem 3 needs the following
lemma.

Lemma 5 Let (Ai1
1 ,..., Ain

n) be a n-dimension vec-
tor where ij ∈ {1, 2}. Let I be a bijection from
{1, 2}× ...×{1, 2} into {1, .., 2n} for numbering all
vectors {(Ai1

1 ,...,Ain
n) | (i1, ..., in) ∈ {1, 2} × ... ×

{1, 2}}. We have that each (i1, ..., in) ∈ {1, 2}×...×
{1, 2} determines uniquely k ∈ {1, .., 2n} such that
I (̄i1, ..., īn) = k where īh 6= ih for all h ∈ {1..n}.

The proof of the lemma is trivial since (̄i1, ..., īn) ∈
{1, 2} × ... × {1, 2} for each (i1, ..., in) ∈ {1, 2} ×
... × {1, 2} and I is a bijection.

Proof of Theorem 3.

The theorem will be proven if there exists an
ALC-concept description C such that the size of

20

approxALE (C) is double exponential in the size of
C and f approxALE (C) is irreducible. Let
A1

k = ∃r.(P 1
k ⊓

d
i=1..n,i6=k(P 1

i ⊓ P 2
i) ⊓ Q1 ⊓ Q2),

A2
k = ∃r.(P 2

k ⊓
d

i=1..n,i6=k(P 1
i ⊓ P 2

i) ⊓ Q1 ⊓ Q2)

for k ∈ {1, ..., n},

B1 = ∃r.(Q1 ⊓
d

i=1..n(P 1
i ⊓ P 2

i)),
B2 = ∃r.(Q2 ⊓

d
i=1..n(P 1

i ⊓ P 2
i)) where P i

k, Qj ∈
NC , r ∈ NR for i, j ∈ {1, 2}, k ∈ {1, ..., n}.

Let C be an ALC-concept description:

C := ∃r.B1 ⊓ ∃r.B2 ⊓
dn

i=1(∀r.A1
i ⊔ ∀r.A2

i)

We prove that the number of top-level existential
restrictions of approxALE (C) is 22n

and these ex-
istential restrictions do not subsume each other.
The ALC-normal form of C is as follows:
C ≡ C1 ⊔ ... ⊔ Cm where
Ci ≡ (∃r.B1 ⊓ ∃r.B2 ⊓ ∀r.V al(Ci)) and
V al(Ci) = Aj1

1 ⊓ ... ⊓ Ajn
n , (j1, ..., jn) ∈ ({1, 2} ×

... × {1, 2}).
According to Algorithm 3, we have:

approxALE (C) =
l

(Bi1
,...,Bim)∈({B1,B2}×...×{B1,B2})

{∃r.lcs{(Bij
⊓ V al(Cj))|1 ≤ j ≤ m}} ⊓

∀r.lcs{V al(Cj)|1 ≤ j ≤ m} (*)

Figure 7 shows 22n

existential restrictions on top-
level of the expression (*). The expressions under
these existential restrictions are lcs and each one
applies to m = 2n terms. We denote E as the set of
of existential restrictions obtained from computing
lcs{(Bij

⊓ V al(Cj))|1 ≤ j ≤ m}. According to the
computing of the n-ary lcs, E may contain mn+1

existential restrictions. E is partitioned into three
subsets EX(1), EX(2), EX(3) as follows.
Since each tuple (Bi1 , ..., Bim

) ∈ {B1, B2} × ... ×
{B1, B2} determines a set E of existential restric-
tions, we define a set function E from the domain
{(Bi1 , ..., Bim

)| (Bi1 , ..., Bim
) ∈ {B1, B2} × ... ×

{B1, B2}} to the set of sets of existential restric-
tions obtained from the computing of lcs{(Bij

⊓
V al(Cj))|1 ≤ j ≤ m} for all (i1, ..., im) ∈ {1, 2} ×
... × {1, 2}.
Each set E(X1, ..., Xm) where (X1, ..., Xm) ∈
{B1, B2} × ... × {B1, B2} may contain mn+1 exis-
tential restrictions but some of them can be sub-
sumed by others. In fact, lcs{(Xj ⊓ V al(Cj))|1 ≤
j ≤ m} can be computed as conjunction of

lcs{Ei1 , ..., Eim
} where Er

ir
∈ {Xr} ∪ V al{Cr} for

all r ∈ {1, ..., m}. If {Ei1 , ..., Eim
} ⊆ {El1 , ..., Elm}

then lcs{Ei1 , ..., Eim
} ⊑ lcs{El1, ..., Elm}. Fur-

thermore, we define a selection function:
S(X1, ..., Xm) := {(Ei1 , ..., Eim

)| Eir
∈ {Xr} ∪

V al(Cr), r ∈ {1, ..., m}}. This implies that
E(X1, ..., Xm) = {lcs{Ei1 , ..., Eim

}| (Ei1 , ..., Eim
)

∈S(X1, ..., Xm)}.
We will identify from all them the representative
existential restrictions which form the three fol-
lowing subsets EX(1), EX(2) and EX(3):

1. EX(1)(X1, ..., Xm) is composed of the ex-
istential restrictions (of E(X1, ..., Xm)) that
subsume the following existential restrictions:
lcs(A1

k, A2
k) ≡ ∃r.(Q1 ⊓ Q2 ⊓

dn

l=1,l 6=k(P 1
l ⊓

P 2
l)) for k ∈ {1..n}.

It is obvious that for each k ∈ {1, ..., n} there
exists (Ei1 , ..., Eim

) ∈S(X1, ..., Xm) such that
(Ei1 , ..., Eim

)= {A1
k, A2

k} where Eij
=A1

k ∈
V al′(Cj) or Eij

=A2
k ∈ V al(Cj) for all j ∈

{1..m}. Note that V al′(Cj) is denoted for the
set of conjuncts in Cj .

2. EX(2)(X1, ..., Xm) is composed of the exis-
tential restrictions that subsume the follow-
ing existential restrictions:
lcs(Bi, Bj) ≡ ∃r.(

dn

k=1(P
1
k ⊓P 2

k)) if there ex-
ists Xp, Xq ∈ {X1, ..., Xm} and Xp 6= Xq, or
lcs(Bi, Bi) ≡ ∃r.(Qi ⊓

dn
k=1(P

1
k ⊓ P 2

k)) for
i ∈ {1, 2} if X1 = ... = Xm.
It is obvious that: lcs(Bi, Bj) ∈ E(X1, ..., Xm)
if there exist Xp, Xq ∈ {X1, ..., Xm}, Xp 6=
Xq. In fact, there exists (Ei1 , ..., Eim

) ∈
S(X1, ..., Xm) such that (Ei1 , ..., Eim

) =
{Bi, Bj} where Eir

= Bi ∈ {Xr} ∪ V al(Cr)
or Eir

= Bj ∈ {Xr} ∪ V al(Cr) for r ∈
{1..m}. Similarly, lcs{Bi, Bi} ∈ E(X1, ..., Xm)
if X1= ... = Xm.

3. EX(3)(X1, ..., Xm) is composed of the exis-
tential restrictions that are subsumed by the
following existential restrictions:
lcs{Bik

, Al1
1 , Al2

2 , ..., Aln
n } where (l1, ..., ln) ∈

{1, 2} × ... × {1, 2}, k = I(l̄1, ..., l̄n). The
function I is defined as follows: each con-
junct ∃r.lcs{(Xj ⊓ V al(Cj))|1 ≤ j ≤ m} on
top-level of approxALE (C) where V al(Cj) =

Al1
1 ⊓ ... ⊓ Aln

n , determines I(l1, ..., ln) = j
where j = (l1−1).2(n−1) + ...+(ln −1).20 +1
(the binary value of (l1, ..., ln) plus 1). It is
obvious that I is a bijection. According to
Lemma 5, k = I(l̄1, ..., l̄n) is uniquely deter-
mined from (l1, ..., ln) (**).

21

We have that lcs{Xk, Al1
1 , Al2

2 , ..., Aln
n } ∈

E(X1, ..., Xm) for some (l1, ..., ln) ∈ {1, 2} ×
... × {1, 2}, k = I(l̄1, ..., l̄n). This is implied
from Lemma 5, i.e., for each (l1, ..., ln) ∈
{1, 2} × ... × {1, 2} there exists (Ei1 , ..., Eim

)
∈S(X1, ..., Xm) such that (Ei1 , ..., Eim

) =
{Xk, Al1

1 , Al2
2 , ..., Aln

n } where Eik
= Xk for

k=I(l̄1, ..., l̄n) and Eir
= Als

s ∈ V al(Cr) for
some s ∈ {1..n}, r 6= k.

To show E(X1, ..., Xm) = EX(1)(X1, ..., Xm) ∪
EX(2)(X1, ..., Xm) ∪ EX(3)(X1, ..., Xm), we only
need to show that if e ∈ E(X1, ..., Xm), e /∈
EX(2)(X1, ..., Xm) and e /∈ EX(1)(X1, ..., Xm),
then e ∈ EX(3)(X1, ..., Xm).
Indeed, if e /∈ EX(2)(X1, ..., Xm) and
e /∈ EX(1)(X1, ..., Xm) then e has to be of
the form lcs{Bik

, A′
1, A

′
2, ..., A

′
p} such that Bik

∈ {B1, B2} and {A′
1, ..., A

′
p} ⊆{Aj1

1 , ..., Ajn
n } for

some (j1, ..., jn) ∈ {1, 2} × ... × {1, 2}. Note that
if there exists h ∈ {1..n} such that A1

h, A2
h ∈

{A′
1, ..., A

′
p} then e ∈ EX(1)(X1, ..., Xm). More-

over, we have Bik
= Xk where k=I(j̄1, ..., j̄n) since

Ajh

h /∈ V al′(Ck) for all h ∈ {1..n}.
This means that if for all (Ei1 , ..., Eim

) ∈
S(X1, ..., Xm) such that A1

h and A2
h /∈ {Ei1 , ..., Eim

}
for all h ∈ {1..n} but B1 or B2 ∈ {Ei1 , ..., Eim

}

and A
is1
s1 ,..., A

isp
sp ∈ {Ei1 , ..., Eim

} for s1, ..., sp ∈

{1..n}, then {Ei1 , ..., Eim
}= {Xk,A

is1
s1 ,..., A

isp
sp }

such that {A
is1
s1 ,..., A

isp
sp } ⊆ {Aj1

1 , ..., Ajn
n } for some

(j1, ..., jn) ∈ {1, 2} × ... × {1, 2} and Eik
=Xk=B1

or B2 for k=I(j̄1, ..., j̄n).
Therefore, e ⊑ lcs{Bik

, Aj1
1 , Aj2

2 , ..., Ajn
n } and thus

e ∈ e ∈ EX(3)(X1, ..., Xm).

We now prove that for each couple (X1, ..., Xm),
(Y1, ..., Ym) ∈ {B1, B2}×...×{B1, B2}, (X1, ..., Xm)
6= (Y1, ..., Ym), the following properties are verified:
lcs{(Xu ⊓ V al(Cu))|1 ≤ u ≤ m} 6⊑ lcs{(Yv ⊓
V al(Cv))|1 ≤ v ≤ m}, and
lcs{(Yv ⊓ V al(Cv))|1 ≤ v ≤ m} 6⊑ lcs{(Xu ⊓
V al(Cu))|1 ≤ u ≤ m}.
According to the definition of function E , these
properties are reformulated as follows:

There exists e′ ∈ E(Y1, ..., Ym) such that e′′ 6⊑ e′

for all e′′ ∈ E(X1, ..., Xm) and,
there exists e′′ ∈ E(X1, ..., Xm) such that e′ 6⊑ e′′

for all e′ ∈ E(Y1, ..., Ym).

Owing to the partition of E into the subsets EX(1),
EX(2), EX(3), considering only representative ex-

istential restrictions of the subsets is enough to
prove the properties above.

Let (X1, ..., Xm), (Y1, ..., Ym) ∈ {B1, B2} × ... ×
{B1, B2} and k0 ∈ {1, .., m} such that Xk0

6= Yk0
.

Without loss of generality, assume that:
Yk0

= B1 = ∃r.(Q1 ⊓
dn

l=1(P
1
l ⊓ P 2

l)) and Xk0
=

B2 = ∃r.(Q2 ⊓
dn

l=1(P
1
l ⊓ P 2

l)). We pick e′′ =

∃r.(Q2 ⊓ P j1
1 ⊓ ... ⊓ P jn

n) from EX(3)(X1, ..., Xm)

where ∃r.(Q2⊓P j1
1 ⊓...⊓P jn

n) = lcs{Xk0
, Aj1

1 , ..., Ajn
n }

and k0 = I(j̄1, ..., j̄n). First, show that e′ 6⊑ e′′ for
all e′ ∈ E(Y1, ..., Ym).

– e′ 6⊑ e′′ for all e′ ∈ EX(1)(Y1, ..., Ym) since

{Q2, P
j1
1 , ..., P jn

n } * {Q1, Q2}∪
⋃n

l=1,l 6=h{P
1
l , P 2

l }
for h ∈ {1..n}.

– e′ 6⊑ e′′ for all e′ ∈ EX(2)(Y1, ..., Ym) since

{Q2, P
j1
1 , ..., P jn

n } *
⋃n

l=1{P
1
l , P 2

l } and

{Q2, P
j1
1 , ..., P jn

n } * {Q1}∪
⋃n

l=1{P
1
l , P 2

l }. Note
that (Y1, ..., Ym) 6= (B2, ..., B2) since Yk0

=
B1.

– e′ 6⊑ e′′ for all e′ ∈ EX(3)(Y1, ..., Ym), e′ /∈
EX(1)(Y1, ..., Ym) and e′ /∈ EX(2)(Y1, ..., Ym).

Indeed, e′ has to be of the form lcs{Bih
,A

is1
s1

,..., A
isp
sp } such that {A

is1
s1 ,..., A

isp
sp } ⊆

{Al1
1 , ..., Aln

n } for some (l1, ..., ln) ∈ {1, 2} ×
...×{1, 2} and Bih

= Yh where h = I(l̄1, ..., l̄n).
This means that there exists (Ei1 , ..., Eim

)
∈S(Y1, ..., Ym) such that (Ei1 , ..., Eim

) =

{Yh, A
is1
s1 , ..., A

isp
sp } where {A

is1
s1 ,..., A

isp
sp } ⊆

{Al1
1 , ..., Aln

n } for some (l1, ..., ln) ∈ {1, 2} ×
...× {1, 2} and Eih

=Yh={Yh} ∪ V al′(Ch) for
h=I(l̄1, ..., l̄n).
Assume that h = k0. We have Eih

= Eik0
=Yk0

6= Xk0
where Yk0

= B1= ∃r.(Q1 ⊓
dn

l=1(P
1
l ⊓

P 2
l)), Xk0

= B2= ∃r.(Q2 ⊓
dn

l=1(P
1
l ⊓ P 2

l)).
Hence, e′′ contains Q2 but e′ does not contains
Q2. Thus, e′ 6⊑ e′′.
Assume that h 6= k0. If Eik0

=Yk0
=B1 then,

according to the argument above, e′ 6⊑ e′′.

Otherwise, Eik0
=Aj̄r

r ∈ {Aj̄1
1 ,...,Aj̄n

n } and Aj̄r
r

∈ {A
is1
s1 ,..., A

isp
sp } where k0=I(j̄1, ..., j̄n).

Since e′′=lcs{Xk0
, Aj1

1 , ..., Ajn
n } hence e′′ con-

tains P jr
r for jr ∈ {j1, ..., jn}. On the other

hand, since e′ = lcs{Yh, A
is1
s1 , ..., A

isp
sp } and

Aj̄r
r ∈ {A

is1
s1 ,..., A

isp
sp } hence e′ contains P j̄r

r

but not P jr
r . Thus, e′ 6⊑ e′′.

Similarly, we can show that there exists e′ ∈
E(Y1, ..., Ym) such that e′′ 6⊑ e′ for all e′′ ∈

22

E(X1, ..., Xm). To do it, pick e′ = ∃r.(Q1 ⊓ P j̄1
1 ⊓

... ⊓ P j̄n
n) from E(3)(Y1, ..., Ym) where ∃r.(Q1 ⊓

P j1
1 ⊓ ... ⊓ P jn

n) = lcs{Yk, Aj1
1 , ..., Ajn

n } and k =
I(j̄1, ..., j̄n). We proceed in the same way as above.
It remains to be proven that there does not ex-
ist any ALE-concept description D such that
D ≡ approxALE(C) and the number of existen-
tial restrictions in D (as conjuncts on top-level) is
smaller than 22n

. Assume that there exists such a
concept description D. Since C ⊑ D, the height
of the description tree G(D) is not greater than
2. Furthermore, there exist existential restrictions
∃r.C1, ∃r.C2 where C1, C2 ∈ Ex(approxALE(C))
and an existential restriction ∃r.D1 where D1 ∈
Ex(D) such that D1 ≡ C1, D1 ≡ C2. This implies
that C1 ⊑ C2, which contradicts the property of
approxALE(C) shown above. �

Remark 7 Algorithm 3 yields immediately a nor-
malized ALE-concept description the number of
existential restrictions on top-level of which may
be double exponential. The fact that the algorithm
may generate non-collapsible 22n

existential re-
strictions from 2n disjuncts on top-level of the
ALC-form normal of C (as constructed in the
proof) cannot be explained by the interaction be-
tween value and existential restrictions. By what it
means that the compact representation introduced
in Section 3 cannot help to reduce the size of the
approximation obtained. Hence, the question raised
is whether this exponential blow-up is specific to
the approximation computation.

The remainder of this section will show that the
exponential blow-up caused by the approximation
computation results from the computing of the lcs
of n ALE-concept descriptions.
First, we need the following proposition for this
purpose.

Proposition 4 Let C = C1 ⊔ ... ⊔ Cn be an ALC-
concept description where ⊥ < C1, ..., Cn. The ap-
proximation of C by ALE-concept description can
be computed as follows:

approxALE (C) ≡ lcs{approxALE (C1), ... ,

approxALE (Cn)}

A proof of Proposition 4 can be found in Appendix.

Algorithm 4 is a direct consequence of Algorithm
3 and Proposition 4.

Algorithm 4 approxALE (C)

Require: C is an ALC-concept description in
ALC-normal form C = C1 ⊔ ... ⊔ Cn.

Ensure: approxALE (C)
if C ≡ ⊥ then

return ⊥;
end if

if C ≡ ⊤ then

return ⊤;
end if

if n = 1 then

return
d

A∈prim(C1)
A ⊓d

C′∈ex(C1)
∃r.approxALE (C′ ⊓ val(C1)) ⊓

∀r.approxALE (val(C1));
else

return

lcs{approxALE(C1),..., approxALE (Cn)}
end if

Algorithms 3, 4 provide two methods to compute
the approximation. This allows us to conclude that
a double exponential number of existential restric-
tions occurring on the top-level of the approxima-
tion obtained from Algorithm 3 is due to the com-
puting of the lcs of an exponential number of con-
cept description.
More concretely, Algorithms 3 and 4 establish the
following equivalence for approxALE (C) (C is con-
structed in the proof of Theorem 3)l

(Bi1
,...,Bim)∈({B1,B2}×...×{B1,B2})

{∃r.lcs{

(Bij
⊓ V al(Cj))|1 ≤ j ≤ m}} ⊓

∀r.lcs{V al(Cj)|1 ≤ j ≤ m}

≡

lcs{∃r.B1 ⊓ ∃r.B2 ⊓ ∀r.V al(C1), ... ,

∃r.B1 ⊓ ∃r.B2 ⊓ ∀r.V al(Cm)}

Note that the left side can be obtained from the
right side by computing directly the lcs.
The computing of lcs in the right side requires
a normalization. If the rules in Definition 2 are
used for the normalization, the size of the nor-
malized concept descriptions increases polynomi-
ally. Thus, the exponential blow-up of the com-
puting of lcs in this case is not due to the inter-
action between value and existential restrictions.
This explains why the compact representation pre-

23

sented in Section 3 does not help to avoid the ex-
ponential blow-up. This result is compatible with
the result shown in [3], which states that an ex-
ponential blow-up may occur for the computing
of lcs{C1,...,Cn} where Ci are EL-concept descrip-
tions, i.e., no normalization is necessary.

6. Conclusion and future work

We have presented a specific data structure,
called graph normalization, for representing ALE-
concept descriptions. This data structure can rep-
resent the lcs of two ALE-concept descriptions in
a polynomial space. We have proposed a algorithm
polynomial in space and exponential in time for
deciding subsumption between ALE-concept de-
scriptions including lcs. This result allows us to
add to a reasoner a procedure for treating the lcs
without increasing the complexity of subsumption
inference in time and space.
This paper has shown that the size of the ap-
proximation ALC-ALE in the compact represen-
tation, and thus, in the ordinary representation
may be double exponential. This result together
with double exponential complexity of Algorithm
3, as shown in [1], allows us to conclude that lower
and upper bounds for the size of the approxima-
tion ALC-ALE in the compact representation, and
thus, in the ordinary representation are double ex-
ponential. This gives a partial answer to the ques-
tion left open by the authors in [1]. What we can
affirm from the results of the present paper is that
there does not exist any exponential algorithm for
computing the approximation ALC-ALE in the or-
dinary representation. This affirmation does not
mean that there does not exist any exponential
algorithm for computing the approximation ALC-
ALE . We may obtain a positive answer to this
question if there exists a special representation for
ALE-concept descriptions, which enables to ex-
press the approximation ALC-ALE in an exponen-
tial space.
Our method is based heavily on the characteriza-
tion of subsumption by homomorphism between
description trees presented in [3]. This character-
ization that is extended to normalization graphs
helps to avoid exponential blow-up of the size of
the binary lcs, but does not allow to avoid dou-
ble exponential size of the approximations. The
computation performed in Section 5 shows that

the double exponential blow-up in the approxi-
mation algorithm comes from the following two
sources: i) distribution of conjunctions over dis-
junctions (shown in [8]), ii) exponential size of
lcs{C1, ..., Cn}. This explains why normalization
graphs which compact only the normalization are
not sufficient for avoiding the double exponential
blow-up in the approximation algorithm. However,
as illustrated in Figure 6, a very compact normal-
ization graph (polynomial) may replace the com-
plete binary tree for representing an ALE-concept
description. This could provide an idea for find-
ing a reduction limit of representations for ALE-
concept descriptions.
The work in [11] has given a double exponential al-
gorithm for computing the lcs in the logic ALEN .
This yields a double exponential upper bound for
the size of the lcs of two ALEN -concept descrip-
tions. Hence, a natural question raised is whether
normalization graphs preserve their properties in
more expressive Description Logics, for example,
ALEN . This question deserves to be studied in
future work.

Acknowledgements

The authors wish to thank the anonymous re-
viewers of an earlier version of this paper for com-
ments and suggestions that have helped us to sig-
nificantly improve the quality as well as the read-
ability of this paper.

References

[1] S. Brandt, R. Küsters and A.-Y Turhan. Approxima-
tion and Difference in Description Logics. In D. Fensel,
D. McGuiness, and M.-A Williams, eds. Proc. of KR-
2002, pages 203-214, San Francisco, CA, 2002. Morgan
Kaufmann.

[2] S.Brandt, R. Küsters and A.-Y Turhan. Approximat-
ing ALCN -concept descriptions. Proc. of DL2002.

[3] F. Baader, R. Küsters and R. Molitor. Computing
Least Common Subsumer in Description Logics with
Existential Restrictions. In T. Deen, ed. Proc. of IJ-
CAI -99. pages 96-101, Stockholm, Sweden, 1999, Mor-
gan Kaufmann.

[4] F. Baader and A.-Y Turhan. On the problem of Com-
puting Small Representations of Least Common Sub-
sumers. In Proc. of KI2002. Lecture Notes in Artificial
Intelligence. Aachen, Germany, 2002.

24

[5] F. Baader, R. Molitor and R. Tobies. Tractable and De-
cidable Fragments of Conceptual Graphs. In W. Cyre
and W. Tepfenhart, eds. Proc. of ICCS99. Lecture
Notes in Computer Science. Springer-Verlag, 1999.

[6] F. M. Donini, B. Hollunder, M. Lenzerini, A. M. Spac-
camela, D. Nardi and W. Nutt. The complexity of ex-
istential quantification in concept languages. Artificial
Intelligence (2), 309-327, 1992.

[7] M. Schmidt-Schauß and G. Smolka. Attributive con-
cept descriptions with complements. Artificial Intelli-
gence (48), 1-26, 1991.

[8] B. Nebel. Terminological reasoning is inherently in-
tractable. Artificial Intelligence (43), 235-249, 1990.

[9] F. Baader, D. Calvanese, D. McGuinness, D. Nardi,
and P. F. Patel-Schneider. The Description Logic
Handbook: Theory, Implementation and Applications.
Cambridge Press 2003.

[10] I. Horrocks, P.F. Patel-Schneider and F. van Harmelen.
From SHIQ and RDF to OWL: The making of a web
ontology language. Journal of Web Semantics. 1(1):7-
26, 2003.

[11] R. Küsters and R. Molitor. Computing Least Common
Subsumers in ALEN . In B. Nebel, ed., Proc. of IJCAI -
2001. pages 219-224, 2001, Morgan Kaufmann.

[12] S. Brandt, R. Küsters and A.Y. Turhan. Extensions
of Non-standard inferences to Description Logics with
Transitive Roles. In M. Vardi and A. Voronkov, eds,
Proc. of LPAR03, Lecture Notes in Artificial Intelli-
gence, 2003, Springer-Verlag.

Appendix

Proofs of Propositions and Theorems
Lemma 1 Let Gǫ(C) = (V, E ∪ Eǫ, l) be an ǫ-tree.
Let ck = [vk

1 , ..., vk
q] be a clash in Gǫ(C).

1. There exists a root vl ∈ V of ck such that
vl=pk−l(vk

i) for all 1 ≤ i ≤ q. Furthermore,
for each level l ≤ j ≤ k, there exists at most
a r-successor vj such that vj = pk−j(vk

i) for
some vk

i ∈ {vk
1 , ..., vk

q }.
2. There exist exactly (q − 1) pairs of nodes

(vl1 , ul1),..., (vlq−1 , ulq−1) such that vl1 ,..., vlq

∈ V are r-successors ; ul1 , ..., ulq−1 ∈ V
are ∀r-successors ; p(vli) = p(uli) for all
i ∈ {1, ..., q − 1} and vl1=pk−l1(vk

i1
), ... ,

vlq−1=pk−lq−1(vk
iq−1

) for some (q − 1) nodes

vk
i1

, ..., vk
iq−1

∈ {vk
1 , ..., vk

q }.

Proof: According to Definition 7 (clash), we
have ck ⊆ nk for some ∀r-neighbourhood nk.
1. Since Gǫ(C) without ǫ-edges is a tree, there
exists a node vl ∈ V such that vl=pk−l(vk

i) for
all 1 ≤ i ≤ q. Assume that there exist two r-

successors vm
1 , vm

2 where l ≤ m ≤ k such that vm
1

= pk−m(vk
1), vm

2 = pk−m(vk
2) for some vk

1 , vk
2 ∈

{vk
1 , ..., vk

q }. Since nk is a neighbourhood and vm
1

= pk−m(vk
1), vm

2 = pk−m(vk
2), according to Defini-

tion 6 (neighbourhood), there exists a neighbour-
hood nm such that vm

1 , vm
2 ∈ nm. This contradicts

Definition 6.
2. Since Gǫ(C) without ǫ-edge is a tree, for two
nodes vk

i1
, vk

i2
∈{vk

1 , ..., vk
q }, there exists a node

vc1 such that vc1=pk−c1(vk
i1

) =pk−c1(vk
i2

) and

pk−h(vk
i1

) 6= pk−h(vk
i2

) for all h ∈ {k, ..., c1 + 1}.
Since each node in Gǫ(C) has at most one ∀r-
successor, there exist a r-successor vl1 and a ∀r-
successor ul1 such that p(vl1) = p(ul1) = vc1 and
vl1 , ul1 ∈ {pk−l1(vk

i1
), pk−l1(vk

i2
)}. We show that

there exist (q − 1) r-successors vl1 , ..., vlq−1 and
(q − 1) ∀r-successors ul1 , ..., ulq−1 that have the
property described above.
By induction, assume that we have built r-
successors vl1 , ..., vls−1 and (s − 1) ∀r-successors
ul1 , ..., uls−1 (s < q) from nodes vk

i1
,..., vk

is

∈{vk
1 , ..., vk

q } such that p(vl1) = p(ul1)=vc1
, ...,

p(vls−1) = p(uls−1)=vcs−1 and vl1 = pk−l1(vk
i1

),

..., vls−1 = pk−ls−1(vk
is−1

) (*) where uli are ∀r-

successors. Assume that l1 < ... < ls−1. Let vk
is+1

∈ {vk
1 , ..., vk

q }\ {vk
i1

, ..., vk
is
}.

Assume that pk−cj (vk
is+1

)=vcj for some cj ∈
{c1, ..., cs−1}. There exists a node vcs such that
pk−cs(vk

is+1
)=pk−cs(vk

ih
)=vcs where vk

ih
∈ {vk

i1
, ..., vk

is
}

and pk−m(vk
is+1

) 6= pk−m(vk
i1

),..., pk−m(vk
is+1

) 6=

pk−m(vk
is

) for all m ∈ {k, ..., cs + 1}. This im-

plies that cs > cj since pk−cj (vk
is+1

)=vcj =p(vlj)=

pk−lj+1(vk
ij

). Let vls and uls be a r-successor and

the ∀r-successor, respectively, such that p(vls)=
p(uls)= vcs and vls=pk−ls(vk

ix
), uls=pk−ls(vk

iy
)

where vk
ix

=vk
is+1

and vk
iy
∈ {vk

i1
, ..., vk

is
}, or vk

iy
=vk

is+1

and vk
ix

∈ {vk
i1

, ..., vk
is
} (**).

If vcs = vcj for some vcj ∈ {vc1 , ..., vcs−1} then
ls = lj and there exists a neighbourhood nls such
that vls , vlj ∈ nls (since vls , vlj are ancestors of
vk

i1
, ..., vk

is
). From 1. of the lemma, we obtain that

vls = vlj , and thus vk
ix

∈ {vk
i1

, ..., vk
is
}. Since each

node of Gǫ(C) has at most one ∀r-successor, we
have vk

iy
∈ {vk

i1
, ..., vk

is
} as well. This contradicts

(**). Therefore, we have vcs 6= vcj for all vcj ∈
{vc1 , ..., vcs−1}, and thus vls 6= vlj for all vlj ∈
{vl1 , ..., vls−1}. Furthermore, i) if vk

ix
=vk

is+1
where

vls=pk−ls(vk
ix

) then we have vl1 = pk−l1(vk
i1

), ...,

25

vls−1 = pk−ls−1(vk
is−1

), vls = pk−ls(vk
is+1

). ii) If

vk
ix

= vk
is

where vls=pk−ls(vk
ix

) then we have vl1

= pk−l1(vk
i1

), ..., vls−1 = pk−ls−1(vk
is−1

), vls =

pk−ls(vk
is

). iii) Otherwise, i.e., vk
ix

∈ {vk
i1

, ..., vk
is
}

and vk
ix

6= vk
is

vls=pk−ls(vk
ix

) then it is that vlx =

pk−lx(vk
ix

) (*). Thus, now vlx = pk−lx(vk
is+1

) and

vls = pk−ls(vk
ix

).

Assume that pk−cj (vk
is+1

)6=vcj for all
cj ∈ {c1, ..., cs−1}. From l1 < ... < ls−1 we have
c1 < ... < cs−1. There exists a node vcs such that
cs < c1 and pk−cs(vk

is+1
)=pc−cs(vc1)=vcs where

pk−c1+m(vk
is+1

) 6= pm(vc1) for all m ∈ {1, ..., cs+1}.

Let vls , uls be a r-successor and a ∀r-successor
such that p(vls)=p(vls)=vcs . It is obvious that
vls /∈ {vl1 , ..., vls−1}. Furthermore, i) if vk

ih
=vk

is+1

where vls=pk−ls(vk
ih

) we have vl1 = pk−l1(vk
i1

),

..., vls−1 = pk−ls−1(vk
is−1

), vls = pk−ls(vk
is+1

) ii)

we have to have that vls=pk−ls(vk
is

) and thus vl1

= pk−l1(vk
i1

), ..., vls−1 = pk−ls−1(vk
is−1

), vls =

pk−ls(vk
is

).
We have shown that there exist (q − 1) pairs
(vl1 , ul1), ..., (vlq−1 , ulq−1) where vli are r-successors,
uli are ∀r-successors, p(vli) = p(uli) for all
i ∈ {1, ..., q − 1} and vl1=pk−l1(vk

i1
), ... , vlq−1=

pk−lq−1 (vk
iq−1

) for some (q − 1) nodes vk
i1

, ..., vk
iq−1

∈ {vk
1 , ..., vk

q }.

Lemma 2 Let Gǫ(C) = (V, E ∪ Eǫ, l) be an ǫ-tree
where v0 ∈ V is its root and Gǫ

C=(V ′, E′∪E′ǫ, l′) be
its normalization graph. Let n′k be a r-neighbour-
hood (∀r-neighbourhood) in Gǫ

C . If k = 0 then la-
bel(n′0) 6= {⊥} iff n′0 does not contain any clash.
If k > 0 then the following claims are equivalent :

1. label(n′k) 6= {⊥} .
2. There exists a neighbourhood nk in Gǫ(C)

such that nk = n′k ∩ V and label(nk) = la-
bel(n′k).

3. There does not exist any q-clash [vk
1 , .., vk

q]

such that {vk
1 , .., vk

q } ⊆ nk, nk = V ∀(n′k−1)

∩ V and n′k ∈ N(n′k−1) where nk is a ∀r-
neighbourhood in Gǫ(C).

Proof: We show 1. ⇔ 2.
If k = 0 then, according to Definition 8 (normal-
ization graph), n′0 = n0 = {v0}. We have label(n′0)
6= {⊥} iff l′(v0) 6= {⊥}. This implies that l(v0) 6=
{⊥} and l(v0) is not modified by the normaliza-
tion (normalization graph) and thus label(n0) =
label(n′0).

Assume k > 0.
I) “1. ⇒ 2.”. Assume that label(n′k+1) 6= {⊥}.
This means that label(n′k) 6= {⊥} where n′k+1

∈ N(n′k). The induction hypothesis asserts that
there exists a neighbourhood nk in Gǫ(C) such that
nk = n′k ∩ V and n′k+1 ∈ N(n′k).
If n′k+1 does not contain any r-successor then,
by Definition 9 (extended-neighbourhood), it is
that n′k+1 = V ∀(n′k) since label(n′k+1) 6= {⊥},
and thus V ǫ(n′k) = ∅. Therefore, there exists a
neighbourhood nk+1 = V ∀(n′k) ∩ V = n′k+1 ∩
V where nk+1 ∈ N(nk) and n′k+1 ∈ N(n′k). This
means that n′k+1 is formed from nk+1 and some
∀r-successors v′k+1 that are added by the normal-
ization (Definition 8). From this and the construc-
tion of normalization graphs, it is that l′(v′k+1)=∅
for all v′k+1 ∈ n′k+1 \ nk+1. This implies that la-
bel(nk+1) = label(n′k+1).
If n′k+1 contains a r-successor vk+1 then there ex-
ists a neighbourhood mk+1 := nk+1 ∪{vk+1} such
that mk+1 = n′k+1 ∩ V and nk+1 = V ∀(n′k) ∩
V where n′k+1 ∈ N(n′k). We have l(vk+1) does
not contain any bottom-concept ⊥ since Gǫ(C) is
built from C that is in weak normal form. This
means that n′k+1 is formed from mk+1 and some
∀r-successors v′k+1 that are added by the normal-
ization (Definition 8) where l′(v′k+1) 6= {⊥}. This
implies that label(mk+1) = label(n′k+1).
II) “2. ⇒ 1.”. Assume that there exists a r-neigh-
bourhood (∀r-neighbourhood) nk+1 in Gǫ(C) such
that nk+1 = n′k+1 ∩ V and label(nk+1) = la-
bel(n′k+1). By absurdity, assume that label(n′k+1)
= {⊥}. The definition of function label yields that
l(v′k+1) = {⊥} for some v′k+1 ∈ n′k+1. Since
Gǫ(C) is built from C in weak normal form, it
is that v′k+1 is not a r-successor. Moreover, by
the normalization (Definition 8) and the simplifi-
cation of ǫ-trees for 1-clashes, we have v′k+1 /∈ nk+1

and v′k+1 is not a ∀r-successor. Thus, according
to Definition 9 (extended-neighbourhood), v′k+1

∈ V ǫ(n′k) = n′k+1. By consequent, nk+1 6⊆ n′k+1

which is a contradiction.

We show 1. ⇔ 3. by absurdity.
If k = 0 then, according to Definition 8 (normal-
ization graph), n′0= n0= {v0}. We have label(n′0)
= {⊥} iff l′(v0) = {⊥} or l(v0) is modified by the
normalization (simplification for 1-clash). This im-
plies that label(n′0) = {⊥} iff there exists a 1-clash
[v0]. Assume |Gǫ(C)| > k > 0.
I) “3. ⇒ 1.”. Assume label(n′k+1) = {⊥}. The
definition of function label yields that l′(uk+1) =

26

{⊥} for some uk+1 ∈ n′k+1. Moreover, we have la-
bel(n′k) 6= {⊥} where n′k+1 ∈ N(n′k). According
to items 1. and 2. of this lemma, there exists a
neighbourhood nk=n′k ∩ V .
Assume that n′k+1 is a r-neighbourhood of n′k. Let
vk+1

i be the r-successor such that vk+1
i ∈ n′k+1.

Let nk+1 be the r-neighbourhood of nk in Gǫ(C)
such that vk+1

i ∈ nk+1. If there exists xk+1 ∈ nk+1

such that l(xk+1) = {⊥} then there is a 1-clash
[xk+1]. From the simplification for 1-clash [xk+1]
we have l′(xk+1) = ∅. Furthermore, if uk+1 /∈ nk+1

then uk+1 /∈ n′k+1 since, according to the con-
struction of the normalization graph, there does
not exist any ǫ-edge from vk+1

i to uk+1 such that
l′(uk+1) = {⊥}. Thus, label(n′k+1) 6= {⊥}, which
is a contradiction.
Assume that n′k+1 is the ∀r-neighbourhood of
n′k. Since uk+1 is not a ∀r-successor and uk+1 is
added by the normalization (normalization graph),
we have n′k+1 = V ǫ(n′k). Let nk+1 be the ∀r-
neighbourhood of nk in Gǫ(C). We consider the
following cases:
i) Assume that uk+1 comes from 1-clash [vk+1],
i.e., (vk∀rvk+1) ∈ E, (vk+1ǫuk+1) ∈ E′ǫ and
P(uk+1) = {vk}. This implies that vk+1 ∈ nk+1.
Since nk = n′k ∩ V hence nk+1 = V ∀(n′k) ∩ V .
ii) By the construction of the normalization graph
(Definition 8), there exists a node wk+1

l1
∈ V ′

such that (wk+1
l1

ǫuk+1) ∈ E′ǫ, P(wk+1
l1

) = P(uk+1)

and wk+1
l1

∈ V ∀(n′k). Moreover, there exist wl1
l1

∈

V ′ and a r-successor vl1 ∈ V where l1 < k +
1 such that (vl1ǫwl1

l1
) ∈ E′ǫ, Pk−l1+1(uk+1) =

Pk−l1+1(wk+1
l1

) = {wl1
l1
} and Pk−l1+1(vk+1

l1
)={vl1}

for some vk+1
l1

∈ nk+1. Moreover, there is a neigh-

bourhood n′l1 such that N−(k+1−l1)(n′k+1)=n′l1

and vl1 , wl1
l1

∈ n′l1 . There exists a clash ck+1
0 such

that vl1 ∈ V (ck+1
0) and vl1 is the tail of ck+1

0 . Ac-
cording to Definition 9 (extended-neighbourhood),
there exists wl1−1

l2
∈ P(wl1

l1
) such that wl1−1

l2
∈

n′l1−1 and N−1(n′l1) = n′l1−1. If wl1−1
l2

is not a ∀r-
successor (nor r-successor) there exists uniquely
a r-successor vl2 where l2 = l1 − 1 is the high-
est level such that vl2 ∈ V (ck+1

0), (vl2ǫwl1−1
l2

) ∈

E′ǫ and vl2 ∈ n′l1−1. If wl1−1
l2

is a ∀r-successor

then there exists uniquely a r-successor vl2 where
l2 < l1 − 1 is the highest level such that vl2 ∈
V (ck+1

0), (vl2ǫpl1−1−l2(wl1−1
l2

)) ∈ E′ǫ, vl2 ∈ n′l2 ,

N−(l1−l2)(n′l1) = n′l2 and Pk−l2+1(vk+1
l2

)={vl2}

for some vk+1
l2

∈ nk+1 (note that P l1−1+1(wl1−1
l2

),...

, P l1−1+l2(wl1−1
l2

) are singleton).

This process is terminated at w
lp
lp

where p(w
lp
lp

) =

p(vlp), vlp ∈ V and we obtain that V (ck+1
0) =

{vl1 , ..., vlp} and Pk−li+1(vk+1
li

)={vli} where vk+1
li

∈ nk+1 for all vli ∈ V (ck+1
0). According to item

2. of Lemma 1, we can pick nodes vj1 , ..., vjq from
{vl1 , ..., vlp} such that for each vji , ji ∈ {j1, ..., jq},
there exists a ∀r-successor uji that satisfies p(uji)
= p(vji) and pk−ji+1(vk+1

ji
)=vji for some vk+1

ji
∈

nk+1. By the construction of the normalization
graph, we have that ck+1

0 = [vk+1
j1

, ..., vk+1
jq

, vk+1
jq+1

]

where pk−lp+2(vk+1
jq+1

) = p(vlp).

To sum up, we have ck+1
0 ⊆ V ∀(n′k). Since nk=n′k

∩ V hence nk+1=V ∀(n′k) ∩ V where nk+1 is the
∀r-neighbourhood of nk.
II) “1. ⇒ 3.”. Assume that nk+1 is the ∀r-
neighbourhood of nk in Gǫ(C) and there is a (q+1)-
clash [vk+1

j1
, ..., vk+1

jq+1
] such that {vk+1

j1
, ..., vk+1

jq+1
} ⊆

nk+1 and nk+1 ⊆ V ∀(n′k) where n′k+1 ∈ N(n′k).
We show that there exists a node uk+1 and such
that l′(uk+1) = {⊥} and uk+1 ∈ V ǫ(n′k).
In fact, if q = 0 then there exist (wk

1∀rwk+1
1) ∈ E′,

(wk+1
1 ǫuk+1) ∈ E′ǫ, wk+1

1 ∈ V ∀(n′k) and uk+1 /∈
V ∀(n′k). Thus, n′k+1 = V ǫ(n′k) = {uk+1}. There-
fore, label(n′k+1) = {⊥}.
Assume that q > 0. Let vl1 , ..., vlp be r-successors
built from clash [vk+1

j1
, ..., vk+1

jq+1
] by item 1. of

Lemma 1. We have vl1=pk−l1+1(vk+1
l1

), ...,vlq

= pk−lq+1(vk+1
lp

) for some vk+1
l1

, ... , vk+1
lp

∈

{vk+1
j1

, ..., vk+1
jq+1

}. We have {vk+1
j1

, ..., vk+1
jq+1

}= {vk+1
l1

,

... , vk+1
lp

}. Assume that l1 > l2 > ... > lp.

Since {vk+1
l1

, ..., vk+1
lp

} ⊆V ∀(n′k) there exists a

neighbourhood n′lp such that pk−lp+1(vk+1
l1

),... ,

pk−lp+1(vk+1
lp

) ∈ n′lp and n′lp=N−(k−lp)(n′k) (if

v ∈ V then P(v) is singleton). Note that vlp =

pk−lp+1(vk+1
lp

). Since p(vlp) = p(w
lp
lp

), w
lp
lp

∈ V ′\ V

and (vlpǫw
lp
lp

) ∈ E′ǫ, we have w
lp
lp

∈ n′lp .
For each lp ≤ m ≤ k , from item 1. of
Lemma 1, there exists at most a r-successor vm

such that pk−m+1(vk+1
lj

) = vm for some vk+1
lj

∈ V ∀(n′k). This means that there exist neigh-
bourhoods n′lp+1∈N(n′lp), n′lp+2∈N(n′lp+1), ... ,
n′k∈N(n′k−1) such that pk−m+1(vk+1

l1
), ...,

pk−m+1(vk+1
lp

) ∈ n′m. Since p(vlp) and vl1 are the

head and tail of clash [vk+1
j1

, ..., vk+1
jq+1

], according

27

to Definition 8, the clash [vk+1
j1

, ..., vk+1
jq+1

] is treated
and coded in the normalization graph Gǫ

C .
For each r-successor vm such that m ∈ {lp, ..., l1},
by the construction of the normalization graph,
there exists an ǫ-edge (vmǫwm) ∈ E′ǫ where
m = li, wm−1

li+1
∈ P(wm) and Pm−li+1−1(wm−1

li+1
)

= {w
li+1

li+1
} (there is a path of ∀r-edges from

w
li+1

li+1
to wm−1

li+1
). Thus, by Definition 9 (extended-

neighbourhood), vm, wm ∈ n′m if wm−1
li+1

∈ n′m−1.
Note that for all li+1 < m < li where li+1, li ∈
{lp, ..., l1} we have vm, wm ∈ n′m if wm−1

li+1
∈ n′m−1

since wm ∈ V ∀(n′m−1).
In consequence, we obtain that wk

l1
∈ n′k where

pk−l1(wk
l1

) = wl1
l1

. Thus, wk+1
l1

∈V ∀(n′k) where

(wk
l1
∀rwk+1

l1
) ∈ E′. By the construction of the nor-

malization graph, there is an ǫ-edge (wk+1
l1

ǫuk+1)

∈ E′ǫ such that wk+1
l1

∈ V ∀(n′k), uk+1 /∈ V ∀(n′k)

and l′(uk+1)={⊥}. By the definition of neighbour-
hood, we obtain n′k+1 = V ǫ(n′k) = {uk+1}. There-
fore, label(n′k+1) = {⊥}.

Lemma 3 Let C be an ALE-concept description
in the weak normal form. Let Gǫ(C) and Gǫ

C be
the ǫ-tree and normalization graph of C, respec-
tively. There exists an isomorphism between B(Gǫ

C)
and the description tree H which is obtained from
B(Gǫ(C))=(V3, E3, z

0, l3) by applying exhaustively
the following rules (p is the predecessor function
of B(Gǫ(C))):

1. P , ¬P ∈ l3(z), P ∈ NC , z ∈ V3 →
l3(z) := {⊥} (rule 5g)

2. (zrz′) ∈ E3, B(Gǫ(C))(z′) = G(⊥) →
B(Gǫ(C))(z) := G(⊥) (rule 6g)

3. ⊥ ∈ l3(z), z ∈ V3 →
B(Gǫ(C))(z) := G(⊥) (rule 7g)

Proof: Let G(C) = (V, E, v0, l), its ǫ-tree
Gǫ(C) = (V, E∪Eǫ, l) and normalization graph Gǫ

C

= (V ′, E′ ∪ E′ǫ, l′). Let B(Gǫ
C) = (V1, E1, u

0, l1),
H=(V2, E2, w

0, l2) and B(Gǫ(C)) = (V3, E3, z
0, l3).

We will show this lemma by using Lemma 2. First,
we prove the following claim:
Lemma For each node zk ∈ V3 it holds that zk ∈
V2 and l2(z

k) = {⊥} iff

1. there does not exist any path composed of r-
edges from zh to zl (l < h) in B(Gǫ(C)) such
that ⊥ ∈ l3(z

h) or P,¬P ∈ l3(z
h), and pn(vk)

=zl for some n > 0; and

2. P,¬P ∈ l3(z
k) for some P ∈ NC , or there

exists a path composed of r-edges from zh to
zk (k < h) in B(Gǫ(C)) such that ⊥ ∈ l3(z

h)
or P,¬P ∈ l3(z

h).

Condition 1. guarantees that vk ∈ V2. In fact, if
there exist such a path then, from rules (5g), (6g),
(7g), we have l2(z

h) = {⊥}. Since pn(vk) =zl hence
zk is deleted by rule 6g) or 7g). Conversely, for all
nodes zl ∈V3 such that pn(vk) =zl for some n > 0,
if there does not exist any path composed of r-
edges from zh to zl (l < h) in B(Gǫ(C)) such that
⊥ ∈ l3(z

h) or P,¬P ∈ l3(z
h) then zk is not deleted

from V3 by rules 6g) or 7g).
In addition, if P,¬P ∈ l3(z

k) for some P ∈ NC

then l2(z
k) = {⊥}. Assume that there exists a

path composed of r-edges from zl to zk (k < l) in
B(Gǫ(C)) such that ⊥ ∈ l3(z

h) or P,¬P ∈ l3(z
h),

and pn(vk) =zl for some n > 0. From rules (5g),
(6g), (7g), we have l2(z

k) = {⊥}. Conversely, as-
sume that P,¬P /∈ l3(z

k) for all P ∈ NC and l2(z
k)

= {⊥}. This implies that l3(z
k) is modified by rules

(6g), (7g). Thus, there exists a path composed of
r-edges from zh to zk (k < h) in B(Gǫ(C)) such
that ⊥ ∈ l3(z

h) or P,¬P ∈ l3(z
h).

To construct a bijection between V2 and V1 , we
can construct a bijection φ between the sets of
neighbourhoods in Gǫ

C and Gǫ(C). Note that neigh-
bourhoods nk such that label(nk) = {⊥} corre-
spond to leaves of trees, i.e., N(nk) = ∅. We set
φ(n0) = m0 where n0, m0 are 0-neighbourhoods,
respectively, in Gǫ

C and Gǫ(C). It is obvious that
label(n0) = {⊥} iff label(m0) = {⊥}. In fact, la-
bel(m0) = {⊥}, by Lemma above, iff P,¬P ∈ la-
bel(m0) for some P ∈ NC , or there exist neigh-
bourhoods m1 ∈ N(m0),...,ml ∈ N(ml−1) in
Gǫ(C) and r-edges (v0rv1),...,(vl−1rvl) ∈ E, v1 ∈
m1, v2 ∈ m2,..., vl ∈ ml such that P , ¬P ∈ l(vl

i)
∪ l(vl

j), vl
i, v

l
j ∈ ml, P ∈ NC (vl

i 6= vl
j) or l(vl

i) =

{⊥} (vl
i = vl

j). By Definition 7, this implies that

there exists a 1-clash [v0], v0 ∈ n0. By Lemma 3,
label(n0) = {⊥} iff there exists 1-clash [v0].

Assume that φ(nk) = mk and label(nk) = la-
bel(mk) 6= {⊥}. Let nk+1 ∈ N(nk) be a r-
neighbourhood (∀r-neighbourhood) in Gǫ

C . As-
sume that label(nk+1) 6= {⊥}. By Lemma 3, there
exists a r-neighbourhood (∀r-neighbourhood) mk+1

∈ N(mk) in Gǫ(C) such that mk+1 = nk+1 ∩ V3,
and there does not exist any q-clash [vk+1

1 , ..., vk+1
q]

such that {vk+1
1 , ..., vk+1

q } ⊆ mk+1. Definition 7
yields that there do not exist neighbourhoods

28

mk+2 ∈ N(mk+1),..., ml+1 ∈ N(ml) (l > k + 1)
in Gǫ(C) and r-edges (vk+1rvk+2), ..., (vl−1rvl) ∈
E, vk+1 ∈ mk+1, ..., vl ∈ ml such that P , ¬P ∈
l(vl

i) ∪ l(vl
j), vl

i, v
l
j ∈ ml, P ∈ NC or {⊥} = l(vl

i)

(vl
i = vl

j). By Lemma above, we have that the la-

bel of the node that corresponds to mk+1 is dif-
ferent from {⊥}, i.e., label(mk+1) 6= {⊥} and thus
label(nk+1) = label(mk+1).

Conversely, from this neighbourhood mk+1 we
can determine uniquely nk+1 = V ∀(nk) if mk+1

is a ∀r-neighbourhood (i.e. mk+1 = nk+1 ∩ V3),
or nk+1 = {vk+1} ∪ {V ǫ

vk+1}, mk+1 = nk+1 ∩
V3 (notations in the definition of neighbourhood)
where vk+1 ∈ mk+1 is a r-successor if mk+1 is a
r-neighbourhood. Thus label(nk+1) = label(mk+1)
6= {⊥}. We can follows the schema : label(mk+1)
6= {⊥} (by Lemma above) => no existence of se-
quence of neighbourhood => no existence of clash
(Lemma 3) => label(nk+1) = label(mk+1) 6= {⊥}.
Therefore, we set φ(nk+1) = mk+1.

Assume that label(nk+1) = {⊥}. By Lemma
3, it is obvious that nk+1 is a ∀r-neighbourhood
and there exists a q-clash [vk+1

1 , ..., vk+1
q] such

that {vk+1
1 , ..., vk+1

q } ⊆ V ∀(nk). By Definition 7,

there exist neighbourhoods mk+2 ∈ N(mk+1),...,
ml+1 ∈ N(ml) (l > k+1) in Gǫ(C), {vk+1

1 , ..., vk+1
q }

⊆ mk+1 and r-edges (vk+1rvk+2), ..., (vl−1rvl) ∈
E, vk+1 ∈ mk+1, ..., vl ∈ ml such that P , ¬P ∈
l(vl

i) ∪ l(vl
j), vl

i, v
l
j ∈ ml, P ∈ NC or {⊥} = l(vl

i)

(vl
i = vl

j). By Lemma above, we have label(mk+1)

= {⊥} and mk+1 is a ∀r-neighbourhood. Con-
versely, from this neighbourhood mk+1 we can
uniquely determine nk+1 = V ǫ(nk) and thus la-
bel(nk+1) = label(mk+1) = {⊥}. We set φ(nk+1)
= mk+1.
By consequent, we have constructed an isomor-
phism φ between H and B(Gǫ

C) .

Proposition 1 Let C be an ALE-concept descrip-
tion. There exists an isomorphism between B(Gǫ

C)
and GC .

Proof: Assume that C is in the weak normal
form. Let G(C) = (V, E, v0, l) and its ǫ-tree Gǫ(C)
= (V, E ∪ Eǫ, l′). Let B(Gǫ(C)) = (V1, E1, u

0, l1).
Let G(C′) = (V2, E2, w

0, l2) be the description tree
of the concept description C′ obtained from C by
applying rules 1, 2 in Definition 2. From Lemma
3, we only need to prove that there exists an iso-
morphism between the tree obtained by applying
the rules in Lemma 3 to B(Gǫ(C)), and GC . First,

we show that there exists an isomorphism between
B(Gǫ(C)) and G(C′).
We construct by induction on level k (0 ≤ k ≤
|G(C)|) a bijection φ: V2 → V1 such that l2(w

0)
= l2(u

0), l2(w) = l1(φ(w)) for all w ∈ V2, and
(φ(w1)eφ(w2)) ∈ E1 for all (w1ew2) ∈ E2.
Level k = 0. Since Gǫ(C) has unique 0-neighbour-
hood (v0), we obtain the root u0 of B(Gǫ(C))
where l1(u

0) = l′(v0) = l(v0). We obtain also the
root w0 of G(C′) where l2(w

0) = l(v0). We set
φ(w0) := u0.
Level k > 0. Let wk ∈ V2 be a node at level
k of G(C′). We have that wk corresponds to a
set of nodes {vk

1 , ..., vk
m}, vk

1 , ..., vk
m ∈ V resulting

from the normalization. Hence, l2(w
k) = {l(vk

1) ∪
...∪ l(vk

m)}. By induction hypothesis, assume that
φ(wk) = uk where the node uk, which is obtained
from executing Algorithm 1 for operator B, cor-
responds to the k-neighbourhood (vk

1 , ..., vk
m) of

Gǫ(C) and l1(u
k) = label(uk) = {l(vk

1)∪ ...∪ l(vk
m)}

(Note that G(C′) and Gǫ(C) share the set of nodes
V). If there is not any confusion we write neigh-
bourhood uk for node uk. We consider the following
two cases:

1. Let vk+1
1 , ..., vk+1

l be all ∀r-successors of

the nodes vk
1 , ..., vk

m, i.e., {vk+1
1 , ..., vk+1

l } =
V ∀(uk). The application of normalization
rule 1 yields a (k + 1)-node wk+1 =
{vk+1

1 , ..., vk+1
l } of G(C′) and a ∀r-edge that

connects wk to wk+1, i.e., (wk∀rwk+1) ∈
E2. Let uk+1 be the ∀r-neighbourhood of uk,
i.e., uk+1 = V ∀(uk). If ⊥ ∈ {l(vk+1

1) ∪ ... ∪
l(vk+1

l)}, we have that label(uk+1) = {⊥}
and ⊥ ∈ l2(w

k+1). Otherwise, label(uk+1) =
{l(vk+1

1)∪...∪l(vk+1
l)} = l2(w

k+1). Therefore,
the unique ∀r-successor wk+1 of wk corre-
sponds to the unique ∀r-successor uk+1 of uk

and l2(w
k+1) = l1(u

k+1). We set φ(wk+1) :=
uk+1.

2. Let vk+1
0 be a r-successor of one of nodes

vk
1 , ..., vk

m and vk+1
1 , ..., vk+1

l be all ∀r-successors
of nodes vk

1 , ..., vk
m. The application of the

normalization rule 2 yields a (k + 1)-node
wk+1 = {vk+1

0 , vk+1
1 , ..., vk+1

l } of G(C′) and
a r-edge that connects wk to wk+1, i.e.,
(wkrwk+1) ∈ E2. Let uk+1 and (ukruk+1) be
a node and a r-edge that are generated from
node uk by Algorithm 1.
Since vk+1

i is either a ∀r-successor or a r-
successor of one of nodes vk

1 , ..., vk
m for all

29

i ∈ {0, .., l}, we have p(vk+1
i) ∈ {vk

1 , ..., vk
m}.

Furthermore, since each node vk
j where vk

j ∈

{vk
1 , ..., vk

m} is connected to a node vk
i ∈

{vk
1 , ..., vk

m} by an ǫ-edge, hence by Defini-
tion 5, two nodes vk+1

0 , vk+1
j where vk+1

j ∈

{vk+1
1 , ..., vk+1

l } are connected by an ǫ-edge.
Hence, according to Algorithm 1 for opera-
tor B, the node uk+1 corresponds to (k + 1)-
neighbourhood (vk+1

0 , vk+1
1 , ..., vk+1

l). (Note

that V ǫ
vk
0

= {vk+1
0 , vk+1

1 , ..., vk+1
l }, (vk

0rvk+1
0)

∈ E) and l1(u
k+1) = label(uk+1). If ⊥ ∈

{l(vk+1
0)∪l(vk+1

1)∪...∪l(vk+1
l)}, we have that

label(uk+1) = {⊥} and ⊥ ∈ l2(w
k+1). Other-

wise, label(uk+1) = {l(vk+1
0) ∪ l(vk+1

1) ∪ ... ∪
l(vk+1

l)} = l2(w
k+1).

Conversely, from the (k + 1)-neighbourhood
{vk+1

0 , vk+1
1 , ..., vk+1

l } we can show that G(C′)

has a node wk+1 = {vk+1
0 , vk+1

1 , ..., vk+1
l } and

a r-edge which connects wk to wk+1.
We set φ(wk+1) := uk+1.

We have constructed a bijection φ as specified
above from tree B(Gǫ(C)) into the tree G(C′). Ac-
cording to Lemma 3, there exists an isomorphism
between B(Gǫ

C) and H where the tree H is obtained
from B(Gǫ(C)) by applying the rules in Lemma 3.
Therefore, it is sufficient to prove that the descrip-
tion tree GC can be obtained from the tree G(C′)
by applying the rules in Lemma 3 (which corre-
spond to rules 5, 6, 7 in Definition 2). In fact, each
application of rules 5, 6, 7 to C′ corresponds to
each application of rules 5g, 6g, 7g to G(C′) and
conversely. Moreover, the application of rules 5, 6,
7 to C′ allows us to obtain the strong normal form
of C from which the description tree GC is built.
Let G′ be the tree obtained by applying the rules
5g, 6g, 7g to G(C′). Thus, G′ is isomorph to GC .

Proposition 2 Let C and D be ALE-concept de-
scriptions, and let Gǫ

C and Gǫ
D be their normaliza-

tion graphs. Algorithm 2 applied to Gǫ
C and Gǫ

D can
decide subsumption between C and D in polyno-
mial space and exponential time.

Proof: According to Remark 1, the trans-
formation from ALE-concept descriptions into the
corresponding ǫ-trees takes a polynomial time in
the size of input concept descriptions C and D
(note that C and D must be transformed into weak
normal form before building the corresponding ǫ-
trees Gǫ(C) and Gǫ(D)). Additionally, Remark 3
shows that adding nodes for stocking clashes in-

creases polynomially the size of ǫ-trees. Thus, the
size of normalization graphs Gǫ

C and Gǫ
D is polyno-

mial in the size of C and D.
Algorithm 2 checks the existence of a homo-
morphism between between two description trees
B(Gǫ), B(Hǫ). According to Theorem 1, Algorithm
2 allows us to decide subsumption between C and
D.
According to Definition 9 (extended-neighbourhood),
the number of (k + 1)-neighbourhoods generated
from a k-neighbourhood is polynomial in the size
of Hǫ (or Gǫ). Furthermore, since the height of
Hǫ (or Gǫ) is bounded by the size of tree and vis-
ited branches can be freed, the algorithm needs a
piece of memory polynomial in the size of Hǫ (or
Gǫ) to store the neighbourhoods along the path
(w0, wk+1, ..., wn) from root w0 to leaf wn. These
paths are built by inductive calls in the algorithm.
This implies that the algorithm takes an exponen-
tial time (cf. Remark 5) and a polynomial space.

Lemma 4 Let nk−1
G = {u1, ..., um} and nk−1

H =
{w1, ..., wn} be (k − 1)-neighbourhoods respectively
in Gǫ, Hǫ ∈ T E

ALE . Let nk−1
G×H be a (k − 1)-

neighbourhood in Gǫ ×Hǫ. Assume that
{(u1, w1), ..., (um, wn)} ⊆ nk−1

G×H and
lG×H(ui, wj) = ∅, (ui, wj) does not have any r-
successor and ∀r-successor for all
(ui, wj) ∈ nk−1

G×H \ {(u1, w1), ..., (um, wn)}.
It holds that there exist r-neighbourhoods (∀r-
neighbourhoods) nk

G = {v1, ..., vh} and nk
H =

{z1, ..., zl} such that nk
G ∈ N(nk−1

G) and nk
H ∈

N(nk−1
H) iff there exists a r-neighbourhood (∀r-

neighbourhood) nk
G×H ∈ N(nk−1

G×H) such that

{(v1, z1), ..., (vh, zl)} ⊆ nk
G×H and lG×H(vi, zj) =

∅, (vi, zj) does not have any r-successor and ∀r-
successor for all
(vi, zj) ∈ nk

G×H \ {(v1, z1), ..., (vh, zl)}.

Proof: 1. Let nk
G= (v1, ..., va) and nk

H=
(z1, ..., zb) be ∀r-neighbourhoods respectively of
nk−1

G and nk−1
H . Let nk

G×H ∈ N(nk−1
G×H) be the ∀r-

neighbourhood. First, we show that V ∀
G×H(nk−1

G×H)

6= ∅ iff V ∀
G(nk−1

G) 6= ∅ and V ∀
H(nk−1

H) 6= ∅. As-

sume that vi ∈ V ∀
G(nk−1

G) and zj ∈ V ∀
H(nk−1

H), i.e.,
(uh∀rvi) ∈ EG and (wl∀rzj) ∈ EH where uh ∈
nk−1

G and wl ∈ nk−1
H . We have {(u1, w1), ..., (um, wn)}

⊆ nk−1
G×H . By Definition 10 (product), that means

that (vi, zj) ∈ V ∀
G×H(nk−1

G×H). Conversely, assume

that (vi, zj) ∈ V ∀
G×H(nk−1

G×H), i.e., ((uh, ul)∀r(vi, zj))

30

∈ EG×H where (uh, wl) ∈ nk−1
G×H . We have (uh, wl)

∈ {(u1, w1), ..., (um, wn)} since
{(u1, w1), ..., (um, wn)} ⊆ nk−1

G×H and (uh′ , wl′)
does not have any ∀r-successor for all (uh′ , wl′) ∈
nk−1

G×H \ {(u1, w1), ..., (um, wn)}. By Definition 10

(product), that means that vi ∈ V ∀
G(nk−1

G) and zj

∈ V ∀
H(nk−1

H).
By consequent, we obtain there exists a ∀r-
neighbourhood of nk−1

G×H iff there exist ∀r-neighbour-

hoods of nk−1
G and nk−1

H .
1.1) Assume that label(nk

G) = {⊥} and label(nk
H)

= {⊥}.
The definition of neighbourhood yields that lG(v0)
= {⊥} for some v0 ∈ nk

G and lH(z0) = {⊥} for some
z0 ∈ nk

H , and nk
G = V ǫ

G(nk−1
G), nk

H = V ǫ
H(nk−1

H) are

the ∀r-neighbourhoods of nk−1
G and nk−1

H respec-
tively.
We show that nk

G×H = V ǫ
GH(nk−1

G×H),

V ǫ
G(nk−1

G) × V ǫ
H(nk−1

H) ∪ V ∀
GE ∪ V ∀

HE= nk
G×H ,

lG×H(vi, zj) = {⊥} for some (vi, zj) ∈ nk
G×H ;

lG×H(vi′ , zj′) = ∅, (vi′ , zj′) does not have any r-
successor and ∀r-successor for all (vi′ , zj′) ∈ nk

G×H ,
(vi′ , zj′) 6= (vi, zj) ; andlG×H(vl, zh) = ∅, (vl, zh)
does not have any r-successor and ∀r-successor
for all (vl, zh) such that (vl, zh) ∈ V ∀(nk−1

G×H),

(vl, zh)ǫ(vi, zj) ∈ Eǫ
G×H , (vi, zj) ∈ nk

G×H (*) . Note
that
V ∀

GE := {(v, z) | v∈V ∀
G(nk−1

G), (vǫv′) ∈ Eǫ
G, v′ ∈

V ǫ
G(nk−1

G), z ∈ V ǫ
H(nk−1

H)} and

V ∀
HE := {(v, z) | v ∈ V ǫ

G(nk−1
G), z ∈V ∀

H(nk−1
H) ,

(zǫz′) ∈ Eǫ
H , z′ ∈ V ǫ

H(nk−1
H)}.

Assume that vi ∈ V ǫ
G(nk−1

G) and zj ∈ V ǫ
H(nk−1

H).
This means that lG(vi) = {⊥} (unique) or ∅,
p(vi) ∈ nk−1

G ,lG(vl) = ∅, (vlǫvi) ∈ Eǫ
G, vl ∈

V ∀(nk−1
G), vi /∈ V ∀(nk−1

G), vi does not have
any ∀r-successor and r-successor, and lH(zj) =
{⊥} (unique) or ∅, p(zj) ∈ nk−1

H (P(vi) and
P(zj) are singleton), lH(zh) = ∅, (zhǫzj) ∈ Eǫ

H ,
zh ∈ V ∀(nk−1

H), zj /∈ V ∀(nk−1
H), zj does not

have any ∀r-successor and r-successor. Hence,
we have (vl, zh) ∈ V ∀(nk−1

G×H), lG×H(vl, zh) = ∅,
((vl, zh)ǫ(vi, zj)) ∈ Eǫ

G×H , p(vi, zj) = (p(vi), p(zj))

∈ nk−1
G×H , (vi, zj) /∈ V ∀(nk−1

G×H), lG×H(vi, zj) = {⊥}
(unique) or ∅. Therefore, according to Definition 9
(extended-neighbourhood), (vi, zj) ∈V ǫ

GH(nk−1
G×H).

Thus, V ǫ
G(nk−1

G) × V ǫ
H(nk−1

H) ⊆ nk
G×H and nk

G×H

= V ǫ
GH(nk−1

G×H).

Assume that (vi, zj) ∈V ∀
GE . By the definition,

we have ((vi, zh)ǫ(vi, zj)) ∈ Eǫ
G×H , (vi, zh) ∈

V ∀
GH(nk−1

G×H), (vi, zj) /∈ V ∀
GH(qk−1), p(vi, zj) ∈

nk−1
G×H where zh ∈V ∀

H(nk−1
H), (zhǫzj) ∈ Eǫ

H , lG(vi)

= ∅, lH(zh) = ∅, zj ∈ V ǫ
H(nk−1

H). This implies

that (vi, zj) ∈ V ǫ
GH(nk−1

G×H) and lG×H(vi, zh) = ∅,
lG×H(vi, zj) = ∅ and (vi, zj) does not have any
r-successor and ∀r-successor. Similarly, if (vi, zj)
∈V ∀

HE then (vi, zj) ∈ V ǫ
GH(nk−1

G×H) and lG×H(vl, zj)
= ∅, lG×H(vi, zj) = ∅ and (vi, zj) does not have any
r-successor and ∀r-successor where vl ∈V ∀

G(nk−1
G),

(vlǫvi) ∈ Eǫ
G, vi ∈ V ǫ

G(nk−1
G).

Conversely, assume that (vi, zj) ∈ nk
G×H =

V ǫ
GH(nk−1

G×H). According to Definition 6 (neigh-

bourhood), we have that (vl, zh) ∈ V ∀
GH(nk−1

G×H),

((vl, zh)ǫ(vi, zj)) ∈ Eǫ
G×H , (vi, zj) /∈ V ∀

GH(nk−1
G×H),

p(vi, zj) ∈ nk−1
G×H . From Definition 10 (product),

we have vl ∈ V ∀(nk−1
G), (vlǫvi) ∈ Eǫ

G and zh ∈

V ∀(nk−1
H), (zhǫzj) ∈ Eǫ

G, p(vi) ∈ mk−1, p(zj) ∈

zk−1, and either vi ∈ V ∀(nk−1
G), zj ∈ V ǫ

H(nk−1
H)

or vi ∈ V ǫ
G(nk−1

G), zj ∈ V ∀(nk−1
H). This im-

plies that (vi, zj) ∈ V ǫ
G(nk−1

G) × V ǫ
H(nk−1

H) ∪
V ∀

GE ∪ V ∀
HE . It is obvious that for all (ui, vj) ∈

V ǫ
G(nk−1

G) × V ǫ
H(nk−1

H) ∪ V ∀
GE ∪ V ∀

HE it holds that
lG×H(vi, zj) = {⊥} (unique) or ∅ and (vi, zj) does
not have any r-successor and ∀r-successor. Fur-
thermore, lG×H(v, z) = ∅, (v, z) does not have any
r-successor and ∀r-successor for all (v, z) such that
(v, z) ∈ V ∀(nk−1

G×H), (v, z)ǫ(vi, zj) ∈ Eǫ
G×H , (vi, zj)

∈ nk
G×H .

1.2) Assume that label(nk
G) = {⊥} and label(nk

H)
6= {⊥} (or label(nk

G) 6= {⊥} and label(nk
H) = {⊥}).

The induction hypothesis (for Gǫ and Hǫ) yields
that nk

G = V ǫ
G(nk−1

G) and nk
G is the ∀r-neighbour-

hoods of nk−1
G . This means that for all vi ∈

nk
G we have lG(vi) = {⊥} (unique) or ∅, p(vi)

∈ nk−1
G (P(vi) is singleton),lG(vl) = ∅, (vlǫvi)

∈ Eǫ
G, vl ∈ V ∀

G(nk−1
G), vi /∈ V ∀

G(nk−1
G), vi does

not have any ∀r-successor and r-successor; lG(vl)
= ∅, vl does not have any ∀r-successor and r-
successor for all vl such that vl ∈ V ∀

G(nk−1
G),

(vlǫvi) ∈ Eǫ
G, vi ∈ V ǫ

G(nk−1
G) (by the simplifica-

tion of normalization graphs). Furthermore, lH(z)
6= {⊥} for all z ∈ nk

H . These imply that (vl, zh)
∈ V ∀

GH(nk−1
G×H), ((vl, zh)ǫ(vi, zh)) ∈ Eǫ

G×H , (vi, zh)

/∈ V ∀
GH(nk−1

G×H), p(vi, zh) ∈ nk−1
G×H where zh ∈

V ∀
H(nk−1

H) (P(vl) and P(zh) are singleton since
vl, zh are ∀r-successors). Thus, by Definition 9
(extended-neighbourhood), (vi, zh) ∈ V ǫ

GH(nk−1
G×H)

6= ∅ and nk
G×H = V ǫ

GH(nk−1
G×H).

31

Let v0 ∈ nk
G such that lG(v0) = {⊥}. Accord-

ing to the definition of product in [3] we ob-
tain that the subtree B(Gǫ)(nk

G) × B(Hǫ)(nk
H)

is equal to the subtree B(Hǫ)(nk
H). This implies

that (nk
G, nk

H) = nk
H . On the other hand, from

Definition 10 (product), we have that the prod-
uct graph Gǫ × Hǫ contains the subgraph (Gǫ

× Hǫ)((v0, z1), ..., (v0, zb)) where this subgraph
is obtained from the subgraph Hǫ(z1, ..., zb). We
have to prove that {(v0, z1), ..., (v0, zb)} ⊆ nk

G×H

and lG×H(vi′ , zj′) = ∅, (vi′ , zj′) does not have
any ∀r-successor and r-successor for all (vi′ , zj′)
∈ nk

G×H \ {(v0, z1), ..., (v0, zb)}. Furthermore, we
show that lG×H(vl, zh) = ∅, (vl, zh) does not have
any ∀r-successor and r-successor for all (vl, zh)
such that (vl, zh) ∈V ∀

GH(nk−1
G×H), ((vl, zh)ǫ(vi, zj))

and (vi, zj) ∈ nk
G×H .

Assume that nk
H = V ∀

H(nk−1
H). Similar to above,

we have (vl, zh) ∈ V ∀
GH(nk−1

G×H), ((vl, zh)ǫ(v0, zh))

∈ Eǫ
G×H , (v0, zh) /∈ V ∀

GH(nk−1
G×H), p(v0, zh) ∈ nk−1

G×H

for all zh ∈ V ∀
H(nk−1

H) where vl ∈ V ∀
G(nk−1

G), lH(zh)
6= {⊥}, lG(v0) = {⊥} such that (vlǫv0) ∈ Eǫ

G, v0 /∈
V ∀

G(nk−1
G), p(v0) ∈ nk−1

G (P(v0) and P(zh) are sin-
gleton). Therefore, {(v0, z1), ..., (v0, zb)} ⊆ nk

G×H .

Let now (vi′ , zj′) ∈ nk
G×H \ {(v0, z1), ..., (v0, zb)}.

By Definition 9 (extended-neighbourhood), we
have (vl, zh) ∈ V ∀

GH(nk−1
G×H), ((vl, zh)ǫ(vi′ , zj′)) ∈

Eǫ
G×H , (vi′ , zj′) /∈ V ∀

GH(nk−1
G×H), p(vi′ , zj′) ∈ nk−1

G×H

(P(vi′) and P(zj′) are singleton). This implies that
vi′ ∈ V ǫ

G(nk−1
G), lG(vi′) = ∅ or if vi′ is a ∀r-successor

then lG(vi′) = ∅ and vi′ does not have any ∀r-
successor and r-successor (the property (*) of V ǫis
proven above). Therefore, lG×H(vi′ , zj′) = ∅ and
(vi′ , zj′) does not have any ∀r-successor and r-
successor. Furthermore, if (vl, zh) ∈V ∀

GH(nk−1
G×H),

((vl, zh)ǫ(vi, zj)) and (vi, zj) ∈ nk
G×H then vl ∈

V ∀
G(nk−1

G), lG(vl) = ∅, (vlǫv) ∈ Eǫ
G, v ∈ V ǫ

G(nk−1
G).

This implies that lG×H(vl, zh) = ∅, (vl, zh) does
not have any ∀r-successor and r-successor.
Assume that nk

H = V ǫ
H(nk−1

H). We have (vl, zh)

∈ V ∀
GH(nk−1

G×H), ((vl, zh)ǫ(v0, zj)) ∈ Eǫ
G×H , (v0, zj)

/∈ V ∀
GH(nk−1

G×H), p(v0, zj) ∈ nk−1
G×H for all zj ∈

V ǫ
H(nk−1

H) where vl ∈ V ∀
G(nk−1

G), lG(v0) = {⊥}

such that (vlǫv0) ∈ Eǫ
G, v0 /∈ V ∀

G(nk−1
G), p(v0)

∈ nk−1
G (P(zj) is singleton since (zhǫzj) ∈ Eǫ

H

and zh is a ∀r-successor). This implies that
{(v0, z1), ..., (v0, zb)} ⊆ nk

G×H . Let now (vi′ , zj′)

∈ nk
G×H \ {(v0, z1), ..., (v0, zb)}. Similar to above,

we have that vi′ ∈ V ǫ
G(nk−1

G), lG(vi′) = ∅ or if

vi′ is a ∀r-successor then lG(vi′) = ∅ and vi′ does
not have any successor (the property (*) of V ǫis
proven above). Therefore, lG×H(vi′ , zj′) = ∅ and
(vi′ , zj′) does not have any ∀r-successor and r-
successor. Furthermore, if (vl, zh) ∈V ∀

GH(nk−1
G×H),

((vl, zh)ǫ(vi, zj)) and (vi, zj) ∈ nk
G×H then we can

show that lG×H(vl, zh) = ∅, (vl, zh) does not have
any ∀r-successor and r-successor.
Thus, we have shown {(v0, z1), ..., (v0, zb)} ⊆ nk

G×H

and lG×H(vi′ , zj′) = ∅, (vi′ , zj′) does not have
any ∀r-successor and r-successor for all (vi′ , zj′) ∈
nk

G×H \ {(v0, z1), ..., (v0, zb)}.

1.3) Assume that label(nk
G) 6= {⊥} and label(nk

H)
6= {⊥}. We consider the three following cases:
i) Assume that nk

G = V ∀
G(nk−1

G) and nk
H =

V ∀
H(nk−1

H).

It holds that nk
G×H = V ∀

GH(nk−1
G×H) since if nk−1

G×H

= V ǫ
GH(nk−1

G×H) then nk
G = V ǫ

G(nk−1
G) or nk

H =

V ǫ
H(nk−1

H). Moreover, we have

V ∀
GH(nk−1

G×H) = {(v1, z1), ..., (va, zb)}.

ii) Assume that nk
G = V ǫ

G(nk−1
G) and nk

H =

V ∀
H(nk−1

H) (or nk
G = V ∀

G(nk−1
G), nk

H = V ǫ
H(nk−1

H)).
We show that
nk

G×H = V ǫ
GH(nk−1

G×H) = {(v1, z1), ..., (va, zb)}.
Let (vi, zh) ∈{(v1, z1), ..., (va, zb)}. We have that
(vl, zh) ∈ V ∀

GH(nk−1
G×H), ((vl, zh)ǫ(vi, zh)) ∈ Eǫ

G×H ,

(vi, zh) /∈ V ∀
GH(nk−1

G×H), p(vi, zh) ∈ nk−1
G×H for all

zh ∈ V ∀
H(nk−1

H) and for all vi ∈ V ǫ
G(nk−1

G) such

that vl ∈ V ∀
G(nk−1

G), (vlǫvi) ∈ Eǫ
G, vi /∈ V ∀

G(nk−1
G),

p(vi) ∈ nk−1
G (P(vi) and P(zh) are singleton

since zh is a ∀r-successor and (vlǫvi) ∈ Eǫ
G,

and vl is a ∀r-successor). Therefore, (vi, vh) ∈
V ǫ

GH(nk−1
G×H) and {(v1, z1), ..., (va, zb)} ⊆ nk

G×H .

Conversely, let (vi, zj) ∈ V ǫ
GH(nk−1

G×H). We have

(vl, zh) ∈ V ∀
GH(nk−1

G×H), ((vl, zh)ǫ(vi, zj)) ∈ Eǫ
G×H ,

(vl, zh) ∈ V ∀
GH(nk−1

G×H), (vi, zj) /∈ V ∀
GH(nk−1

G×H),

p(vi, zj) ∈ nk−1
G×H . This implies that vl ∈ V ∀

G(nk−1
G),

zh ∈ V ∀
H(nk−1

H), and vi /∈ V ∀
G(nk−1

G), p(vi) ∈

nk−1
G or zj /∈ V ∀

H(nk−1
H), p(zj) ∈ nk−1

H . If zj /∈

V ∀
H(nk−1

H), p(zj) ∈ nk−1
H then zj ∈ V ǫ

H(nk−1
H) and

thus nk
H = V ǫ

H(nk−1
H). This is a contradiction.

Therefore, V ǫ
GH(nk−1

G×H) = {(v1, z1), ..., (va, zb)}. As

above, we can show that if (vl, zh) ∈V ∀
GH(nk−1

G×H),

((vl, zh)ǫ(vi, zj)) and (vi, zj) ∈ nk−1
G×H then

lG×H(vl, zh) = ∅, (vl, zh) does not have any ∀r-
successor and r-successor.
iii) Assume that mk = V ǫ

G(nk−1
G) and nk =

V ǫ
H(nk−1

H).

32

We show that nk
G×H = V ǫ

GH(nk−1
G×H) and

{(v1, z1), ..., (va, zb)} ⊆ nk
G×H and lG×H(vi′ , zj′) =

∅, (vi′ , zj′) does not have any ∀r-successor and r-
successor for all (vi′ , zj′) ∈ nk

G×H \
{(v1, z1), ..., (va, zb)}. Furthermore, we show that
lG×H(vl, zh) = ∅, (vl, zh) does not have any ∀r-
successor and r-successor for all (vl, zh) such
that (vl, zh) ∈ V ∀

GH(nk−1
G×H), ((vl, zh)ǫ(vi, zj)) and

(vi, zj) ∈ nk
G×H .

We have (vl, zh) ∈ V ∀
GH(nk−1

G×H), ((vl, zh)ǫ(vi, zj))

∈ Eǫ
G×H , (vi, zj) /∈ V ∀

GH(nk−1
G×H), p(vi, zj) ∈ nk−1

G×H

for all vi ∈ V ǫ
G(nk−1

G) and zj ∈ V ǫ
H(nk−1

H) (P(vi)
and P(zj) are singleton). This implies that
{(v0, z1), ..., (v0, zb)} ⊆ nk

G×H . Let now (vi′ , zj′) ∈

nk
G×H \ {(v1, z1), ..., (v1, zb)}. Similar to above, we

have that vi′ ∈ V ǫ
G(nk−1

G) or if vi′ is a ∀r-successor
then lG(vi′) = ∅ and vi′ does not have any ∀r-
successor and r-successor (the property (*) of V ǫ

is proven above). Therefore, lG×H(vi′ , zj′) = ∅ and
(vi′ , zj′) does not have any ∀r-successor and r-
successor. Furthermore, if (vl, zh) ∈V ∀

GH(nk−1
G×H),

((vl, zh)ǫ(vi, zj)) ∈ Eǫ
G×H and (vi, zj) ∈ nk

G×H

then vl ∈ V ∀
G(nk−1

G), zh ∈ V ∀
H(nk−1

H) such that

(vlǫvi) ∈ Eǫ
G, vi ∈ V ǫ

G(nk−1
G) or (zhǫzj) ∈ Eǫ

H ,

zj ∈ V ǫ
H(nk−1

H). This implies that lG×H(vl, zh) =
∅, (vl, zh) does not have any ∀r-successor and r-
successor.
2. Let mk

i and nk
j be r-neighbourhoods respectively

of nk−1
G and nk−1

H . Let qk
ij be a r-neighbourhood of

nk−1
G×H such that

mk
i = {vi}∪V ǫ

GE , V ǫ
GE = {v′l| (viǫv

′
l) ∈ Eǫ

G, P(v′l)∩
nk−1

G 6= ∅}, (uirvi) ∈ EG,
nk

j = {zj}∪V ǫ
HE , V ǫ

HE = {z′l| (zjǫz
′
l) ∈ Eǫ

H , P(z′l)∩

nk−1
H 6= ∅}, (wjrzj) ∈ EH ,

qk
ij = {(vi, zj)} ∪

⋃

(vl,yl′)∈V ǫ(vl, yl′), where

V ǫ= {(vl, zl′)| (vi, zj)ǫ(vl, zl′), P(vl, zl′)∩nk−1
G×H 6=

∅}
First, we show that there exists (vi, zj) ∈ qk

ij iff

vi ∈ mk
i and zj ∈ nk

i . Assume that vi ∈ mk
i and

zj ∈ nk
j , i.e., (uhrvi) ∈ EG and (wlrzj) ∈ EH

where uh ∈ nk−1
G and ul ∈ nk−1

H . By the induc-
tion hypothesis, we have {(u1, w1), ..., (um, wn)}
⊆ nk−1

G×H . By Definition 10 (product), we ob-

tain (vi, zj) ∈ qk
ij . Conversely, assume that (vi, zj)

∈ qk
ij , i.e., ((uh, ul)r(vi, zj)) ∈ EG×H where

(uh, wl) ∈ nk−1
G×H . By the induction hypothesis,

we have (uh, wl) ∈ {(u1, w1), ..., (um, wn)} since
{(u1, w1), ..., (um, wn)} ⊆ nk−1

G×H and (uh′ , wl′)

does not have any r-successor for all (uh′ , wl′) ∈
qk−1 \ {(u1, w1), ..., (um, wn)}. By Definition 10
(product), that means that vi ∈ mk

i and zj ∈ nk
j .

We have to prove that mk
i ×nk

j = qk
ij . We have that

label(qk
ij) 6= {⊥} if label(nk

G) 6= {⊥} and label(nk
H)

6= {⊥} (if Gǫ and Hǫ are normalization graphs then
label(nk

G) 6= {⊥} and label(nk
H) 6= {⊥}).

What remains to be shown is that i) if (vl, zl′) ∈
V ǫ then vl ∈V ǫ

GE and zl′ ∈ V ǫ
HE ii) if vl ∈V ǫ

GE and
zl′ ∈ V ǫ

HE then (vl, zl′) ∈ V ǫ.

1. For each (vl, yl′) ∈ V ǫ we obtain that vl ∈V ǫ
GE

and yl′ ∈ V ǫ
HE .

Let (vl, yl′) ∈ V ǫ. This yields that there exist
edges (vi, yj)ǫ(vl, yl′) ∈ Eǫ

G×H ,
(ui, wj)r(vi, yj) ∈ EG×H and P(vl, yl′) =
(P(vl),P(yl′)) ∩ qk−1 6= ∅. This implies that
(viǫvl) ∈ Eǫ

G, (yjǫyl′) ∈ Eǫ
H where P(vl) ∩

mk−1 6= ∅, P(yl′) ∩ nk−1 6= ∅. From ui ∈
mk−1, (uirvi) ∈ EG, P(vl) ∩ mk−1 6= ∅ and
(viǫvl) ∈ Eǫ

G, we obtain vl ∈ V ǫ
GE . From

wj ∈ nk−1, (wjryj) ∈ EH , P(yl′) ∩ nk−1 6= ∅
and (yjǫyl′) ∈ Eǫ

H , we obtain yl′ ∈ V ǫ
HE .

2. For each vl ∈V ǫ
GE and yl′ ∈ V ǫ

HE we obtain
that (vl, yl′) ∈ V ǫ.
Let vl ∈V ǫ

GE and yl′ ∈ V ǫ
HE . This yields that

there are ǫ-edges (viǫvl) ∈ Eǫ
G, (yjǫyl′) ∈ Eǫ

H ,
P(vl) ∩ mk−1 6= ∅, P(yl′) ∩ nk−1 6= ∅ and
(uirvi) ∈ EG, (wjryj) ∈ EH . This implies
that (vi, yj)ǫ(vl, yl′) ∈ Eǫ

G×H , ((ui, wj)r(vi, yj))
∈ EG×H and P(vl, yl′) = (P(vl),P(yl′)) ∩
xk−1 6= ∅. Thus, (vl, yl′) ∈ V ǫ.

Theorem 2 Let Gǫ,Hǫ ∈ T E
ALE . There exists an

isomorphism between B(Gǫ × Hǫ) and B(Gǫ) ×
B(Hǫ).
Lemma A. Let {u1, ..., um} and {w1, ..., wn} be
k-neighbourhoods respectively on graphs Gǫ

1 =
(V1, E1 ∪ Eǫ

1, l1) and Gǫ
2 = (V2, E2 ∪ Eǫ

2, l2). Let
{(u1, w1), ..., (um, wn)} be the corresponding k-
neighbourhood of the product graph Gǫ

1 × Gǫ
2. If

label{u1, ..., um}= {⊥} (label{w1, ..., wn} = {⊥})
then label{(u1, w1), ..., (um, wn)} = label{w1, ..., wn}
(label{u1, ..., um}). Otherwise, it holds that

label{(u1, w1), ..., (um, wn)} = label{u1, ..., um} ∩
label{w1, ..., wn}

Proof of the lemma. According to the definition of
function label, label{(u1, w1), ..., (um, wn)} = {⊥}
iff label(ui, wj) = {⊥} for some i ∈ {1, ..., m},

33

j ∈ {1, ..., n}. From this, Definition 10 (prod-
uct) yields that label{u1, ..., um}= {⊥} and la-
bel{w1, ..., wn}= {⊥}. Assume that
label{u1, ..., um}6= {⊥} and label{w1, ..., wn} 6=
{⊥}. (if label{u1, ..., um}= {⊥} or label{w1, ..., wn}
= {⊥} the Lemma is obvious from Definition
10). We have that label{(u1, w1), ..., (um, wn)} =
l(u1, w1) ∪ ... ∪ l(um, wn) = (l(u1)∩ l(w1)) ∪ ... ∪
(l(um) ∩ l(wn));
On the other hand, according to the definition
of function label, it is that label{u1, ..., um} =
l(u1) ∪ ... ∪ l(um) and label{w1, ..., wn}= l(w1) ∪
... ∪ l(wn). Therefore, label{(u1, w1), ..., (um, wn)}
= label{u1, ..., um} ∩ label{w1, ..., wn}.

Proof: (Proof of the theorem).
Let Gǫ = (VG, EG ∪ Eǫ

G, lG) and Hǫ = (VH , EH ∪
Eǫ

H , lH) and v0, w0 be the roots of Gǫ, Hǫ. We de-
note |Gǫ| as the depth of graph Gǫ. Assume that
|Gǫ| ≤ |Hǫ|. We will construct by induction on
the level of graph Gǫ an isomorphism φ from tree
B(Gǫ) × B(Hǫ)=(V2, E2, z

0, l2) to tree B(Gǫ × Hǫ)
= (V1, E1, x

0, l1).
Level k = 0.
At level 0, since product Gǫ ×Hǫ has unique neigh-
bourhood {(v0, w0)} without outgoing or ingoing
ǫ-edge (with the exception of ǫ-cycle), B(Gǫ × Hǫ)
has the root x0 = (v0, w0). Similarly, since Gǫ has
unique node v0 without outgoing or ingoing ǫ-edge
(with the exception of ǫ-cycle) and Hǫ has unique
node w0 without outgoing or ingoing ǫ-edge at
level 0 (with the exception of ǫ-cycle), thus B(Gǫ)
× B(Hǫ) has the root z0 = (v0, w0).
Assume that lG(v0) = {⊥} (lH(w0) = {⊥}). From
Definition 10 we have that B(Gǫ × Hǫ) = B(Hǫ)
(B(Gǫ × Hǫ) = B(Gǫ)). On the other hand, we also
have B(Gǫ) = {v0} (B(Hǫ) = {w0}) where l(v0) =
{⊥} (l(w0) = {⊥}) (Algorithm 1), and thus B(Gǫ)
× B(Hǫ) = B(Hǫ) (B(Gǫ ×Hǫ) = B(Gǫ)) . If lG(v0)
6= {⊥}, l1(x

0) = label(v0,w0) = (lG(v0) ∩ lH(w0))
and l2(z

0) = (lG(v0) ∩ lH(w0)). Thus, we set φ(z0)
:= x0.
Level k > 0
Let mk−1 = {u1, ..., um} be a (k−1)-neighbourhood
of Gǫ and nk−1 = {w1, ..., wn} be a (k − 1)-
neighbourhood of Hǫ. Let qk−1 be a (k − 1)-
neighbourhood of Gǫ ×Hǫ such that φ(mk−1, nk−1)
= qk−1. If label(mk−1) = {⊥} and label(nk−1) =
{⊥} then label(qk−1) = {⊥} (since φ is an isomor-
phism) and Nk(qk−1) = Nk(mk−1) = Nk(nk−1)
= ∅.

Let mk−1 × nk−1 = {(u1, w1), ..., (um, wn)} and
we denote (mk−1, nk−1) as a node in B(Gǫ) ×
B(Hǫ). As induction hypothesis, we assume that

1. mk−1 × nk−1 ⊆ qk−1,
2. One of two following conditions is satisfied:

(a) label(mk−1, nk−1) = label(qk−1) = {⊥};
qk−1= V ǫ; and for all (ui, wj) ∈ qk−1 \
mk−1 × nk−1 it holds that l(ui, wj) = ∅
or {⊥} (unique (ui, wj) such that l(ui, wj)
= {⊥}) and (ui, wj) does not have any r-
successor and ∀r-successor. Furthermore,
lG×H(u, w) = ∅ and (u, w) does not have
any r-successor and ∀r-successor for all
(u, w) ∈ VG×H such that ((u, v)ǫ(ui, wj))
∈ Eǫ

G×H , (v, w) is a ∀r-successor and

(ui, wj) ∈qk−1.
(b) label(mk−1, nk−1) = label(qk−1) 6= {⊥};

and for all (vi, zj) ∈ qk−1 \ mk−1 × nk−1

it holds that l(vi, zj) = ∅ and (vi, zj) does
not have any r-successor and ∀r-successor.
Furthermore, if qk−1= V ǫ then lG×H(u, w)
= ∅ and (u, w) does not have any r-
successor and ∀r-successor for all (u, w) ∈
VG×H such that ((u, v)ǫ(ui, wj)) ∈ Eǫ

G×H ,

(v, w) is a ∀r-successor and (ui, wj) ∈qk−1.

Note that this hypothesis is verified if Gǫ and Hǫ

are normalization graphs.
I) label(mk−1) = {⊥} and label(nk−1) 6= {⊥} (or
label(mk−1) 6= {⊥} and label(nk−1) = {⊥}).
By the induction hypothesis, we have that lG(ui)
= {⊥} for some ui ∈ mk−1 and, lG(ui′) = ∅, ui′

does not have any ∀r-successor and r-successor
for all ui′ ∈ mk−1, ui′ 6= ui. Furthermore, from
label(nk−1) 6= {⊥} the definition of function la-
bel yields that lH(wj) 6= {⊥} for all wj ∈ nk−1.
From Definition 10 (product), it is that the prod-
uct graph Gǫ × Hǫ contains the subgraph (Gǫ ×
Hǫ)((ui, w1), ..., (ui, wn)) which is obtained from
the subgraph Hǫ(w1, ..., wn) where lG(ui) = {⊥}.
By the induction hypothesis, we have qk−1= V ǫ,
{(ui, w1), ..., (ui, wn)} ⊆ qk−1 such that lG(ui) =
{⊥}, and lG×H(ui′ , wj) = ∅, (ui′ , wj) does not have
any r-successor and ∀r-successor for all (vi′ , zj) ∈
qk−1 \ {(ui, w1), ..., (ui, wn)}.
On the other hand, according to the definition
of product in [3] we obtain that the subtree
B(Gǫ)(mk−1) × B(Hǫ)(nk−1) is equal to the sub-
tree B(Hǫ)(nk−1). This implies that B((Gǫ ×
Hǫ)(qk−1)) = B(Gǫ) (mk−1) × B(Hǫ)(nk−1).

34

II) label(mk−1) 6= {⊥} and label(nk−1) 6= {⊥}.
1. Let mk= (v1, ..., va) and nk= (z1, ..., zb) be
∀r-neighbourhoods (or r-neighbourhoods) respec-
tively of mk−1 and nk−1. By Lemma 4 and
the induction hypothesis, there exists the ∀r-
neighbourhood (or r-neighbourhood) qk of qk−1

such that mk × nk ⊆ qk and for all (vi, zj) ∈ qk \
mk × nk it holds that l(vi, zj) = ∅ and (vi, zj) does
not have any r-successor and ∀r-successor (*).
i) If label(mk) = {⊥} and label(nk) = {⊥} then
there exist vh ∈ mk and zl ∈ nk such that lG(vh)
= {⊥} and lH(zl) = {⊥}. It is obvious that (vh, zl)
∈ mk × nk and lG×H(vh, zl) = {⊥}. Therefore,
label(qk) = {⊥}.
ii) If label(mk) = {⊥} and label(nk) 6= {⊥}
(or label(mk) 6= {⊥} and label(nk) = {⊥}) then
there exist vh ∈ mk such that lG(vh) = {⊥}
and lH(zj) 6= {⊥} for all zj ∈ nk. Accord-
ing to the definition of product in [3] we ob-
tain that the subtree B(Gǫ)(mk) × B(Hǫ)(nk)
is equal to the subtree B(Hǫ)(nk). This implies
that (mk, nk)=nk. On the other hand, from Def-
inition 10 (product), we have that the product
graph Gǫ × Hǫ contains the subgraph (Gǫ ×
Hǫ)((vh, z1), ..., (vh, zb)) where this subgraph is ob-
tained from the subgraph Hǫ(z1, ..., zb). Moreover,
according to (*), we have {(vh, z1), ..., (vh, zb)} ⊆
qk and lG×H(vi′ , zj′) = ∅, (vi′ , zj′) does not have
any ∀r-successor and r-successor for all (vi′ , zj′) ∈
qk \ {(vh, z1), ..., (vh, zb)}. Therefore, label(qk) =
label(nk).
iii) If label(mk) 6= {⊥} and label(nk) 6= {⊥} then
from (*) and Lemma A, we have label(qk) = la-
bel(mk) ∩ label(nk).
To sum up, the isomorphism is extended as fol-
lows: φ(mk, nk) := qk where mk, nkand qk are ∀r-
neighbourhoods (r-neighbourhoods) respectively
of mk−1, nk−1and qk−1. The induction principle
guarantees that φ is an isomorphism between trees
B(Gǫ × Hǫ) and B(Gǫ) × B(Hǫ).

Proposition 4 Let C = C1 ⊔ ... ⊔ Cn be an ALC-
concept description where ⊥ < C1, ..., Cn. The ap-
proximation of C by ALE-concept description can
be computed as follows:

approxALE (C) ≡ lcs{approxALE (C1), ... ,

approxALE (Cn)}

Proof: The proof is direct from the definitions
of lcs and approx.

First, prove the proposition with n = 2. We have
that
C1 ⊔ C2 ⊑ lcs{approxALE(C1), approxALE (C2)}
since C1 ⊑ approxALE (C1), C2 ⊑ approxALE (C2),
approxALE (C1) ⊑ lcs{approxALE(C1),
approxALE (C2)} and
approxALE (C2) ⊑ lcs{approxALE(C1),
approxALE (C2)}.
Assume that there exists an ALE-concept descrip-
tion D such that
C1⊔C2 ⊑ D ⊑ lcs{approxALE(C1), approxALE (C2)}
(**).
We show that approxALE (C1) ⊔ approxALE (C2)
6⊑ D is impossible.
Indeed, there exist an interpretation (∆, .I) and an
individual dI ∈ ∆ such that dI ∈ (approxALE (C1)
⊔ approxALE (C2))

I (⊥ < C1, C2) and dI /∈ DI .
There are the two following possibilities:

– If dI ∈ (approxALE (C1))
I and dI /∈ DI , then

C1 ⊑ D ⊓ approxALE (C1) < approxALE (C1),
which contradicts the approximation defini-
tion since D ⊓ approxALE (C1) is an ALE-
concept description.

– If dI ∈ (approxALE (C2))
I and dI /∈ DI , then

C2 ⊑ D ⊓ approxALE (C2) < approxALE (C12),
which contradicts the approximation defini-
tion since D ⊓ approxALE (C2) is an ALE-
concept description.

Hence, we obtain that
approxALE (C1) ⊔ approxALE (C2) ⊑ D. This im-
plies that
lcs(approxALE(C1), approxALE (C2)} ≡ D since
the hypothesis (**),
approxALE (C1) ⊑ D, approxALE (C2) ⊑ D and
lcs{approxALE(C1), approxALE (C2)} is the least
ALE-concept description such that
approxALE (C1) ⊑ lcs{approxALE(C1),
approxALE (C2)},
approxALE (C2) ⊑ lcs{approxALE(C1),
approxALE (C2)}.
By induction on n, the proposition can be proven
for n > 2 by using the following property of the
lcs:

lcs{C1, ..., Cn} ≡ lcs{lcs{C1, ..., Cn−1}, Cn}

