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Abstract

This paper introduces a compact representation
which helps to avoid the exponential blow-up in space
of the Least Common Subsumer (Ics) of two ALE-
concept descriptions. Based on the compact represen-
tation we define a space of specific graphs which rep-
resents all ALE-concept descriptions including the lcs.
Next, we propose an algorithm exponential in time
and polynomial in space for deciding subsumption be-
tween concept descriptions represented by graphs in
this space. These results provide better understanding
of the double exponential blow-up of the approxima-
tion of ALC-concept descriptions by ALE-concept de-
scriptions: double exponential size of the approxima-
tion in the ordinary representation is unavoidable in
the worst case.
Keywords: Description Logics, Least Common Sub-
sumer, Approximation.

1. Introduction

Description logics can be used as a formalism for
representing ontologies. The OWL language [10],
which is becoming a standard language for on-
tologies, is founded on description logics. If we ig-
nore role constructors and general concept inclu-
sions, the OWL-Lite and OWL-DL [10] languages
are respectively comparable to the ALE and ALC
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description logics. The major difference between
ALE and ALC is that the disjunction construc-
tor is absent from ALE. As a result, deciding sub-
sumption in ALE is NP-complete [6] while it is
PSPACE-complete for ALC [7].

In this paper, we revisit two problems which have
been recently addressed in description logics: the
computation of the least common subsumer (lcs)
of two concept descriptions and the approximation
from a description logic L to a description logic
Lo.

As mentioned in recent work [3], computing the lcs
is a useful inference task for the bottom-up con-
struction of knowledge bases in description logics.
It also can be used for computing similarity be-
tween concept description of different ontologies.
Finally, it plays a central role for computing ap-
proximations. An algorithm for computing the ap-
proximation where Ly = ALC and Lo = ALE is
presented in [1]. It returns a concept description
whose size may be double exponential in the size
of the input. This algorithm is based on an expo-
nential algorithm which computes the lcs of con-
cept descriptions in ALE. As shown in [4], the ex-
ponential size of lcs cannot be avoided if we use
the ordinary representation of normalized concept
descriptions, whose size may be exponential com-
pared to the initial (not normalized) concept de-
scriptions.

Some recent results extend those presented in [3]
and [1] to more expressive description logics. For



instance a double exponential algorithm for com-
puting les in ALEN is presented in [11]. It yields
a double exponential upper bound for the size of
the les of two ALEN-concept descriptions. An-
other result described in [12] provides an algorithm
for computing les in FLE+ (FLE with transitive
roles). Nevertheless, the complexity of this algo-
rithm is not given.

The first contribution of this paper is a com-
pact representation for ALE-concept descriptions
which avoids the exponential blow-up of the size
of the description trees built from normalized con-
cept descriptions as in [3]. This (polynomial) com-
pact representation is a graph, which is directly
built from the description trees obtained from the
weakly normalized concept descriptions. A weakly
normalized concept description is obtained by ap-
plying the normalization rules presented in [3] ex-
cept for the normalization rule responsible of the
exponential blow-up of the size of the normal-
ized concept description (and thus of the result-
ing description tree). This new representation of
a weakly normalized concept description is called
its e-tree because it replaces the effective applica-
tion of the expansive normalization rule by adding
what we have called e-edges to the description trees
corresponding to the weakly normalized concept
descriptions. Then, normalization graphs are built
from e-trees by making explicit bottom-concepts
in labels of nodes in e-trees (as ALE allows for
the bottom-concept and negated concept names).
We also obtain a polynomial compact representa-
tion of the lcs of two ALE-concept descriptions by
defining the product of two normalization graphs.
Finally, we exploit this compact representation for
providing an algorithm for checking subsumption
between concept descriptions or les of concept
descriptions in polynomial space and exponential
time.

The second contribution of this paper is to show
that the lower bound for computing the approx-
imation of ALC-concept descriptions by ALE-
concept descriptions is double exponential in the
size of the input. This result answers partially® the
question left open in [1] on the existence of an ex-
ponential algorithm for the approximation of ALC
by ALE. Tt also shows the limit of the compact
representation that we have introduced: it cannot
prevent the exponential blow-up resulting from n-
ary lcs computation.

1 This will be discussed in Section 6

The paper is organized as follows.

In Section 2, we provide the formal background on
which this paper is based. In particular, we distin-
guish the weak normal form and the strong nor-
mal form of a concept description, depending on
the normalization rules that are applied. We also
recall the definition of description trees introduced
in [3].

In Section 3, we define the e-tree of a weakly nor-
malized concept description, and the normaliza-
tion graph resulting from the e-tree. Next, we pro-
vide the transformation algorithm from a normal-
ization graph into the description tree of the corre-
sponding normalized concept description. We also
provide a polynomial space (and exponential time)
algorithm exploiting the normalization graphs for
checking subsumption in ALE.

In Section 4, we define the product of normal-
ization graphs and we show how it can be ex-
ploited for computing a polynomial representation
of the les of two ALE-concept descriptions. We
also show that the algorithms introduced in Sec-
tion 3 for normalization graphs can be extended
to their products.

In Section 5, we prove that the lower bound of
the size of the approximation of an ALC- concept
description by an ALE-concept description in the
compact graph representation (and a fortiori in the
ordinary representation) is double exponential in
the size of the input. The reason is that the double
exponential blow-up is due to the computation of
the n-ary lcs, and the compact graph representa-
tion that we have introduced in this paper cannot
prevent the exponential blow-up resulting from the
computation of the n-ary lcs.

Finally, Section 6 concludes and provides a brief
discussion on the results obtained in this paper.

2. Formal background

In this section we will briefly present important
notions of description logics and existing results
about the lcs computation. Details of this formal-
ism can be found in [9]. Let N be a set of prim-
itive concepts and Ny be a set of primitive roles.
The logic FLE uses the following constructors to
build concept descriptions : conjunction (C' M D),
value restriction Vr.C', existential restriction Jr.C’
and the top-concept T. The logic ALE is extended
from FLE by further adding primitive negation



=P and the bottom-concept L. The logic ALC is
extended from ALE by allowing for disjunction
(CUD). Let AT be a non-empty set of individuals.
Let .Z be a function that transforms each primitive
concept P € N¢ into PT C AZ and each primitive
role r € N into ¥ C AT x AT, The semantics of a
concept description are inductively defined owing
to the interpretation Z = (AZ,.7) as in the table

below.
Syntax Semantics
T AT
1 0
CnD ctnD*
CubD ctuD*
vr.C {x € AT|Vy:(2,y)e vt — y € CT}
-C AT\ C*
Ir.C {x € AT y:(x,y) €t Ay € CT}

— Subsumption. Let C, D be concept descrip-
tions. C subsumes D, C' C D, iff C* C D? for
all interpretation Z.

— Least Common Subsumer. Let C, C5 be con-
cept descriptions in a description logic. C'is a
least common subsumer of Cy, Co (les(Cy, Ca)
for short) iff C; C C for all i € {1,2}, and if
(' is a concept description such that C; T C’
for all ¢ € {1,2}, then C' C C".

— Approximation. Let C' be a concept descrip-
tion in a L; and D be a concept description
in a Lo where Ly, Lo are description logics.
D is called upper Lo-approximation of C' (D
= approxr,(C) for short) iff C C D and, if
C C D' and D' C D, then D' = D for all
Lo-concept description D’.

The depth of an ALE-concept description C
is inductively defined as follows: i) depth(P)
= depth(=P) = depth(T) = depth(L) = 0
(P € N¢); ii) depth(C N D) := max(depth(C),
depth(D)); iii) depth(Ir.C) = depth(Vr.C) :=
depth(C) +1

Definition 1 (ALE-description tree) [3] Given a
set N¢ of primitive concepts and a set Ng of prim-
itive roles. A description tree is of the form G =
(V, E,v°,1) where

— V is the set of nodes of G;

3

- ECV x (NgRUVNR) x V is a finite set of
edges labeled with role names r (3-edges) or
with Vr (Vr-edges); VNr:= {¥r | r € Ng};

— 00 is the root of G;

— 1 is a labeling function mapping the nodes in
V to finite set {P1, ..., Py} where each P;,
1 < i <k, is one of the following forms :
P, € N¢g, P, = =P for some P € Ng, or
P, = 1. The empty label corresponds to the
top-concept T.

In [3], the authors have proposed a procedure
for transforming an ALE-concept description C
into the corresponding ALE-description tree G(C')
= (V,E,v%,1) as follows. Every ALE-concept de-
scription C' can be written as C' = P; M ...1 P,
1 37“1.01|_| o HTWL.C»m 1 VSl.D1|_| N VSk.Dk
where P; € No U {=P|P € N¢} U {T,L}. Then,
If depth(C) = 0 then V := {v°}, E := () and [(v°)
= {Plv aS) Pn} \ {T}
If depth(C) > 0 then for 1 < i < m, let G;
= (Vi, E;,v?,1;) be the inductively defined ALE-
description tree corresponding to C;, and for 1 <
J <k let G = (V] Ej, JO,Z;) be the inductively
defined ALE-description tree corresponding to D;
where V; and Vj’ are pairwise disjoint. Then,

- V={"tuv,uvy,
— B = {(vOr0} )|1<z<m}U{( 0sjwd)|1 <
]<k}UU1<z<mE UU1<]</€E/
{P1,..., P\ {T}Hv=2"
- 1(v):= 1 Li(v), veV,1<i<m
15(v), veVi 1<j<k

Conversely, every ALE-description tree G(C) =
(V,E,v°,1) can be transformed into an ALE-
concept description Cg as follows.

If depth(G(C)) = 0 then V= {v°} and E = 0. If
[(v°) = 0 then Cg = T, otherwise, we have [(v°)
= {Pl7 ...,Pn}, n>1,P € No U {—\P|P S Nc}
{1} and define Cg:= P, M ..M P,.

If depth(G(C)) > 0 then [(v°) = {Py, ..., P,},n >0
, P, € No U {=P|P € N¢} U {L} and let {vy,
..y Um} be the set of all successors of v° where
(v9rv;) € E, 1 < i < m for some r; € Ng,
and let {wi, ..., wi} be the set of all successors
of v° where (vOVsiwi) € F,1 < i <k for some
s; € Ng. Furthermore, let C4, ...,Cp, (D1, ...,Dg)
the inductively defined ALE-concept descriptions
corresponding to the subtrees of G with roots v,
1 <i<m(w,1l<i< k) We define Cg:=



P1 ... 1 Pn M 37‘1.01|_| S HT'mCm [l VSl.D1|_|
. MVsg.Dy.

The definition of the depth for ALE-concept de-
scriptions corresponds to the depth of its descrip-
tion tree. In addition, anode v € V of a description
tree is called Vr-successor (r-successor) if there ex-
ists an edge (wVrv) € E ((wrv) € E). In this case,
we also say that v is a Vr-successor (r-successor)
of w.

Definition 2 (normalization rules) [3] The normal
form of an ALE-concept description C' is obtained
from C by exhaustively applying the following nor-
malization rules:

1. VrENVYrF = Vr(ETF)

VrEN 3rF—=VYr. EN3r(ENF)
Vr. T — T

ENT —-F

P =P — 1 for each P € N¢
dr.L — L

7. EnNl — L

A

where E, F are two ALE-concept descriptions and
r € Ng.

Note that rules 3, 4 as specified in Definition 2
need to be applied once to ALE-concept descrip-
tions. However, the application of rule 2 (rule 1)
can lead to the application of rules 1 (rule 2), 5,
6, 7 several times. The normalization of an ALE-
concept description C' can be carried out in two
steps. The first step consists of the application of
all rules as specified in Definition 2 except for rule
2. This step yields an ALE-concept description C”
where ¢/ = C' , whose each conjunction contains
at most one value restriction (at the same depth as
the conjunction). The second step consists of the
application of rules 1, 2, 5, 6, 7 to the concept de-
scription C”. In the second step, rules 1, 2 need to
be exhaustively applied once since the application
of rules 5, 6, 7 does not lead to the application of
rules 1, 2 again. The concept description obtained
from the second step is in the normal form accord-
ing to Definition 2.

From these remarks, we introduce weak and strong
normal forms for ALE-concept descriptions, corre-
sponding to the two normalization steps described
above.

Definition 3 An ALE-concept description C is in
weak normal form if C' is obtained from an ALE-
concept description by exhaustively applying all

rules as specified in Definition 2, with the excep-
tion of rule 2.. An ALE-concept description C' is
in strong normal form if C' is obtained from an
ALE-concept description in weak normal form by
applying exhaustively rules 1, 2, 5, 6, 7 as specified
in Definition 2.

It is obvious that the application of all rules (as
specified in Definition 2) with the exception of rule
2, does not increase the size of concept descrip-
tions. However, as shown in [4], the size of ALE-
concept descriptions in strong normal form may
increase exponentially. This exponential blow-up
in space is caused by the application of rule 2. Ex-
ample 1, which is taken from [4], demonstrates this
effect.

Example 1 We define the following sequence Cf,
Cs, Cs, ... of ALE-concept descriptions.
c __{EIT.PI‘IEIT.Q n=1
T PN IQNVr.Cpo,n>1
For each 1 < k < n, the application of rule 2.
leads to copy Cyx_1 to the two existential restric-
tions Ar.P and 3r.QQ. This implies that for each
1 < k < n, the two ezistential restrictions in
the expression under the value restriction of Cp—1
are inductively copied to each existential restric-
tion Ir.P and 3Ir.QQ. Therefore, the normal form
of C,, has at least 2" existential restrictions.

Accordingly with the notation introduced in [3],
we denote Go the description tree obtained from a
concept description C' in strong normal form, and
we denote G(C') the description tree obtained from
a concept description C' in weak normal form. We
transfer the semantics of concept descriptions to
description trees as follows: for an interpretation
(AT, 7)), and a concept description C' in strong
(respectively weak) normal form: GZ := C% (re-
spectively G(C)T := C7T). Note that C' = Cg, and
C = Cg(c) since the normalization rules preserve
equivalence.

In addition, let G = (V,E,v°1) be an ALE-
description tree. We denote G(vi) = (Vg (), Eg(v:),
Vi, lg(v,)) as the subtree of G whose root is v; € V.

Definition 4 [3] (homomorphism) A mapping ¢ :
Vg — Vg from an ALE-description tree H =
(Vi, Eg,mP, ly) to an ALE-description tree G =
(Va, Eg,n°,lg) is called homomorphism iff, the
following conditions are satisfied:

L p(m®)=n;



2. For alln € Vi, we have lg(n) Clg(p(n)) or
ZG(@(”)):{L}’;

3. For all (nrm) € Ep, either po(n)rp(m) €
Egq, oro(n) = p(m) andlg(p(n))={L}; and

4. For all (n¥Vrm) € Ey, either o(n)Vro(m) €
Ea, or p(n) = p(m) and lo(p(n)={ L}.

Additionally, if ¢ is a bijection and ¢~! is also

a homomorphism from G to H, then ¢ is called
isomorphism.

Note that the existence of two homomorphisms: ¢
from H to G and ¢’ from G to H, does not imply
that there exists an isomorphism from H to G. In
general, it is not necessary that ¢’ = o~ 1.

A polynomial algorithm for checking the existence
of a homomorphism between two ALE-description
trees has been proposed in [3]. Moreover, the au-
thors have shown that the characterization of sub-
sumption by homomorphisms requires that de-
scription trees must be built from ALE-concept
descriptions in strong normal form.

Theorem 1 [3] Let C, D be ALE-concept descrip-
tions, then C' C D if and only if there exists a
homomorphism from Gp to G .

Therefore, if we use directly the algorithm in [3]
for checking whether there exists a homomorphism
between such two ALE-description trees G and
Gp, it will take an exponential space in the worst
case since the size of these trees may be exponen-
tial in the size of input concept descriptions.
Concerning the lcs, according to the work in [3],
there always exists a lcs of ALE-concept descrip-
tions and it is unique. The computing of the lcs for
two ALE-concept descriptions C, D requires that
C, D are in strong normal form. Next, the normal-
ized concept descriptions have to be transformed
into ALE-description trees Go and Gp. The ALE-
description tree for the lcs will be the product tree
of trees G and Gp.

3. &E-tree and normalization graphs

This section introduces a specific data structure,
called normalization graph, for representing strong
normal ALE-concept descriptions in polynomial
space.

We first introduce e-trees, denoted as G¢(C'), which
are built from description trees corresponding to
ALE-concept descriptions in weak normal form.

This structure allows for substituting the appli-
cation of rules 1, 2 (as specified in Definition 2)
to ALE-concept descriptions by adding e-edges to
the corresponding description trees. Normalization
graphs, denoted as G¢,, are formed from e-trees by
adding some elements in order to capture rules 5,
6, 7 (as specified in Definition 2). Next, we pro-
vide an algorithm for transforming normalization
graphs into ALE-description trees. We will show
that description trees obtained from normalization
graphs by applying this algorithm are isomorphic
to description trees built from ALE-concept de-
scriptions in strong normal form. We end this sec-
tion by an algorithm for deciding subsumption be-
tween concept descriptions represented by normal-
ization graphs.

We need the following notations. We denote Nj,
as the union No U {=P | P € N¢ } U {L}. Let
G = (Vg,Eg,v° lg) be an ALE-description tree.
We denote |G| as the depth of G and v* as a node
at level k of G where v* € V. Hence, we can write
(vFev*t1) € Eg for all 0 < k < G. For the sake
of simplicity, we can assume that Np = {r}. All
result obtained can be applied to a general set Ny.

Definition 5 (e-tree) Let C be an ALE-concept
description in weak normal form and G(C) =
(V,E,v°1) be its description tree. The e-tree
Ge(C) = (V, EUES, 1) s built from G(C) as fol-
lows.

1. For each v € V, an e-edge (vev) is added to
ke
2. For each level k where 0 < k < |G(C)| — 1,

for each e-edge (vfevf) at level k,

(a) If there exist two edges (vEVroFTh),
(varvf“) € F and ot # vf“, then
the e-edge (vf“evf“) is added to E°.

(b) If there exist two edges (vFrvF™),

T\ o ki1 Fev /e K1 k. kt1
(v;Vrvi™") € E (or (vfVroy ™), (virvi ™)
€ E) and vf“ #+ vf"’l, then the e-edge
(vf“evf“) (or (vf“evf“)) is added to
E-.

3. Node vy is called the root of the e-tree G¢(C).
For each node v € V, its predecessor in
G(C), denoted as p(v), is its predecessor in
G(C). The level of a node v € V in G(C)
is defined as being the depth of the node v in
G(@).



Note that G¢(C) as defined in Definition 5 is an
oriented graph. However, it becomes a tree if the e-
edges are deleted from that graph. Let (vev') € E
where e eNp U {Vr|r € Nr}. We say that v is an
e-successor of v, or v is an e-predecessor of v’. If
(vev') € E€, we say that v" is an e-successor of v.
We denote p(p(...p(v)...) (n times) as p™(n),v € V
and p°(v) = v.

Remark 1 The transformation of an ALE-concept
description C' into the e-tree as described in Defi-
nition 5 takes at most a polynomial time in the size
of C. In fact, it holds that the size of the weak nor-
mal form of C is bounded by the size of C' and the
number of added e-edges is bounded by |V'|? where
|V'| is the number of nodes of the description tree
obtained from the weak normal form of C.

According to the work in [3], if ALE-concept
descriptions are represented by ALE-description
trees, the normalization by the rules in Defini-
tion 2 leads to copy Vr-subtrees to r-successors
in ALE-description trees. The aim of e-trees is to
avoid the copying of subtrees by memorizing refer-
ences to subtrees to be copied. These references are
represented as e-edges in e-trees. However, a Vr-
subtree can be copied to many r-successors, i.e.,
one node may be connected to many nodes by e-
edges. Hence, the predecessor function p, involved
in Definition 5, allows one to determine the “right
neighbours” of a node thanks to its predecessor. It
means that a node at level k may belong to sev-
eral k-neighbourhoods, which is composed of right
neighbour nodes. Definition 6 will formalize this
idea.

Definition 6 (neighbourhood) Let G¢(C) = (V,EU
E€l) be an e-tree where v° € V s its root. At
level 0 of G¢(C), there is a unique 0-neighbourhood,
denoted N° = {v°}.

For each (k — 1)-neighbourhood nF=1, nF=1 =
{of=1 kY C V(0 < k< |GE(C))) such that
Ll u.. Ul ), the set N(n*~1) of k-
neighbourhoods generated from n*~' is defined as
follows.

1. If there emists an edge (v*~'vro*) € FE
such that v*~1 € nk=1 then we obtain a k-
neighbourhood n* € N (nk=1),

n = {v*|(vFIvrok) € B, ’Uk_l nk-11

2. For each r-successor v* of all v Lenk-

we obtain a k-neighbourhood n* € N(n*

nk:={vF} U VS where

V= {vF| (WFevk) € B¢, p(vF) € nk—1}

1
)
)

(vo = vo)
}

r r

(v1 "vo (v2 : vo (v3': vo)
{A} {B} {C}

~ o r~=-— -z =W
Vr Qr_ T r
e ) (?631}”2), U

Figure 1. e-tree G¢(D)

The unique k-neighbourhood n* € N(n*~1) gen-
erated from Vr-successors (as defined by item 1.
of Definition 6), is called Vr-neighbourhood of
n*~1. The k-neighbourhoods n* € N(n*~!) gen-
erated from r-successors (as defined by item 2.
of Definition 6), are called r-neighbourhoods of
—L1. If there is not any confusion, we say k-
neighbourhood, Vr-neighbourhood and r-neighbour-
hood respectively for neighbourhood at level k,
neighbourhood generated from Vr-successors and
neighbourhood generated from r-successors of nodes
in a (k — 1)-neighbourhood.
In addition, for each k-neighbourhood n* (k > 0)
a (k — 1)-neighbourhood n*~! is uniquely deter-
mined such that n* € N(n¥~1). Hence, for each
k-neighbourhood n* (k > 0) we denote N~1(n*)
as the (k — 1)-neighbourhood such that n* €
N(N~Y(n*)),and N="(n*) as N~1(...(N~1(n*))...)
(n times).
In the following, we denote label(n*) as the la-
bel of a k-neighbourhood n*={v¥ ....vk } where la-
bel(nk):=l(vf) U ... U I(vF) if L ¢ I(vF) U ... U
I(vF) and label(n*):={ L}, otherwise.

m

Example 2 Let D:=3r.(ANVr.C) N Ir.(BNVr.B)
M 3r.(CNVr.A). The e-tree G¢(D) is illustrated in
Figure 1.

In this figure, each node is associated with its
name, predecessor and label (note that all e-cycles
in the figure are hidden for simplifying the presen-
tation). For example, the node v; has predecessor



vo and label {A}. Since there is an e-edge (vpevy),
vy 18 a r-successor of vy and vz is a Vr-successor
of vy, hence the e-edge (vzevs) is added according
to the condition 2.(b) of Definition 5. In contrast,
since there is not any e-edge between v; and wvo,
no e-edge connects nodes vs and vg. The value of
the predecessor function p(v;) is the r-predecessor
or the Vr-predecessor of v;.

Intuitively, the neighbourhood notion allows us to
determine nodes that have to be grouped when ap-
plying rules 1, 2. More precisely, computing the
neighbourhoods of an e-tree G¢(C') yields the nodes
of the description tree corresponding to the con-
cept description C” obtained from C' by applying
exhaustively rules 1 and 2. The following algorithm
performs this transformation, i.e., the algorithm
transforms a graph, in which the notions of level
and neighbourhood are well defined, into an ALE-
description tree. To get started, we consider that
the input graph of Algorithm 1 is an e-tree.

Algorithm 1 B(G°)
Require: G¢ = (V, EU E<])
Ensure: Description tree B(G¢ )=(V', E',w® l")
1. V= @, E =0
2: Function ¢ from the set of subsets of V' into
V.
3: At level 0, for the unique 0-neighbourhood of
n? of G¢ , we set I'(w®):=1(v°) and ¢(n®):=w.
4: for all (k— 1)-neighbourhood n*~1 of G¢ where
1 <k <G and w* 1= ¢p(n*~1) do
5. if there exists at least one node v*~! €
such that (v*~'Vrvk) € E then

nk—l

6: Let n* € N(@®*!) be the WVr-
neighbourhood of n*~1

7: A node wk is created and ¢(n*):=w"

8: V:=V'Uw” and E':= E' U {(wk=tvrw®)}

9: I'(w*):=label(n)

10:  end if

11:  for all r-neighbourhood n* € N(n*~1) do

12: A node w* is created and ¢(n*):=w"

13: Vi:=V'Uw* and E":= E' U {(w* 1rw*)}

14: I'(w*):=label(n*)

15:  end for

16: end for

Figure 2 illustrates the ALE-description tree
B(G¢(D)) = (V',E',wo,l) obtained from executing
Algorithm 1 for the e-tree G°(D)=(V,E U E€,l) in

Wo
0
r r vr
w1 w2 w3
{A,C} {B,C} {c}
r \4& r \4& r
W4 Ws We w7 ws
{A,C} {C}{A, B} {B} {4}

Figure 2. Description tree B(G€)

Figure 1. At level 0, G¢(D) has only one 0- neigh-
bourhood (vg). Thus, B(G¢(D)) has root wg where
I"(wo)=l(vg). From the 0-neighbourhood (vg) of
G¢(D), we obtain three l-neighbourhoods: one
Vr-neighbourhood (v3) and two r-neighbourhoods
(v1,v3) and (ve, v3) (since (vievs) € B¢ p(v1), p(vs)
€ {vo} and (v2evs) € E p(v2),p(v3) € {vo}).
Thus, we obtain two nodes w1, ws € V' which are
r-successors of wg, and a node wz € V' which is
Vr-successor of wg where

U'(wy)=label{vy,v3}= {{A} U {C}} = {A,C}
I'(we)=label{vq,v3}= {{B} U {C}} = {B,C} and
I"(ws)=label{vs}= {C}

From the 1-neighbourhood (v1,vs), we obtain
two 2-neighbourhoods: a Vr-neighbourhood (vs)
(since (nVrvs) € E) and (vs,vs) ((vaevs) €
E<; p(va),p(vs) € {v1,v3}). Thus, we have two
successors: ws is the Vr-successor of w; where
I"(ws)= label{vs}= {C} and wy is a r-successor
of wy where I'(w4)= label{vy, v5}= {4, C}. Simi-
larly, from the 1-neighbourhood (vs, v3), we obtain
a Vr-neighbourhood (vg) and a r-neighbourhood
(v4,v6). Thus, we have two successors: wy is the
Vr-successor of we where I'(w7)= label{vg}= {B}
and wg is a r-successor of wy where !'(wg)= la-
bel{vy, vs}={A, B}. Finally, from the 1-neighbour-
hood (v3), we obtain the r-neighbourhood (vy).
Thus, we have a successor ws that is the r-
successor of wsy where I'(wg)= label{vy}= {A}.

As mentioned in Section 2, rules 5, 6, 7 (in Def-
inition 2) need to be applied after applying rules
1, 2. This means that the normalization (by rules
1, 2, 5, 6, 7) makes explicit the bottom-concept
L in the labels of nodes in the description tree.



More precisely, rule 5 makes occurring the bottom-
concept L in labels that contain P and =P for
some P € N¢ . Rules 6, 7 propagate the bottom-
concept L from nodes whose label contains the
bottom-concept L to their r-ancestors (a node w
is called r-ancestor of a node v if the path from w
to v includes only r-edges).
From Algorithm 1, a neighbourhood in e-tree G¢
corresponds to a node of description tree B(G¢),
e., Algorithm 1 builds a mapping ¢ (c¢f. Algo-
rithm 1) from the set of neighbourhoods to the
nodes of the description tree. In particular, a
path from a node v! to a node v¥: (virot*1),..
(v*=1rv*) (I < k) in description tree B(G€) corre-
sponds to the following neighbourhoods n!, n!t!,
..., n¥ in G¢ such that n'*! € N(n!), ..., n* €
N(n*=1), ¢(nh)=0,..., p(n*)=vF and n™*! is a -
neighbourhood of n™ for all | < m < k.
On the other hand, the application of rules 5, 6,
7 implies that the label of a node v' in the de-
scription tree (that corresponds to a weak normal
concept description after applying rules 1 and 2)
contains the bottom-concept L iff either the label
of v! contains explicitly L (or P , =P for some
P € N¢) or there exists a path composed of 7-
edges from v¥ to a node v' (k > 1) such that the
label of v¥ contains explicitly L (or P, —P for
some P € N¢).
From these remarks, we conclude that a neigh-
bourhood n! in e-tree G¢ corresponding to a node
containing (explicitly and implicitly) the bottom-
concept L in the tree B(G€) iff either the label of n!
contains explicitly L (or P, =P for some P € N¢)
or there exist the following neighbourhoods n!,
nt*tl ., nF in G° such that n't! € N(n!), ..,
n* € N(nkF=1); ¢(n)=vl,...,; d(n*)=v*; n™*+! is a
r-neighbourhood of n™ for all | < m < k and the
label of n* contains explicitly L (or P , =P for
some P € N¢). We say that such neighbourhoods
n! in G¢ contain a clash.
The following definition formalizes the notion of
clash.We recall that the predecessor function p(v*)
defined as the r- predecessor or Vr- predecessor of
vF in e-trees, allows us to access to an ancestor vt
of v, i.e., vl = pF~I(vk).

Definition 7 (clash) Let G°(C)= (V,EUE*®,l) be an
e-tree and v° is its root.

1. For all v* € V such that I(vF) = {L}, we
define a 1-clash, denoted [vF].

2. For each pair of Vr-successors v¥ ,UJ eVif

there exist (vF evf) € E° and P € N¢ such

that P,—P € I(vf) U I(vF), we define a 2-

clash, denoted [vF ,vf]

3. Let vf ,’uj € V such that

(a) If vf # vf then (vFevl) € E° and there

exists P € N¢ such that P,—P € l(vF) U
1(vF).

(b) If v} = v then I(vf)={L}.

We define a q-clash, denoted [v}, ...,vé],

{vl,...,vl} C nl where n' is a Vr-neighbour-
hood or n' = {vo} if there exist neighbour-
hoods n!t1 € N(n!), ..., n*=1 € N(nF=2),
n* € N(n*=1) and r- edges (o) € B
such that v*,v5* € n™ for alll < m <k,

k—1
(vy~'rvk) € B, vf € n! and of ,vF 05 € n*.

Remark 2 A clash [v],...,0}] can be contained in
one or several neighbourhoods. The neighbourhoods
determined by item 3. of Definition 7 are reach-
able by the propagation of the bottom-concept L
(or a pair of P,—P where P € N¢g) via r-
neighbourhoods. In addition q s uniquely deter-
mined from nodes vF v and a neighbourhood n'
that satisfy the condztzons described in Definition
7.

Figure 3. Clashes in e-tree G¢(C')



Example 3 Let C:= Jr.(Ir.Vr.3r.T N Vr.Vr.Vr.P)
A VrYr¥r¥r.(=P). We have two clashes in e-tree
G<(C) as illustrated in Figure 3. According to Def-
inition 7, first, there is a 2-clash [v19, v11] since v1g
and v11 are Vr-successors such that there exists an
e-edge (vipev11) and P,—P € l(vig) U I(v11). Sec-
ond, [ve,v7vs] is a 3-clash since,

— there exists a neighbourhood n* where vy, v10, v11
€ nt and P,=P € l(v10) U l(v11) since there
are e-edges (vgevig), (voev1) and (vipevir);

— there exists a neighbourhood n® where vg, v7, Vs
€ n? since there are e-edges (vsevr), (veevs)
and (vrevg);

- n* is a r-neighbourhood generated from n
since there is a r-edge (vervg) and Vr-edges
(v7¥rvig) and (vgVruiy).

3

According to Definition 7, each g-clash propagated
from a 1-clash [v*] where [(v*) = {1} or from a
2-clash [vf,v¥] where P,—~P € I(vf) U l(v}), is as-
sociated with a r-predecessor (the r-predecessor
vl in Definition 7). In general, the number of
clashes propagated from these 1-clash and 2-clash
is bounded by an exponential function with the
size of G¢(C'). In particular, if there exists 1-clash
[v°] where v° is the root of an e-tree G(C), then
C'is unsatisfiable. A well-known result in [6] shows
that the unsatisfiability in ALE is NP-complete.
For this reason, we do not expect that the detec-
tion of all clashes in an e-tree is polynomial.

In the reminder of this section, however, we will
construct a polynomial structure from an e-tree,
namely normalization graph (Definition 8), allow-
ing for storing all clashes in the e-tree.

The construction of normalization graphs from e-
trees is based heavily on the following lemma.

Lemma 1 Let G(C) = (V,E U E€l) be an e-tree.
Let & = [vf,...,v5] (¢ > 1) be a clash in G¢(C).

1. There exists a node v' € V of c* such that
vl =p*~L(vF) for all 1 < i < q. Furthermore,
for each level | < j < k there exists at most
a r-successor v} such that v/ = pF=I(vF) for
some vf € {vf,...,vl}.

2. There exist exactly (¢ — 1) pairs of nodes
(vl ulh),..., (vt ula=1) such that v'1,...,
vle € V are r-successors; ult, ..., vl €
V are Vr-successors; p(vi) = p(ul) for all

i € {l,...,q — 1} and vh=pFh(vF), ..,
vla—1 :pk*lqﬂ(quil) for some (¢ — 1) nodes
k k k

of e {vf, 0

Vgys s Vi, Vg f

Item 1. of Lemma 1 allows us to determine a r-
predecessor v! and r-successors v!t1, .. v" from
a clash ¢® where | < h < k. The nodes v* and v"
are called head and tail of ¢*, respectively. A proof
of Lemma 1 can be found in Appendix.

Definition 7 (clash) allows us to detect all clashes
in an e-tree. It does not show, however, how these
clashes are stored in the e-tree. In Example 3, from
the existence of 2-clash [v10,v11] it is required that
the label of all neighbourhoods containing nodes
v10, ¥11 must contain the bottom-concept L. Thus,
we need a node to store the bottom-concept L for
this clash. However, it is not possible to use, for
example, node vy for this purpose since v1; be-
longs to neighbourhood (v11) which does not in-
clude both nodes v1g, v11. In addition, from 3-clash
[ve, v7, vs] it is required that the label of all neigh-
bourhoods containing nodes vg, v7, vs must contain
the bottom-concept L. Therefore, we need node(s)
to store bottom-concepts L for this clash. Simi-
larly, we cannot store the bottom-concept L to the
label of node vsg.

This problem is solved by extending the neigh-
bourhood notion given in Definition 6 and propos-
ing a structure, called normalization graph. This
structure, denoted G¢, is extended from e-tree
G¢(C) by adding some nodes and edges such that it
can store bottom-concepts L for clashes [v}, ..., vf;]
in preserving the other neighbourhoods in e-tree
G¢(C). Tt is necessary to add new nodes in order to
store bottom-concepts L for g-clash since, as ex-
plained above, nodes in e-trees can be shared by
several neighbourhoods and a node belonging to a
g-clash may belong to a neighbourhood which does
not include this g-clash.

To sum up, the neighbourhood notion for the nor-
malization graph built from an e-tree has to be
redefined such that i) it preserves the neighbour-
hoods in the e-tree if these neighbourhoods do not
contain any clash, and ii) it yields a new neigh-
bourhood for each neighbourhood that contains a
clash in the e-tree. The neighbourhood notion de-
fined in this way allows not only for guaranteeing a
correct transformation (by Algorithm 1) from nor-
malization graphs into description trees but also
for extending naturally the product operation of
description trees presented in [3] to the product
operation of normalization graphs. More precisely,

— The Vr-neighbourhood n* of a (k — 1)-neigh-
bourhood nF~1 is defined as a set of all Vr-
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successors of all nodes belonging to n*~! if
there does not exist any node w® such that
p(w®) € nkF~1 and there exists an e-edge
(v*ew*) where v* a Vr-successor of a node
belonging to nF~!. Otherwise, n* includes
such a node wF. Furthermore, for each r-
successor v* of all nodes belonging to n*~1, a
r-neighbourhood n* of n*~! is defined as a set
including v* and all nodes w” such that there

exists an e-edge (vFew®) and p(w*) € nF~1.

Now we show how to construct the normalization
graph G& from a e-tree G(C') by using the ex-
tended neighbourhood notion described above and
Lemma 1.

V] . V7|
Ve - = \\
vy (wk:p(vh))
1-clash {1}

(a) Normalization for 1-clash

(b) Normalization for 2-clash

Figure 4. Normalization for clashes

Let c* be a clash at level k such that there does
not exist any clash ¢* where ¢’* C c*. The aim
of the construction is to obtain a node w* in G
for each c* such that i) I'(w*) = {1}, ii) there is
a (k — 1)-neighbourhood n*~! in G¢(C) such that
a k-neighbourhood n* € N(n*~1) includes c* iff
there is a (k — 1)-neighbourhood n’*~1 in G such
that n*~1 C n’*~1 and a k-neighbourhood n'* €
N(n'*~1) includes w*. For example,

1. Let [v¥] be a 1-clash in G¢(C) (Figure 4). As-
sume that vf is a Vr-successor (from Defi-
nition 7, v¥ must be a Vr-successor or the
root of G(C)). If we add to G°(C) a node
w” such that I'(w*):={ L}, p(w*):=p(vF) and
an e-edge (vFew”), then w* belongs to the
Vr-neighbourhood of a neighbourhood n/*~1
that contains p(v}).

2. Let [vF, 0] be a 2-clash in G°(C) (Fig-
ure 4). We have v}, v5 are Vr-successors
and the r-successor vi* is determined by
item 1. of Lemma 1. If we add to G°(C)
nodes w™, ..., wf, wh such that I'(w™)= ...
= U'(wp)= 0, I'(w5):={L}; p(w™):=p(v§"),
ey P(WE):=wF L) p(wh):=p(wh) and e-edges

(vew™), (whewk), then wh belongs to the

Vr-neighbourhood of a neighbourhood n/¢~1

that contains p(vf). In fact, by the con-

struction, there exist a m-neighbourhood n/™
and a (k — 1)-neighbourhood n/*~! such

that o, v, w™ € n'™; p(vf), p(vh), p(w})

c n 1 and n'™ ¢ Nf(kflfm)(n/kfl)

From the extended neighbourhood notion de-

scribed above, we obtain w§ € n'* where n'*

is the Vr-neighbourhood of n/*~1.

Since the number of clashes in an e-tree may be ex-
ponential, the size of the graph obtained from the
e-tree by the normalization may increase exponen-
tially if a new path of Vr-edges is added for each
clash. To avoid the exponential blow-up caused by
the normalization, we extend the predecessor func-
tion p for nodes in normalization graphs by allow-
ing p to be a set function, i.e., p(v) is a set of
nodes. This extension leads to redefine the notion
of neighbourhood for normalization graphs since
the notion of neighbourhood relies on the the pre-
decessor function p. The extension of predecessor
function p will be described in Definition 8 (nor-
malization graph).

Before normalizing an e-tree G¢(C') = (V,EUE*,])
by Definition 8, G¢(C) needs to be simplified as
follows:

— Let [v,...,0}] and [w},...,wf] be clashes in
G¢(C) such that | < k and p*~'(wl) €
{ol, .. ol} for all wF € {wf,..,wr}. From
the neighbourhood definition, it holds that for
each k-neighbourhood n* such that {w’f, e w{f

C n*, there exist neighbourhoods n', ..., n*~1

such that n!, n'*1 € N(nl), ..., n* € N(n*~1)

and {v!,...,vl} C n!. From this claim, if [v}] is

—



a l-clash in G¢(C) then the subtree G¢(C)(v¥)
can be deleted from G(C). This can be per-
formed by deleting all nodes v" € V, h > k
such that p"~* = ¥ and all edges such that
one of two endpoints belongs to the set of
deleted nodes. Additionally, vf is relabeled
with 0.

Notice that we need only to consider clashes ¢* in
G¢(C) such that there does not exist any clash ¢’
where ¢/* C cF since if a neighbourhood n* con-
tains ¢® and ¢* C ¢* then n* contains ¢’*. This
implies that if ¢’* is normalized, i.e. any neigh-
bourhood that contains ¢’* includes the bottom-
concept L in its label, then ¢* is normalized as
well. In addition, according to Lemma 1, each clash
c® has nodes v, v" as its head and tail. If we nor-
malized all subsets of clashes that are grouped ac-
cording to its head and tail, then every clash in
G¢(C) will be normalized once.

Definition 8 (normalization graph) Let G¢(C) =
(V,E U E<l) be an e-tree and v° is its root. The
normalization graph of C is denoted as Gi =
(VI,E'UPE']l') where V C V', E CE', E€C E'*
and l'(v):=l(v) if v € V. Furthermore, we define
a predecessor function P(v), v € V' where P(v) is
a set of predecessors of v in G, and P(v):={p(v)}
if v € V.. The normalization graph G¢ is obtained
from G¢(C) as follows. If there exists a 1-clash [v°]
then G&:=G(L). Otherwise,

1. For each l-clash c*=[v}] in G¢(C), we add

a node wk and an e-edge (view*) where

Pw*):={p(vF)} and I'(wk):={L}.
2. For each pair of nodes v', v" (I < h) where
vl is a r-predecessor and v" is a r-successor,
let b, ...,ck be clashes at level k such that
vt v" are their head and tail, respectively. For
each c¥, we denote V(cF) for the set of the
r-successors determined by item 1. of Lemma

1 from cF.

(a) For each level I < m < h, if there
exists a r-successor v'™ € Ji_, V(cF)
then we add to G(C) a path of ¥r-edges
{(w™Vrw™t) ..., (wF1Vrw*)}, denoted
Py, where I'(w™)= I'(w™ )= .=l (w")
:=0. Furthermore, for each r-successors
o™ e Ui, V(ck) at level m, we add to
G¢(C) an e-edge (V™ew™).

If m = 1+ 1 then we set P(w™):={v'}.
Otherwise, let v™ ... o € I, V(cF)
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be nodes at the highest level in G¢(C') such
that h* < m and v™, v € cf for some
ke {ch,...,ck}. Let u L um Tl be
nodes, respectively, on the paths Pp,,... ,
Py, added by this item. We set P(w™) :=
{w=t L, wm Y, Pwm ) i={w™}, .,
P(wk):= {wF1}.

(b) We add a node u* and an e-edge (w*eu®)
where P(wk):=P(u*), I'(uF):={L} and
w” is on the path Py, added by item 2.(a).

The root of G¢ is the root of G¢(C'). The level of a
node is defined as the number of ordinary edges of
a path from the root to that node since the number
of ordinary edges of all paths from the root to a
node is constant. In addition, in a normalization
graph G&=(V'/,E'UE')l') we can define P"(vF) :=
Uyk7n+1€'pn—1(7jk),P(’Uk_n—i_l), 1 < n < k for each
vk € V. We denote p"(v¥) for P (vF) if P (v%)
is singleton, i.e., P"(v*)={p"(v*)}. Note that if
v¥ is a r-successor or Vr-successor of v*~! where
v*~Land v* in G§ then P(v¥)={v¥~1}. Therefore,
P(v*) is not singleton iff v* is added by Definition
8 and v* is neither r-successor nor Vr-successor.
Notice that the condition ¢; Z ¢; for all clashes
¢i,c; considered in Definition 8 (normalization
graph) guarantees that any neighbourhood n’* in
G¢ containing a clash includes uniquely a node
uf € V/'\ 'V such that I'(u®)={L}.

Remark 3 It is obvious that the number of clashes
propagated from clashes containing the bottom-
concept L or a pair of P,—P where P € N¢, is
bounded by an exponential function with the size
of G¢(C) (for instance, 21V where |V| is the num-
ber of nodes in G(C)). However, the number of
nodes and edges (Vr-edges and e-edges) added by
Definition 8 (normalization graph) is polynomial
in the size of G(C) = (V,E U E€)). In fact, for
each pair of r-successor and r-predecessor v, v"
and for each level | < m < h, item 2.(a) in Defi-
nition 8 adds at most i) |G¢(C)| Vr-successors, ii)
|G (C)| VYr-edges, iii) |V e-edges from r-successors
to the Vr-predecessor added at level m. In addi-
tion, |P(w™)| is bounded by (m — (I + 1)) where
w™ is a Vr-predecessor but meither ¥r-successor
nor r-successor. Note that if wk is a Vr-successor
or r-successor then P(w") is singleton. There-
fore, for each pair of r-successor and r-predecessor
vl vl the number of added nodes is bounded by

|G(O)| x (h—1) < |GE(C)|2. Since the number of
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pairs of nodes v', v in G¢(C) is bounded by |V|?,
the number of nodes added by the normalization is
bounded by |G(C)|*> x |V|*> < |V

The normalization of e-trees by Definition 8 adds
nodes that are neither r-successor nor Vr-successor.
Moreover, the predecessor function p is redefined
for normalization graphs such that p(v) (denoted
P(v) in Definition 8) may be a set of nodes. By
consequent, the neighbourhood notion needs to be
redefined for normalization graphs in order to take
into account the new elements that are brought
from the normalization.

Definition 9 (extended-neighbourhood) Let G& =
(V,EU E€l) be a normalization graph where v° €
V' s its root. At level 0 of G¢., there is a unique
0-neighbourhood, denoted N° = {v°}.

For each (k — 1)-neighbourhood nk=1, n*=1 =
{of=, L vk C V(0 < k< |GE) such that |
¢ 1Y) U . ULk, the set N(nF=1) of k-
neighbourhoods generated from n*~1 is defined as
follows.

1. If there emists an edge (vF~'vro*) € FE
such that v*~1 € nk=1 then we obtain a k-
neighbourhood n* € N (nk=1),

o {2 Ve 4
‘/V(nk—l)7 Ve(nk—l) — (Z)
where

V(b 1)={v*|(vF o) € Bkt € nkol)
Venb):={vF|(vFevk) € B¢, vk € VY (nF1),

vi ¢ VY(nfh), P(oF) nnft £ 0}

2. For each r-successor v* of all va e nk1,
we obtain a k-neighbourhood n* € N(n*~1),
nk:={v*} U VS where
Vs ={vF| (vFevk) € B¢, P(vF) nnPt #£ 0}

Remark 4 From Definition 8 and Definition 9, it
holds that if n'= {vl,...,v}} and n* = {vf, ..., vk
(I < k) are neighbourhoods in a normaliza-
tion graph G, such that N~=*=U(nk) = nl then
PE=LwEYnnl #£ 0 for all v¥ € nk. This property
holds also for e-trees G¢(C) where P(v*) is single-
ton for all nodes v* in G¢(C).

Figure 5 shows how to normalize an e-tree G¢(C')
by Definition 8 where
C = VrNr¥r.3r¥r.P 0 3Ir.(3rVr.¥r¥r-P N

Vr.(3rVrNr.oP N Vryrr.Q))

According to Definition 7 (clash), there are two
clashes [v15,v17] and [v16, v17] in G¢(C). Lemma 1

allows us to determine that V' ([v1s, v17])={v1, v7,v13},

V([v1s, v17])={v1,v4,v13} (¢f. the notation in Defi-
nition 8) and vy, v13 are the head and tail of clashes
[v15,v17] and [vig, v17]. Paths (wg, wy, wa, ws, wy),
(ws, we, wr,ws), (wg, w0, w11), (wiz,wiz) and e-
edges (viewp), (views), (vrewg), (vizewis) are
added by item 2.(a) of Definition 8 from the sets
V([v15,v17]) and V([v1s, v17]). Next, item 2.(a) de-
termines predecessor function for nodes wy, ws, wo
and wiz: P(wo)={v1}, P(ws)={wo}, Plwg)={ws}
and P(w12)={ws, we }. Finally, a node wy4 where
U'(w14) = {L} and an e-edge (wizewr4) are added
by item 2.(b) .

As a result, we obtain that i) vi5,v17 € VV(n%)
iff wiy € V¢(n*) for some 4-neighbourhood n*
in the normalization graph G¢& (Figure 5), ii)
vi6, v17 € VI(m?) iff wiy € VE(m?*) for some 4-
neighbourhood m?* in the normalization graph Ggé.
To sum up, a normalization graph G¢ preserves
all neighbourhoods in its e-tree G(C') and yields
new neighbourhoods, represented by V€, which
correspond to neighbourhoods containing clashes
in G¢(C). The following lemma assert this impor-
tant property of normalization graphs.

Lemma 2 Let G¢(C) = (V,EU E*,1) be an e-tree
where v° € V is its root and G&=(V', E'UE'*,l") be
its normalization graph. Let n'* be a k-neighbour-
hood in G&. If k = O then label(n®) # {L} iff
n'Y does not contain any clash. For all k > 0, the
following claims are equivalent:

1. label(n/®) # {L}.

2. There exists a neighbourhood n* in G(O)
such that n* = n'* NV and label(n*) =
label(n/*).

3. There does not exist any g-clash [vf, .., v
such that {vf,..,vF} C n¥, ¥ = V(1)
NV and n'* € N(n'*=1) where n* is a Vr-
neighbourhood in G(C).

A proof of Lemma 2 can be found in Appendix.

Algorithm 1 can transform e-trees G¢(C') and nor-
malization graphs G&(C) into description trees
since the neighbourhood, level, predecessor notions
are well defined for both graphs. In general, the
description tree B(G§ ) is different from B(G¢(C)).
However, B(G§) can be obtained from B(G(C))
by applying the following normalization rules (5g),
(6g) and (7g) (g stands for graph) which are de-
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Figure 5. Normalization graph G,

fined for description trees. These rules must cor-
respond to rules 5, 6, 7 (Definition 2) defined for
concept descriptions.

Lemma 3 Let C' be an ALE-concept description in
the weak normal form. Let G(C) and G¢ be the
description tree and normalization graph of C, re-
spectively. There exists an isomorphism between
B(G¢) and the description tree H obtained from
B(G¢(C)) = (Va, E3,2°%13) by exhaustively apply-
ing the following rules:

1. P, —\P€l3(2),PENc,ZE‘/3—>
I3(z) == {L} (rule 5g)

2. (2r2') € By, B(G(C))(') = G(1) —
B(G(C))(2) = G(L) (rule 6g)

3. Lels(z),zeVs —
B(G(0))(2) == G(L

A proof of Lemma 3 can be found in Appendix.
The following proposition is an important result
of this section. It establishes the equivalence be-
tween the normalization by the rules in Definition
2 for concept descriptions, and the normalization
by Definitions 5 and 8 for description trees.

) (rule 7g)

Proposition 1 Let C' be an ALE-concept descrip-
tion. Let Go and G be its description tree and

normalization graph, respectively. There exists an
isomorphism between B(GE) and Ge.

A proof of Proposition 1 can be found in Appendix.

Remark 5 Proposition 1 and Example 1 yield that
the size of B(G&) may be exponential in the size
of G&. In fact, Example 1 shows that Go may be
exponential in the size of C' and Proposition 1 as-
serts that there exists an isomorphism between Go
and B(GE) .

We now exploit the results have been obtained in
this section to propose a polynomial algorithm in
space for deciding subsumption between two ALE-
concept descriptions. Such an algorithm is inter-
esting since it enables us to decide subsumption
between concepts including lcs by manipulating
directly corresponding graphs.

Note that the algorithm described in [3] for check-
ing the existence of a homomorphism between two
ALE-description trees obtained from normalized
concept descriptions cannot be used for this aim
since it requires that all nodes of description trees
is explicitly represented, i.e., it requires an expo-
nential space.

The underlying idea of Algorithm 2 is that check-
ing the existence of a homomorphism from B(H¢)
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to B(G¢) can be performed without transforming
completely H¢ and G¢ into B(H¢) and B(G¢). By
fixing on each neighbourhood of H€ from the high-
est level to the root, this process can be carried out
by checking the existence of a mapping between
neighbourhood paths from the root to neighbour-
hoods at the highest level in H® and G¢. At each
checking step, the algorithm needs memory pieces
to store neighbourhood paths in H¢ and G°¢.

Algorithm 2 check(H¢(n¥), G¢(mF))

Require: n*, m* are k-neighbourhoods, respec-

tively, in normalization graphs H¢ and G°€.
Ensure: Answer “true” if there exists a homomor-

phism from B(H¢) to B(G¢). Otherwise, answer
“false”.
if label(m*) = {1} then

return true;
end if
if label(n*) ¢ label(m*) then

return false;
end if
Let n’f“,...,n’;“ be (k + 1)-neighbourhoods
generated from nk;
Let m’f“, ...,m’;H be (k + 1)-neighbourhoods
generated from m*;

for 1<i<p do

found := false;
for 1 <j<gq do

if nf“, m?“ are Vr-neighbourhoods and

check(H¢(ntT1), gé(méﬁ'l)) then

found := true;
end if

it nitl m?“ are r-neighbourhoods and

check(H¢(n ™), ge(méﬁl)) then
found := true;
end if
end for
if found = false then
return false;
end if
end for
return true;

Let m®, n® be 0-neighbourhoods of, respectively,
normalization graphs H¢, G¢. If function
check(H<(n%), G¢(m")) returns “true”, there ex-
ists a homomorphism from B(H¢) to B(G¢). Other-
wise, there does not exist any homomorphism from
B(H°) to B(G°).

Completeness of the algorithm

Assume that there exists a homomorphism ¢
from B(H®) to B(G®). We have to show that
check(H¢(n"), G¢(m?)) returns “true”.

Let {wy, ..., w],} be a post-order sequence of nodes
of B(H¢) (note that w!, corresponds to the root of
H¢). This sequence corresponds to a sequence of
neighbourhoods of H¢ (Algorithm 1). If there is not
any confusion, we can say w/, for a neighbourhood
on H¢. We will prove the claim by induction on i
where 0 <7 <n.

— Step i = 0. Let v = ¢(wy). Since ¢ is a ho-
momorphism, it is that [(w)) C I(p(wy)) or
I(p(wh)) = {L} (I(w}) = label(n}) where n¥ is
the neighbourhood corresponding to w}). Fur-
thermore, since p,q are equal to zero in the
algorithm, no iteration is performed. Thus,
check(He(wy(), G (w(w]))) returns “true”.

— Induction step (i — 1) — . By induction
hypothesis, check(H(w’), G(p(w}))) returns
“true” for all 0 < j < 4. Let v = ¢(w}). Since
© is a homomorphism, it is I(v) = {L} or
Ww;) C I(v) . Let wi,,..,w; be the neigh-
bourhoods generated from the neighbour-
hood w; and the edges (wiriw;, ),...,(wirpw; ).
Since {wy,...,w}} is a post-order sequence,
hence i1, ...ip € {0, ...,7—1}. By induction hy-
pothesis, check(H(w;,), G(w(wy,))) returns
“true” for all 1 <[ < p. Since ¢ is a homo-

morphism and wj_ , ..., wgp are the neighbour-

hoods generated from the neighbourhood wj,
hence ¢(w; ) have to be the neighbourhoods
generated from the neighbourhood v and the

edges (vrip(w;,)) for all 1 <1 < p. This im-

plies that check(H(w}), G¢(v)) returns “true”

since the iteration with index j (second itera-
tion) in the algorithm does not return “false”

forall 1 <j<gq.

Soundness of the algorithm

Assume that check(H¢(n"), G¢(mP)) returns “true”.
We have to show that there exists a homomor-
phism ¢ from B(H¢) to B(G®).

Since check(H¢(n%), G¢(m°)) returns “true”, it is
that I(n®) C 1(m°) or I(m°) = {L} where n°
and m® are neighbourhoods in H¢ and G¢ . If
there is not any confusion, we can say node w;
for a neighbourhood on H¢ and say node v; for a
neighbourhood on G¢. We start with ¢(wp):= vo.
Let w!,...,w? be nodes (neighbourhoods) gener-



ated from the neighbourhood n® and v',...,v? be
nodes (neighbourhoods) generated from the neigh-
bourhood m?. Since check(H¢(wg), G¢(vp)) returns
“true”, according to the algorithm we have for
each w!, I € {1, ..., p}, there exists v’ € {v!,..., v}
such that I(v%) = {L} or I(w!) C I(v"); edges
(worw'), (vorv') (or (we¥rw'), (vo¥rv) ) and
check(H¢(w'), G¢(v)) returns “true” . By induc-
tion hypothesis, for all 1 <[ < p there exist homo-
morphisms ¢; between B(H¢(w')) and B(G¢(v")).
For all 1 < [ < p, we define p(w'):= v" and
o(w):= ¢ (w) for all w in B(H¢(w')). This implies
that homomorphism ¢ from B(H¢) to B(G¢) is de-
fined.

Proposition 2 Let C and D be ALE-concept de-
scriptions, and let G¢ and Gf, be their normaliza-
tion graphs. Algorithm 2 applied to G& and Gf, can
decide subsumption between C' and D in polyno-
mial space and exponential time.

A proof of Proposition 2 can be found in Appendix.

4. Product of normalization graphs

This section introduces the product operation of
normalization graphs, which is extended from the
product operation of description trees (as defined
in [3]). In this extension, e-edges including e-cycles
will be treated as ordinary edges. In particular, for
an e-cycle (vev), we say also that v is an e-successor
of itself.

Additionally, we need the notion of induced sub-
graph to treat nodes whose label is equal to {L}.
An induced subgraph G¢(v¥.... , v¥) of graph G¢

where vF ... , vX are nodes at level k of G¢, consists
of the set of nodes v¥,... , v¥ and their descendants

in G¢ together with all edges whose endpoints are
both in this set of nodes. More precisely, let G¢ =
(Va, Ec U ES, lg) and vf,... , vk, € V. We define
an induced subgraph G¢(vf,... , v%) = (Vg,, Eg, U
Eg lg,) where

Vi, = {vh € Vg| PR N {of. ok #£ 0,
>k},

Eg,:= {(v'ev!™h) € Eg| ', 0!t € Vg, },

Eg = {(W'ev) € Eg| v, 0" € Vg, }, and

lg, () == lg(v) for all v € Vg, .

Note that, from the definition of predecessor func-
tion P for normalization graphs G¢, a node v! € Vg
is neither r-successor nor Vr-successor but v! may

belong to an induced subgraph G¢(vF.... | vk) if
Pkl 0 {of,... vk} £ 0.

In order to transform a subgraph G¢(vf, ..., vF)
into a description tree, we can apply Algorithm 1
to the graph obtained from G¢(v¥,... , vk ) by re-
placing the nodes vf,... , v¥ with a unique node
vg which is considered as the root of the subgraph.
The label of vy is set to label(vf, ...,vk), the out-
going edges of v¥.... ; v¥ become those of vy, and
the e-edges between nodes vf,... ,v¥ become the
e-cycle of vg. In particular, if {vF,... , v&} is a k-
neighbourhood in G¢ then G¢(v¥, ..., v¥)) contains
all [-neighbourhoods generated from {vf¥,... , v¥}
where [ > k. Algorithm 1 yields that the nodes and
edges of the tree B(G¢(v},... , v¥))) can be obtained
from these neighbourhoods.

Definition 10 Let G° = (Vg, Eq U Eg, la), H® =
(Vir, Eg U ES 1) be two normalization graphs
where v° and w° are the roots respectively of G¢
and H. If lg(v")={ L} (lg(w®)={L}) then we de-
fine G¢ X HE as a graph obtained from HE (G°) by
replacing each node w in H® (each node v in G°)
with (v°, w) ((v,w?)). Otherwise, the node (v°, w°)
labeled with I (v°) Ny (w®) is the root of G¢ X HE.
Furthermore, P(v°,w®) is set to (P(v°), P(w"))

and an e-cycle ((v°,w°)e(v?, w?)) is obtained from

the e-cycles (v°v?), (wew?).
At each level k such that 0 < k < min(|G¢|, |H]),

1. For each r-successor (Vr-successor) vF of

vffl in G¢ and each r-successor (Vr-successor)

wh of w;-“l in H® such that (Uffl,vffl) is
a node in G¢ x HE, we obtain a r-successor
(Vr-successor) (vf, w¥) of (Uf_l,vf_l) in G°
x HE. Additionally, for each e-successor vl
ofvlk in G° and for each e-successor wﬁ, owa
in HE such that (vF,wy) is a node created in
G¢ x 'H¢, we obtain an e-successor (vi, w,)
of (vF,wk) in G¢ x HE. Iflg(vF) and lH(wf)
# {L} (or lg(vl) and Ly (wF,) # {L}) then
the node (vf, w¥) (or (v, wy,)) is labeled with
la(vf) Nlg(wh) (or la(vf) Nl (wf,)). Fur-
thermore, P(vf,wk) (or P(v};,wf,)) is set to
(P(vf), P(wy)) (or (P(vi), P(w})))-

2. For all nodes (vE,wy), ...,(v5, wk) (or (vF, wk),
vk Jwk)) obtained from item 1. such that
la(f) = {L} (orlg(wf) = {L}), we obtain
a subgraph (G¢ x HE)((vE,wh),...,(vE, wk))
(or (G x H)((WF,wf).....(v5,, wE))) from
the induced subgraph HE(wk, ..., wk) (or
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Ge(vk, ..., vE) by replacing each its node w
(or v) with (vE,w) (or (v,wk)) where (v, w)
(or (v,wk)) is labeled with L (w) (or lg(v)).
Furthermore, P(vk, w) (or P(v,wk)) is set to

(P(v5), P(w)) (or (P(v), P(wf))).

From concept descriptions (taken from [4]) given
in Example 4, Figure 6 shows how to compute the
product graph of normalization graphs built from
these concept descriptions and the description tree
obtained from the product graph by applying Al-
gorithm 1.

Example 4 Let
Cs :=3r.(Vr.¥r.PY) N 3r.(Vr.Vr PN

Vr.(Ir.Yr.PY 0 Ir.yr. Py 01Vr.(3r.PY M 3r.PL))
Dy :=3rIr3r (PP PN PYNI Py M PINPY)
where Pf € N¢, r € Npg.
Note that e-cycles are useful for computing prod-
uct graphs. For instance, e-cycle of node uy of tree
G, and e-edge (vievs) of tree G¢, yield e-edge
((v1,u1)e(vs, u1)) of tree G&,, x Gp, .
To simplify the presentation, the e-cycles are not
added to the graphs in the figures.

Remark 6 The size of the product graph of two
normalization graphs G¢ = (Va, Eq U E&, la), HE
= (Vu, Eg U ES$, i) is bounded by the product of
the sizes of these normalization graphs. In fact, it
holds that |Vaxm| < |Va| x |Vul, |[Eaxul < |Eql
% |Eu| and |Egy gl < |Eg| % |Egl.

In the sequel, we will show that the level notion
for product graphs can be defined from those for
normalization graphs and the computation of the
product of two normalization graphs preserves im-
portant properties of the neighbourhood notion.
These notions guarantee that Algorithm 1 and Al-
gorithm 2 can be applied to product graphs.

Let (v!,w') and (v*,w*) (I < k) be two nodes in
a product graph G¢ x H¢. There is a path from
(v, wh) to (v*, w*) iff there are nodes (v'*1, w!t1),...
, (V=1 wh=1) such that P(v¥, w®) N {(vF~1 wk=1)}
# 0y, PTL W) N {0 w!)} # 0 where
Pl w™) N {(m Lwm H} # 0 iff P(o™) N
{v™=1} £ 0 and P(w™) N {w™ '} # 0. There-
fore, each path from the root (v°,w%) to a node
(v*, w*) corresponds to two paths: the one is from
1Y to vF in G and the other is from w® to w* in
‘H¢. Moreover, the number of ordinary edges of all
paths from v° (w°) to v* (w*) is constant since G

and H€ are normalization graphs. Thus, the num-
ber of ordinary edges of all paths from (v°, w?) to
(v*, wk) on G x HE is constant as well. This allows
us to define the level of a node (v*, w*) as the num-
ber of ordinary edges of all paths from the root to
(v*,w*). Tt means that two nodes corresponding
to the endpoints of any e-edges are always at the
same level.

Therefore, Definition 10 can be extended to n-ary
product of graphs as follows:

G&, X ... X Gg = (QEC1 X ... X ggH) x G,

Definition 11 We denote ’Tf as the set of all nor-
malization graphs and product graphs generated
from L-concept descriptions, i.e.,

TF = Up>1 {96, x - x G5, |

Cy,...,Cy, are L-concept descriptions}

In this paper, we investigate TE where £ € {FLE,
ALE}.

We now clarify how the neighbourhood definition
(Definition 9) can be applied to product graphs.
Similarly to Vr-neighbourhoods in normalization
graphs, the computation of the Vr-neighbourhood
at level k of a (k — 1)-neighbourhood in product
graphs takes into account the set of nodes V¢ in
Definition 9. Differently from Vr-neighbourhoods
in normalization graphs where sets V¢ # () include
only nodes whose label is equal to {L}, sets V¢
corresponding to Vr-neighbourhoods in product
graphs can contain nodes which have r-successors
or Vr-successors. More precisely,

Lemma 4 Let niy ' = {uy,...,un} and nfy' =
{wi, ..., wp} be (k —1)-neighbourhoods respectively
in G, HE € Tipe. Let nil be a (k — 1)-
neighbourhood in GEXHE. Assume that {(uq,w1), ...,
(um,wn)} - né‘_le and ZGXH(uiawj) =0, (uiij)
does not have any r-successor and NVr-successor for
all (ug,wy) € nily \ {(ur,w1), ey (W, wn) }-

It holds that there exist r-neighbourhoods (Vr-
neighbourhoods) nk, = {vi,..,vn} and nk =
{21, 21} such that nf, € N(nk™) and n¥ €
N(nkY) iff there ewists a r-neighbourhood (Vr-
neighbourhood) nk,. ;€ N(nk k) such that

{(v1,21), o0 (vn, 20)} C 0y and lasm (vi, 25)=0,
(vi,2;) does not have any r-successor and Vr-
successor for all (vi,z;) € nk y \ {(v1,21), ..,

(Vn, 21)}-
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Figure 6. Product of normalization graphs

A proof of Lemma 4 can be found in Appendix.
We are now ready to formulate and prove a theo-
rem which establishes the relationship between the
product of two graphs in 7¢ and the product of
two description trees (as defined in [3]) represented
by these two graphs.

Theorem 2 Let G¢, HE € Tjﬁg. There exists an
isomorphism between B(G® x H) and B(G®) X
B(H°).

A proof of Theorem 2 can be found in Appendix.
This proof builds inductively on the level of graphs
an isomorphism between the trees B(G¢ x H€)
and B(G¢) x B(H®). In fact, assume that for each

(k — 1)-neighbourhood nf Y, in (G¢ x H¢) we
have two corresponding (k — 1)-neighbourhoods
ng_l, n]z,_l on G and H°¢, respectively. The proof
shows that nk = (u1, .., um), nf = (wi,...,wy)
are k-neighbourhoods respectively of n’gl and

nk1 such that label(nk) # {1}, label(nf) #

(L} iff nk, is a k-neighbourhood of nf Y,
such that {(u1,w1),ee; (Um,wn)} C nk. 5 and
laxu(vi,z;) = 0, (v, 2;) does not have any r-

successor and Vr-successor for all (v;,z;) € nk, 4
\ {(v1,21), e, (U, z1)}. The proof of this claim is
based heavily on Lemma 4. Additionally, if la-
bel(nf,) = {L} or label(n¥) = {L} then, Defini-
tion 10 yields that (G¢ x H€)(nk. ;) is equal to
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He(nk) or G¢(nk,) (up to renaming nodes). Thus,
B((G° x H)(ng. ) is equal to B(H(n%;)) or
B(G¢(n%)). The construction of the isomorphism
will be done by proving that label(nf,) = { L} and
label(nk) = { L} iff label(nk,, ;) = {L}.

Proposition 1 yields that Go and Gp are equal re-
spectively to B(G¢) and B(G%) (up to renaming
nodes) and Proposition 2 shows that it is sufficient
to use normalization graphs G¢ , Gf, rather than
description trees Go and Gp to decide subsump-
tion between two ALE-description concepts C and
D. Moreover, according to an important result in
[3], the les of C and D can be computed as the
product Go X Gp. This result and Theorem 2 al-
low us to represent all lcs as product graphs G¢ X
‘H¢ and decide subsumption between lcs by manip-
ulating directly the corresponding product graphs.
Thus, we can export the semantics of concept de-
scriptions to graphs of Tjﬁg, i.e., for an inter-
pretation (A, .7), we define (G°)*:= (Cpg))*. By
consequent, we can talk about the subsumption,
equivalence, lcs, etc. for all graphs G¢ € Tj re- The
following result is a direct consequence of Theorem
2.

Corollary 1 Let G¢, H € Tjﬁg. The least common
subsumer of G, H® can be computed in polynomial
space and exponential time .

Since G& = G°(C) if C is a FLE-concept descrip-
tion, the complexity for computing G¢ from C' is
polynomial in the size of C'. Therefore,

Corollary 2 Let G¢, HE € T£ .. The least common
subsumer of G¢, H® can be computed in polynomial
time.

Additionally, according to the definition of lcs, we
have C' = les(C, L) for every ALE-concept de-
scription C. Therefore, Proposition 2 can be gen-
eralized as follows.

Proposition 3 Let G and HE be two product graphs
corresponding to lcs(Cy, Ca) and les(Dy, Da) where
C1, Cs, D1 and Do are ALE-concept descriptions,
i.e., G¢ = Gg x Gg, and H® = Gy x G, . Al-
gorithm 2 applied to G¢ and HE can decide sub-
sumption between lcs(Ch,Ca) and les(Dy, D) in
polynomial space and exponential time.

5. On the approximation ALC-ALE

In [1], a double exponential algorithm has been

proposed for the approximation ALC-ALE. In this
algorithm, the approximation is computed by us-
ing the lcs. A question left open by the authors
concerns the existence of an exponential algorithm
for computing the approximation. In the first at-
tempt at finding an answer to this question, we
hoped that if there is a method for obtaining
a polynomial representation for the lcs, such a
method may be applied for reducing the exponen-
tial blow-up caused by the distribution of disjunc-
tions over conjunctions in the normalization for
ALC-concept descriptions. However, though the
polynomial representation for the lcs presented in
Section 4 helps to reduce the size of the approxi-
mation, this representation does not allow for re-
ducing the complexity class.
In this section, we formulate and prove a theorem
which provides a tight lower bound of the size of
the approximation ALC-ALE in the ordinary rep-
resentation.

Algorithm 3 approz 4rs(C)

Require: C' is an ALC-concept description in
ALC-normal form C = C; U ...UC,.
Ensure: approxace(C)
if ¢'=_1 then
return |;
end if
if ¢ =T then
return T;
else
return
AN
AeNi™, Prim(C;)

|_| {3r.les{
(C1,--CL)EEx(CrL)X...x Ex(Ch)
approx ace (C; M Val(C)))|L < j <m}} N
Vr.les{approz ace(Val(C;))|1 < j <m}
end if

Theorem 3 Let C' be an ALC-concept description.
The size of approx ace (C) may be double exponen-
tial in the size of C'.

The following proof of Theorem 3 uses some no-
tions and the approximation algorithm described
in [1].



Let C is an ALC-concept description where dis-
junction only occurs within value or existen-
tial restrictions. Prim(C') denotes the set of all
(negated) concept names occurring on the top-
level conjunction of C' (the top-level conjunction
is not wrapped within a value restriction or exis-
tential restriction). Val(C) is the conjunction of
all C" occurring in value restrictions of form Vr.C’
on top-level of C. If there is no value restriction
on top-level of C then Val(C) = T. Ex(C) is the
set of all C’ occurring in existential restrictions of
form 3r.C” on top-level of C. The normal form of
C is defined as follows. Let C' be an ALC-concept
description and C # T, C # L. C is in ALC-
normal form iff C' is of the form C = CyU...UC),
such that C; = Mac prim(ci) Al HC,EEJ(C,L.) Ir.C'M
Vr.Val(C;), L C C; where C',Val(C;) are in ALC-
normal form.

If C' is in ALC-normal form, the approximation of
C' can be computed by Algorithm 3 (the approxi-
mation algorithm in [1]).

Considering the algorithm, the ALC-normal form
of an ALC-concept description C' may contain 2"
disjuncts (assume that the initial form of C' is the
conjunction of n conjuncts and each conjunct is
a binary disjunction). Furthermore, the value and
existential restrictions in approxace(C) may re-
quire to compute the lcs of 2™ terms. If the lcs
under the existential restrictions do not subsume
each other (absorption), the approximation may
contain a double exponential number (22") of ex-
istential restrictions which do not subsume each
other. This remark is useful for constructing the
proof of Theorem 3.

We now characterize some properties that an ALC-
concept description C' leading to the exponential
blow-up should satisfy:

(1) C is the conjunction of n conjuncts and each
conjunct is a binary disjunction. Therefore, the
ALC-normal form of C has 2" disjuncts and each
disjunct is the conjunction including n conjuncts.

(2) From Algorithm 3, the approximation contains
22" existential restrictions Ir.iles{Eq, ..., Ei } where
k=274 ¢ {1,..,22"}. Bach E;; should be an
existential restriction 3r.F;; where Ej; is the con-
junction of concept names belonging to { P, Q,}
for w,v € {1,2}, I € {1,..,n}. Thus, each
les{E;1, ..., E;,} is the conjunction of 3r.F}, and
each FL] is conjunction of concept names belong-
ing to {P*,Q,} for u,v € {1,2}, r € {1,...,n}.
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___________________

Figure 7. Double exponential approz_,e(C)

Each FL] can be considered as a subset of {P*, Q,
| u,ve{1,2},1€{1,...n}}.

(3) The essential property of Ir.lcs{E,..., i}
for k = 27, i € {1,..,22"} to be guaranteed,
is that they do not subsume each other. This
means that for each pair of existential restric-
tions 3r.les{E;1, ..., Eip} and Ir.iles{Ej, ..., Eji},
i,j € {1,...,22"}, there exists a conjunct Jr.F
of les{E, ..., Eir} such that Ir.F] Jr.F} for
all conjuncts 3r.F; of les{Ej1, ..., B}, and vice
versa.

The difficulty in proving the property (3) is due
the computing of les{Fj1, ..., Fi . This task may
become easier if we partition existential restric-
tions obtained from lcs{Fji, ..., E;} into groups
and identify representative elements of each group.
Therefore, we only need to consider representative
elements for deciding whether lcs{E;, ..., Eit} is
absorbed by les{Ej1, ..., Eji }.

The proof of Theorem 3 needs the following
lemma.

Lemma 5 Let (A% ..., A) be a n-dimension vec-
tor where i; € {1,2}. Let I be a bijection from
{1,2} x...x{1,2} into {1,..,2"} for numbering all
vectors {(A} .., Aln) | (i1, .0yin) € {1,2} X ... X
{1,2}}. We have that each (i1, ..., 1,) € {1,2}x...X
{1,2} determines uniquely k € {1,..,2"} such that
I(i1,...,in) = k where i, # iy for all h € {1..n}.

The proof of the lemma is trivial since (i1, ..., i) €
{1,2} x ... x {1,2} for each (i1,...,4,) € {1,2} X
.. x{1,2} and I is a bijection.

Proof of Theorem 3.

The theorem will be proven if there exists an
ALC-concept description C' such that the size of
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approzx ace(C) is double exponential in the size of

C and f approz ace(C) is irreducible. Let

A =3Py N iy (PO PE)NQ1 N Q2),

A} =3r(PE0 izt gk (PI TP MQ1TQ2)
for k € {1,...,n},

By =3r.(Q1 1 I_Iz':Ln(Pil M PiQ))7 _
By = 3r(Q2M[,—, (P 1 P?)) where P{,Q; €
N¢, r € Ng for i,5 € {1,2}, k € {1,...,n}.

Let C be an ALC-concept description:
C:=3r.BiN3r.By N[, (Vr.Al UVr.A?)

We prove that the number of top-level existential
restrictions of approxace(C) is 22" and these ex-
istential restrictions do not subsume each other.
The ALC-normal form of C is as follows:
C=CyU...uC, where

C; = (Ir.By N 3Ir.Bo NVr.Val(C;)) and

Val(C;) = AT .. T Aln | (1, ., 0n) € ({1,2} x

weox {1,2)).
According to Algorithm 3, we have:
approz ace(C) = |_|

(Biys--sBiy, )E({B1,B2} x...x{B1,B2})

{3rdes{(B;; NVal(C;))|1 <j <m}}n

Vrles{Val(C;)]1 <j<m} (*)

Figure 7 shows 22" existential restrictions on top-
level of the expression (*). The expressions under
these existential restrictions are lcs and each one
applies to m = 2" terms. We denote F as the set of
of existential restrictions obtained from computing
les{(B;; NVal(Cy))|1 < j < m}. According to the
computing of the n-ary lcs, E may contain m™+!
existential restrictions. E is partitioned into three
subsets EX(l), EX(Q), EX(g) as follows.

Since each tuple (B;,, ..., B;,,) € {B1,Ba} x ... X
{Bi1, B>} determines a set E of existential restric-
tions, we define a set function £ from the domain
{(Bi17 . Bzm)| (Bi17 . Bzm) S {Bl, BQ} X ..o X
{Bi1, B2}} to the set of sets of existential restric-
tions obtained from the computing of les{(B;; I
Val(Cy))1 < j <m} for all (i1,....5m) € {1,2} X
.o x{1,2}.

Each set £(X1, ..., X)) where (X1,..., X)) €
{Bi, Ba} x ... x {B1, Bo} may contain m"*! exis-
tential restrictions but some of them can be sub-
sumed by others. In fact, les{(X; N Val(C;))]1 <
j < m} can be computed as conjunction of

les{Eiy, ..., By, } where B} € {X,}UVal{C,} for
allr e {1,...om}. If{E;,,.... B} C{E},,....E, }
then les{E;,,...E; } C les{E,...,E;, }. Fur-
thermore, we define a selection function:

S(Xl, ,Xm) = {(Ei1; -~';Eim) Ei7, € {XT} @]
Val(Cy), r € {1,...,m}}. This implies that

E(Xl, ceey Xm) - {lCS{Eil, ceey Ezm}| (Ei17 ceey Ezm)
ES(Xl, ...,Xm)}.

We will identify from all them the representative
existential restrictions which form the three fol-
lowing subsets FX (1), EX () and EX(3):

1. EXy(X1,..., Xmm) is composed of the ex-

istential restrictions (of £(X7y,..., X)) that
subsume the following existential restrictions:
ch(A}c,Ai) =3I (@1 NQ21 |_|ln:1,l;£k(Pll M
P?2)) for k € {1..n}.
It is obvious that for each k € {1,...,n} there
exists (E;,, ..., By, ) €S(X1, ..., X;n) such that
(Eil, -~';Eim): {AIIC,A%} where EzJ:Allg €
Val'(C)) or E;;=A; € Val(C;) for all j €
{1..m}. Note that Val’(C}) is denoted for the
set of conjuncts in Cj.

2. EX(9)(X1,...,X;,) is composed of the exis-
tential restrictions that subsume the follow-
ing existential restrictions:
les(B;, By) = 3r.([1i_, (PN P?)) if there ex-
ists X, Xy € {X1,..., X} and X, # X, or
ZCS(Bi,Bi) = HT.(QIL' [l HZ:I(Pkl 1 P]?)) for
i€ {1,2}if X1 = ... = Xp,.

It is obvious that: lcs(B;, Bj) € £(X1, ..., Xim)
if there exist X,, X, € {X1,.... X}, X, #
X4 In fact, there exists (Ej,..,E;,) €
S(Xy, ..., X;n) such that (E;,, ..., E;,) =
{Bi,Bj} where Eir =B, € {XT} @] Val(C’T)
or E;, = B; € {X,} U Vdl(C,) for r €
{1..m}. Similarly, les{B;, B;} € £(X1, ..., Xin)
if X = ... = X,

3. EX(3)(X1,..., Xmn) is composed of the exis-
tential restrictions that are subsumed by the
following existential restrictions:
les{B;,, A, A2 .. A=} where (I, ...,1,) €
{1,2} x ... x {1,2}, k = I(l},...,l,). The
function I is defined as follows: each con-
junct Ir.des{(X; N Val(C;))|1 < j < m} on
top-level of approz 4ce(C) where Val(C;) =
Alf M ..M Alx o determines I(ly,....1,) = j
where j = (I; —1).2D 4+ . +(1,, —1).2°+1
(the binary value of (I1,...,1,) plus 1). It is
obvious that I is a bijection. According to
Lemma 5, k = I(ly,...,1,) is uniquely deter-
mined from (I1,...,1,) (**).




We have that les{ Xy, A, Al ... Aln} €
E(Xq,...,X) for some (ll,...,ln) € {1,2} x
. x{1,2}, k = I(ly,...,l,). This is implied

from Lemma 5, i.e., for each (I1,...,0,) €
{1,2} x ... x {1,2} there exists (B, ..., Ei,,)
€S(Xy,..., X)) such that (E;,..., Z) =
{Xk,Alf,Al;,...,Aiy} where E;, = X for
k=I(ly,....1,) and E; = Als € Val(C,) for
some s € {1..n}, r # k.
To show &(Xi,..,Xm) = EXqy(X1,..., Xm) U
EX) (X1, ..., Xm) U EX(3)(X1, ..., Xin), we only
need to show that if e € &(X1,..,Xm), e ¢
EX(Q)(Xl,...,Xm) and e ¢ EX(l)(Xl,...,Xm),

then e € EX 3y (X1, ..., Xin).

Indeed, if e ¢ EX(9)(X1,..., X;,) and

e ¢ EX)(X1,...,Xm) then e has to be of
the form lcs{B;,, A}, Ay, ..., A} such that B;,
€ {B1, B2} and {Af,..,Al} C{A]',.. A"} for
some (J1,...,Jn) € {1,2} x ... x {1,2}. Note that
if there exists h € {l.n} such that A}, A? €
{A, .., AL} then e € EX(1)(Xy,..., Xin). More-

over, we have B;, = X} where k=I(j1,..., jn) since
Al ¢ Val'(Cy) for all h € {1..n}.
This means that if for all (F;,,...,E; ) €

S(X1,..., Xmm) such that A} and A2 ¢ {E;,,....E; .}
for all h € {1..n} but By or By € {E;,, ..., E;, }
and AS' . AP € {E;,, ... E;, } for s1,...5, €
{1.n}, then {E;,,....E;, }= {Xp AL} ..., Asr}
such that {AS) ..., AZ;”} C {A{l7 . A{L”} for some
(jl; ,jn) S {112} X_... X {1,2} and EikZXkZBl
or By for k=I(j1,....,Jn).

Therefore, e C les{B;,, A", A, ...,

ecec EX(g)(Xl, ...,Xm).

Adn} and thus

We now prove that for each couple (Xi, ..., X;n),
(Y1,...,Ym) € {B1, Ba} x..x{ By, Ba}, (X1, ..., Xim)
# (Y1, ..., Yn,), the following properties are verified:
les{(X, MVal(C,))1 < u < m} Z les{(Y, N
Val(Cy))|1 <v <m}, and

les{(Y, N Val(C))|1 < v < m} Z les{(X
Val(Cy))1 <u<m}.

According to the definition of function &, these
properties are reformulated as follows:

There exists €/ € E(Y1,...,Yy) such that ¢’ £ €
for all e” € £(Xy, ..., X;) and,

there exists e’ € £(X1,..., X;n) such that e’ [Z e”
for all e’ € E(Y1,..., V).

Owing to the partition of £ into the subsets FX 1),
EX(3), EX(3), considering only representative ex-
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istential restrictions of the subsets is enough to
prove the properties above.

Let (Xl,...,Xm),(Yi,...,Ym) S {Bl,BQ}' X ... X

{B1, Bz} and kg € {1,..,m} such that X, # Yi,.

Without loss of generality, assume that:

Yio = B1 = 3Ir.(Q1 N[, (P! 1 P?)) and Xy, =

By = 3r.(Q2 N[, (P! 11 P?)). We pick ¢’ =

Ir(Q: N P N T Pin) from EX(3)(X1? ey Xom)

where Ir.(Q2MP{ M...NPJI") = lcs{ Xk, A, ..., Aln}

and ko = I(j1, ..., jn). First, show that ¢/ Z e” for

all e’ € E(Y1,...,Yn).

A e'f for all ¢’ € EX((Y1,...,Yy) since

{QQa Pljla i) Prjzn} g— {Q17 QQ}’UU?:I,I:,éh{Pll7 Pl2}
for h € {1..n}.

— ¢ [Z e for all & € EX(9)(Y1,...,Yy,) since

{QQanla >PrJLn} fd— U?:l{Pll’PlQ}’ and

{QQa Pljla >PrJLn} g {Ql}’UU;I:l{Pll’ PlQ}’ Note
that (Y7,...,Y) # (Ba,..., Ba) since Yy, =
Bs.

—¢ [Z e forall ¢ € EX(3(Y1,....Yn), ¢ ¢
EX(l)(Yi, ...,Ym) and ¢’ ¢ EX(Q)(Yl, ,Ym)
Indeed ¢’ has to be of the form les{B;, , A%}

s, } such that {A?l1 , A“p} -
{Alll,...,AﬁgL} for some (ll,..., ln) € {1,2} x
..x{1,2} and B;, = Ys where h = I(l1, ..., 1p).
This means that there exists (E“,. S Ei,)
eS(Y1,...,Yy) such that (E;,, ..., E;,)) =
{Yh,Ai‘T,...,A:f} where {Ai‘jl . A;
{AL Al for some (I, ..., 1,) € {

(Cr

. X {1 2} and E;, =Y,={V,} U Val’ for
h I(ly, . ly).
Assume that h = ko. We have E;, = E;, =Y,

# Xy, where Yy = B1= Ir.(Q: N[, (PN
PP)), Xke= Ba= 3r.(Q2 N[, (P! N P?)).
Hence, €’ contains @) but ¢’ does not contains
Q2. Thus, €' IZ €.

Assume that h # ko. If E;, =Y}, =B then,
according to the argument above, ' [Z e”.
Otherwise, Ej, =Alr € {A]',...,Alr} and AJr
€ {AS .., AP} where ko=I(j1, ..., jn).
Since "' =les{Xk,, A, ...,
tains P7" for j, € {ji,...,jn}. On the other
hand, since ¢/ = lcs{Yh,Als‘jl,...,AZ?} and
Alr e {A“1 " AZ‘;‘)} hence ¢’ contains PJr
but not PJr. Thus7 e IZe.

AJn} hence e” con-

Similarly, we can show that there exists e €
E(Y1,...,Ys) such that e’ [Z €' for all ¢’ €
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E(X1,...,X). To do it, pick ¢/ = Jr.(Q, M P N
... 1 Pi*) from E3(Y1,...,Ys,) where 3r.(Qq M
P11 Pin) = les{Vy, AJ', ..., Aln} and k =
I(j1, -, jn).- We proceed in the same way as above.
It remains to be proven that there does not ex-
ist any ALE-concept description D such that
D = approxarg(C) and the number of existen-
tial restrictions in D (as conjuncts on top-level) is
smaller than 22”. Assume that there exists such a
concept description D. Since C' C D, the height
of the description tree G(D) is not greater than
2. Furthermore, there exist existential restrictions
Ir.Cy, Ir.Cy where C1,Cy € Ex(approrarr(C))
and an existential restriction Jr.D; where D €
Ex(D) such that D; = Cy, D1 = Cs. This implies
that ¢y C Cy, which contradicts the property of
approxarg(C) shown above. [ ]

Remark 7 Algorithm 3 yields immediately a nor-
malized ALE-concept description the number of
existential restrictions on top-level of which may
be double exponential. The fact that the algorithm
may generate non-collapsible 22" existential re-
strictions from 2" disjuncts on top-level of the
ALC-form normal of C (as constructed in the
proof) cannot be explained by the interaction be-
tween value and existential restrictions. By what it
means that the compact representation introduced
in Section 3 cannot help to reduce the size of the
approximation obtained. Hence, the question raised
is whether this exponential blow-up is specific to
the approximation computation.

The remainder of this section will show that the
exponential blow-up caused by the approximation
computation results from the computing of the lcs
of n ALE-concept descriptions.

First, we need the following proposition for this
purpose.

Proposition 4 Let C = Cy U ... U Cy be an ALC-
concept description where L = C4,...,Cy. The ap-
proximation of C' by ALE-concept description can
be computed as follows:

approzace (C) = les{approx acs (C), ...,
approxace(Cn)}

A proof of Proposition 4 can be found in Appendix.

Algorithm 4 is a direct consequence of Algorithm
3 and Proposition 4.

Algorithm 4 approx a,e(C)
Require: C' is an ALC-concept description in
ALC-normal form C =C, U...UC,.
Ensure: approz are(C)
if C =_1 then
return 1;
end if
if C=T then
return T;
end if
if n=1 then
return [, c,imcy) AN
[ereea(cnyIr-approzace (C' Mval(Cy)) M
Vr.approx ace (val(Ch));

else
return

les{approx acs(Ch),..., approxacs(Cn)}
end if

Algorithms 3, 4 provide two methods to compute
the approximation. This allows us to conclude that
a double exponential number of existential restric-
tions occurring on the top-level of the approxima-
tion obtained from Algorithm 3 is due to the com-
puting of the lcs of an exponential number of con-
cept description.

More concretely, Algorithms 3 and 4 establish the
following equivalence for approx acs(C) (C is con-
structed in the proof of Theorem 3)

|_| {3r.les{

(Biys--sBiy, )E({B1,B2} x...x{B1,B2})

(Bij HVGZ(Cj))ll S] S m}} [
Vrles{Val(C;)|1 < j <m}

les{3r.B; M 3r.By OVr.Val(Cy), ...,
Fr.By M 3Ir.Bo NVr.Val(Cp,)}

Note that the left side can be obtained from the
right side by computing directly the lcs.

The computing of lcs in the right side requires
a normalization. If the rules in Definition 2 are
used for the normalization, the size of the nor-
malized concept descriptions increases polynomi-
ally. Thus, the exponential blow-up of the com-
puting of lcs in this case is not due to the inter-
action between value and existential restrictions.
This explains why the compact representation pre-



sented in Section 3 does not help to avoid the ex-
ponential blow-up. This result is compatible with
the result shown in [3], which states that an ex-
ponential blow-up may occur for the computing
of les{C4,...,C,, } where C; are £L-concept descrip-
tions, i.e., no normalization is necessary.

6. Conclusion and future work

We have presented a specific data structure,
called graph normalization, for representing ALE-
concept descriptions. This data structure can rep-
resent the lcs of two ALE-concept descriptions in
a polynomial space. We have proposed a algorithm
polynomial in space and exponential in time for
deciding subsumption between ALE-concept de-
scriptions including lcs. This result allows us to
add to a reasoner a procedure for treating the lcs
without increasing the complexity of subsumption
inference in time and space.

This paper has shown that the size of the ap-
proximation ALC-ALE in the compact represen-
tation, and thus, in the ordinary representation
may be double exponential. This result together
with double exponential complexity of Algorithm
3, as shown in [1], allows us to conclude that lower
and upper bounds for the size of the approxima-
tion ALC-ALE in the compact representation, and
thus, in the ordinary representation are double ex-
ponential. This gives a partial answer to the ques-
tion left open by the authors in [1]. What we can
affirm from the results of the present paper is that
there does not exist any exponential algorithm for
computing the approximation ALC-ALE in the or-
dinary representation. This affirmation does not
mean that there does not exist any exponential
algorithm for computing the approximation ALC-
ALE. We may obtain a positive answer to this
question if there exists a special representation for
ALE-concept descriptions, which enables to ex-
press the approximation ALC-ALE in an exponen-
tial space.

Our method is based heavily on the characteriza-
tion of subsumption by homomorphism between
description trees presented in [3]. This character-
ization that is extended to normalization graphs
helps to avoid exponential blow-up of the size of
the binary Ics, but does not allow to avoid dou-
ble exponential size of the approximations. The
computation performed in Section 5 shows that
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the double exponential blow-up in the approxi-
mation algorithm comes from the following two
sources: 1) distribution of conjunctions over dis-
junctions (shown in [8]), ii) exponential size of
les{C,...,Cy}. This explains why normalization
graphs which compact only the normalization are
not sufficient for avoiding the double exponential
blow-up in the approximation algorithm. However,
as illustrated in Figure 6, a very compact normal-
ization graph (polynomial) may replace the com-
plete binary tree for representing an ALE-concept
description. This could provide an idea for find-
ing a reduction limit of representations for ALE-
concept descriptions.

The work in [11] has given a double exponential al-
gorithm for computing the lcs in the logic ALEN .
This yields a double exponential upper bound for
the size of the lcs of two ALEN -concept descrip-
tions. Hence, a natural question raised is whether
normalization graphs preserve their properties in
more expressive Description Logics, for example,
ALEN . This question deserves to be studied in
future work.
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Appendix

Proofs of Propositions and Theorems
Lemma 1 Let G°(C) = (V, EU E<,1) be an e-tree.
Let & = [v}, ..., v}] be a clash in G¢(C).

1. There exists a root v' € V of c* such that
vlzpk_l(vf) for all 1 < i < q. Furthermore,
for each level | < j < k, there exists at most
a r-successor v} such that v/ = p*=I(vF) for
some vf € {vf,...,vF}.

2. There exist exactly (¢ — 1) pairs of nodes
(v ult),..., (vla1 ula=1) such that v'r ..., vl
€ V are r-successors; ult, ..., ulet € V
are Vr-successors; p(v'i) = p(uli) for all
i € {1,...,q — 1} and vh=pF-l(vk) .. |

i1
pla—1 =ph— lq 1(1) ,) for some (q — 1) nodes
k k

iy e Vi 4 € {’ul,..., (’;}

Proof: According to Definition 7 (clash), we
have ¢* C n* for some Vr-neighbourhood n*.
1. Since G¢(C) without e-edges is a tree, there
exists a node v! € V such that v'=p*~!(vF) for
all 1 < i < ¢. Assume that there exist two r-

v

successors v{", vy’ where | < m < k such that v{"
= pF=m(l), vt = pF=m(vk) for some vf, v§ €
{of,...,vk}. Since n* is a neighbourhood and vi*
= pFm(vf), vt = p*~™(vh), according to Defini-
tion 6 (neighbourhood), there exists a neighbour-
hood n™ such that v{*, vy* € n™. This contradicts
Definition 6.
2. Since G¢(C) without e-edge is a tree, for two
nodes vfl, Ug G{Uf,...,v(’;}, there exists a node
v° such that v —pk_cl (vF) =p"~e1(vF) and
PPk #£ pFh (k) for all b€ {k,..,c1 + 1}
Since each node in QE( ) has at most one Vr-
successor, there exist a r-successor v'* and a Vr-
successor u't such that p(vt) = p(ult) = v°* and
ol e {pFThi(vf ), pFTh (vF )}, We show that
there exist (¢ — 1) 7-successors v'1, ..., v'a=1 and
(¢ — 1) Vr-successors u'l, ..., ule=1 that have the
property described above.
By induction, assume that we have built r-
successors v't, ..., v's=1 and (s — 1) Vr-successors
ult, uls=1 (s < ¢q) from nodes vfl,..., vk
e{vf,....,vF} such that p(v") = p(ult)=v. .

p(vls—l) — p(ul *1):’00‘9*1 and vt = pk—ll( f)
oy bt = pFleor (k) (%) where u!t are Vr-
successors. Assume that 11 < L <lgq. Let vf

€ {vk, ..., k}\ {v“,... e
Assume that phF—< (vfﬂ) v% for some c¢; €
{c1,...;¢cs—1}. There ex1sts a node v° such that
ph—es (Ufsﬂ):pk*cs (UZ’c )=v Wherev € {’U“, ,vf}

and pk*m(viﬂ) # (] ) P ™(of ) #
pPm(wF ) for all m € {k,..,cs + 1}. This im-
plies that cs > ¢j since pF=¢i (’Ui+l)zvcﬂ' =p(vh)=
phlitl(yk ") Let vls and u's be a r-successor and
the Vr—successor7 respectively, such that p(vlS):
plut)= vt and ot (o), uli=ph ()

zw Ty

k gk k k _yk
where v =v;’  and v e{vl,..,vf} or v =0
ok L (R
and v € {’u“,..., is} ( ).
If v¢ = v% for some v € {v°,...,v%-1} then

ls = l; and there exists a neighbourhood nls such
that v's, vl5 € nls (since v's, 0% are ancestors of
vfl, - vk ). From 1. of the lemma, we obtain that
vls = v% and thus vk € {vfl, ...,vfg}. Since each
node of G¢(C') has at most one Vr-successor, we
have vfy € {vF,..,vF} as well. This contradicts
(**). Therefore, we have ’UCS # v% for all v9 €

{ve, ..., v%-1}, and thus vl # vJ for all vli €
{vlr,...,v's=1}. Furthermore, i) if v}’ —Ufsﬂ where
vle=ph~ls (vF ) then we have vt = pF=h(vF),



vle=t = phrlaoi(of ) gl = pk_lS(va“). i) If
k k 1

vF = vF where v's=p"~ls(vF ) then we have v
s €T

1o E

= pkill(vzkl)v ey ’Uls*l = pkil571(vz]‘i,1)v vls =
— k

Pk ZS(viS). iii) Otherwise, i.e., fo € {vfl,...,vfs

and vF # vf vle=p"ls(vF ) then it is that vl =

p*~l=(vF ) (*). Thus, now v’ = pF~l=(vF ) and

Gs41

vl = prl(vf).
Assume that pF=¢ (vl’z“);évcj for all
¢;j € {1y, cs-1). From I3 < ... < ls_1 we have
c1 < ... < cgs—1. There exists a node v such that
cs < ¢ and pk_c‘g(v,i“):pc_cs(’ucl):vcs where
prretm(of ) # pm(v) forallm € {1,.., cs+1},
Let o', u!* be a r-successor and a Vr-successor
such that p(v's)=p(vls)=v%. It is obvious that
s 1 lo- N e ok ok
vt ¢ {v't, ... vt} Furthermore, i) if v;, =v; .
where vle=pF~l: (v} ) we have o't = pFhi(vf ),

vl = pRrlemr(op ), ol = pFle (o) )
we have to have that v's=p*~!+ (v} ) and thus v"

= pkill(vzkl)v ooy ’Uls*l = pkil571(vz]z,1)v vls =

PP (o).

We have shown that there exist (¢ — 1) pairs

(vl uhh), ..., (vle=1 ula-1) where v!i are r-successors,
uli are Vr-successors, p(v'i) = p(ul’) for all

1 €{l,..,qg— 1} and vll:pk*ll(vfl), o, vlar=

pk_qul(quil) for some (¢ — 1) nodes vf , ..., quil

€ {vf,...,vl} [ |

Lemma 2 Let G¢(C) = (V,E U E“,1) be an e-tree
where v° € V is its root and G&=(V', E'UE",1") be
its normalization graph. Let n'* be a r-neighbour-
hood (¥r-neighbourhood) in G&. If k=0 then la-
bel(n'®) # {L} iff n'° does not contain any clash.
If k> 0 then the following claims are equivalent :

1. label(n'*) # {1} .

2. There exists a neighbourhood n* in G¢(O)
such that n* = n'* NV and label(n*) = la-
bel(n'*).

3. There does not exist any q-clash [vf, .., v}]
such that {vf,..,vkF} C nF, 0k = VV(n'*1)
NV and n'* € N(n'*=1) where n* is a Vr-

neighbourhood in G*(C).

Proof: We show 1. & 2.
If £ = 0 then, according to Definition 8 (normal-
ization graph), n’® = n® = {v°}. We have label(n'°)
# {1} iff I'(v9) # {L}. This implies that (v°) #
{L} and I(v") is not modified by the normaliza-
tion (normalization graph) and thus label(n®) =

label(n/?).
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Assume £ > 0.

I) “1. = 2.7, Assume that label(n’**1) £ {1}.
This means that label(n’*) # {1} where n/*+!
€ N(n'*). The induction hypothesis asserts that
there exists a neighbourhood n* in G¢(C) such that
n* =n'* NV and n'**t! € N(n'%).

If n/**1 does not contain any r-successor then,
by Definition 9 (extended-neighbourhood), it is
that n'**1 = VY(n'*) since label(n/**1) # {1},
and thus V¢(n’*) = (). Therefore, there exists a
neighbourhood n**1 = V¥(n'’*) NV = n/*1 N
V where n*t1 € N(n¥) and n’**! € N(n’*). This
means that n/**1 is formed from n**! and some
Vr-successors v'**1 that are added by the normal-
ization (Definition 8). From this and the construc-
tion of normalization graphs, it is that I/ (v/*+1)=()
for all v**1 € p/*+1\ p*+1 This implies that la-
bel(n¥*1) = label(n/**1).

If n/*+1 contains a r-successor v then there ex-
ists a neighbourhood m**+1 := n**+1 y {v*+1} such
that m*t! = p**1 0 V and n**! = VY(n'*) N
V where n’**1 € N(n'¥). We have I(vFT!) does
not contain any bottom-concept L since G¢(C') is
built from C that is in weak normal form. This
means that n/**1 is formed from m**! and some
Vr-successors v'**1 that are added by the normal-
ization (Definition 8) where I’(v/**1) # {1}. This
implies that label(m**!) = label(n/**1).

IT) “2. = 1.”. Assume that there exists a r-neigh-
bourhood (Vr-neighbourhood) n*+1 in G¢(C) such
that n**1 = n/**1 N V and label(n®**!) = la-
bel(n’*+1). By absurdity, assume that label(n/**+1)
= {L}. The definition of function label yields that
[(v 1) = {1} for some v**!1 € n**1  Since
G¢(C) is built from C in weak normal form, it
is that v**1 is not a r-successor. Moreover, by
the normalization (Definition 8) and the simplifi-
cation of e-trees for 1-clashes, we have v/¥+1 ¢ pF+1
and v"*T! is not a Vr-successor. Thus, according
to Definition 9 (extended-neighbourhood), v'*+!
€ Ve(n'*) = n’k*1. By consequent, n**t1 ¢ p/k+1
which is a contradiction.

k+1

We show 1. < 3. by absurdity.

If £ = 0 then, according to Definition 8 (normal-
ization graph), n"= n%= {v°}. We have label(n'®)
= {L}iff '(v°) = {L} or I(v°) is modified by the
normalization (simplification for 1-clash). This im-
plies that label(n'®) = { L} iff there exists a 1-clash
[v°]. Assume |G¢(C)| > k > 0.

I) “3. = 1.”. Assume label(n’**1) = {1}. The
definition of function label yields that I'(u**+1) =
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{L} for some u**! € n/*1. Moreover, we have la-
bel(n'®) # {L} where n'**1 € N(n'*). According
to items 1. and 2. of this lemma, there exists a
neighbourhood n*=n'* N V.
Assume that n/**1 is a r-neighbourhood of n'*. Let
k+1 be the r-successor such that ’Uk+1 € n/FtL,
Let n**1 be the r-neighbourhood of n* in G¢(O)
such that v € n*F+1 If there exists 2511 € nk+?
such that [(z¥+1) = {1} then there is a 1l-clash
[z¥*1]. From the simplification for 1-clash [z¥+1]
we have I'(zFT1) = (). Furthermore, if u*+1 ¢ n*+1
then uf*1 ¢ n/**1 since, according to the con-
struction of the normalization graph, there does
not exist any e-edge from vf“ to w1 such that
I'(uF*+1) = {1L}. Thus, label(n**1) # {1}, which
is a contradiction.
Assume that n/**1 is the Vr-neighbourhood of
n'*. Since uF*! is not a Vr-successor and uF*! is
added by the normalization (normalization graph),
we have n’**1 = V¢(n'*). Let n**! be the Vr-
neighbourhood of n* in G¢(C). We consider the
following cases:
i) Assume that u**! comes from 1-clash [vF*+1],
ie., (VRvroktl)y € B (vFtleubtl) € B¢ and
P(uF*t1) = {v*}. This implies that v*+1 € nF+l.
Since n* = n’* NV hence n**1 = VV(n'*) NV .
ii) By the construction of the normalization graph
(Definition 8), there exists a node w’chl S
such that (wlle ubtl) € B¢, P(w lkl+1) =P(u"t1)
€ V¥(n'*). Moreover, there exist wﬁ €
V' and a r-successor v'' € V where I} < k +
1 such that (vllewfl) € E'c, PbFl(yrtl)y =
PELAL (1) = !} and PR (of ) ={ul1}
e Lan

+1

and wlkfl

for some v Moreover, there is a neigh-
bourhood n’ll such that N—(+1=0) (p/ktl)—p/h
and vh wfl € n''. There exists a clash ckJrl such
that v'* € V(cf™) and v is the tail of c’g+1. Ac-
cording to Definition 9 (extended-neighbourhood),
there exists wg_l € Plw ll) such that wfi_l €
ni=land N=1(n/lt) = n/b—1 If wgfl is not a Vr-
successor (nor r-successor) there exists uniquely
a r-successor v'2 where Iy = I; — 1 is the high—
est level such that v'2 € V(cE™), (Ubewfl b e
E'® and v'2 € n/b—1 If wfi_l
then there exists uniquely a r-successor v*> where
lo < Iy — 1 is the highest level such that vl e
V(c’é“), (,Ul2€pl1—1—l2(w§;*1)) € E, oz € n'l
N—(ll—l2)(n/ll) — n/'2 and Pk_l2+1(vlk2+1):{’ljl2}

is a Vr-successor

for some U L e nF*1 (note that P+~ 1+ (w f;_l),---
| pli—itls (wf;l) are singleton).
This process is terminated at wf: where p(wfi) =

p(v'), v'» € V and we obtain that V(ci*!) =
{vh, .., v} and PRl (vt ={vl } where v !
€ nk+1 for all v € V{(c k“) According to item
2. of Lemma 1, we can pick nodes v71, ..., v% from
{vlr, ..., 0!} such that for each v7i, j; € {j1, ..., jq },
there ex1sts a Vr-successor u’' that satisfies p(u’i)
= p(v7i) and pF=IitY( ffl) vt for some vf“ €
k1

By the construction of the normalization

graph, we have that Ck+1 = [v k+1 Rl k+1]

1 ]1 LRI PRI PR
where pF~l+2(y ]qtl) = p(vl?).
k_ 1k

To sum up, we have cf ™! € VY (n'*). Since n*=n
N V hence n*+l= VV( ¥) NV where nF*+1 is the
Vr-neighbourhood of n*.

) “l. = 3.7. Assume that n**! is the Vr-
neighbourhood of n* in G¢(C) and there is a (q+1)-
clash [v k'H,... vk:'l] such that {vk“, y f:;ll} -
n*+land n**t! C VV(n'*) where n’k‘|r1 € N(n'*).
We show that there exists a node u**! and such
that I'(uFt1) = {1} and uF*! € Ve(n'F).

In fact, if ¢ = 0 then there exist (wfVrwi*!) € E',
(witleut) e B, whtl e vY(n'*) and uFt! ¢
VY(n'*). Thus, n’**1 = Ve¢(n'*) = {u**1}. There-
fore, label(n/**1) = {1 }.

Assume that ¢ > 0. Let v! » be r-successors

built from clash [vffl,...,qutll] by item 1. of

Lemma 1. We have vll:pk*h*l(vl’“fl), vl

= phlatl(y k“) for some vl’”l, T vl’”l €

{v k+1, y f:;ll} We have {vk“, y f:;ll} {v k+1,
k+1} Assume that [} > 1o > ... > [,,.

Slnce {’uk'|r1 e lp'“} CV¥(n ’k) there exists a

neighbourhood n'/*» such that pk’lP“(vlle),... ,

pk—lp-',-l(vlk;rl) c n’'» and n/lp:N—(k—lp)(n/k) (if
v € V then P(v) is singleton). Note that vl» =
pk*lP“(vlka) Since p(vlr) = p(wé‘)) wfp eVA\V
and (vlpewfz) € E’¢, we have wl € n't

For each I, < m < k , from 1tem 1. of
Lemma 1, there exists at most a r-successor v
such that pk*mﬂ(vlkj“) = v™ for some ’ulk;rl
€ VY(n'*). This means that there exist neigh-
bourhoods n/t*+t1e N (n'tr), n/e 2 N (n/lo+1),
n"eN (n/*~1) such that p"~m+ (v, L
pk—m-i-l( kJrl)

head and tail of clash [v k+1, ..,qutll], according

)

€ n/™. Since p(v'r) and v'* are the



to Definition 8, the clash [Uffl, ey qutll] is treated
and coded in the normalization graph G¢..

For each r-successor v™ such that m € {lp,..., 11 },
by the construction of the normalization graph,
there exists an e-edge (v™ew™) € E’® where
m =1, wZL+:1 c P(wm) and rpmflwlfl(wlrz:ll)
= {wﬁlﬁ} (there is a path of Vr-edges from
w?i to w}”:ll) Thus, by Definition 9 (extended-
neighbourhood), v™, w™ € n'™ if wZ:l enm1L
Note that for all l;11 < m < [; where l;41,l; €
{lp, ..., 11} we have v, w™ € n/™ if wZ:l en/mt
since w™ € VV(n™~1).

In consequence, we obtain that wl’“1 € n'* where
PP (wf) = wfi Thus, wllir1 €V¥(n'’*) where

(wf Vrwy
1 1

) € E’. By the construction of the nor-
malization graph, there is an e-edge (wlkfleuk*l)
€ E'* such that wyt!' € V¥(n'*), uh*1 ¢ V¥ (n'F)
and I'(uF*1)={_L}. By the definition of neighbour-
hood, we obtain n/**1 = V¢(n'k) = {u**1}. There-
fore, label(n/**1) = {1 }. ]

Lemma 3 Let C be an ALE-concept description
in the weak normal form. Let G¢(C) and G¢ be
the e-tree and normalization graph of C, respec-
tively. There exists an isomorphism between B(GE,)
and the description tree H which is obtained from
B(G¢(C))=(V3, E3,2°,13) by applying exhaustively
the following rules (p is the predecessor function

of B(G°(C))):

1. P, =P €l3(z), P€ N¢, z€ V3 —
I3(z) == {L} (rule 5g)

2. (2r2') € E3, B(G(C))(2') = G(L) —
B(G4(C))(2) := G(L) (rule 6g)

3. Lels(z),ze Vs —
B(G(C))(2) := G(L) (rule 7g)

Proof: Let G(C) = (V,E,v%1), its e-tree
G¢(C) = (V, EUE*®,1) and normalization graph G¢
= (V’,El @] EIE,ZI). Let B(gé) = (Vl,El,uO,ll),
H:(‘/é, Eg, U}O, l2) and B(QS(C)) = (‘/3, E3, ZO, l3)
We will show this lemma by using Lemma 2. First,
we prove the following claim:

Lemma For each node zF € Vj it holds that 2*F €
Vo and lo(2%) = { L} iff

1. there does not exist any path composed of -
edges from 2" to 2! (I < h) in B(G¢(C)) such
that L € I3(2") or P,—P € l3(z"), and p™ (v")
=z! for some n > 0; and
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2. P,=P € I3(z*) for some P € Ng, or there
exists a path composed of r-edges from 2" to
2% (k < h) in B(G¢(C)) such that L € I3(z")
or P,=P € I3(z").

Condition 1. guarantees that v* € V5. In fact, if
there exist such a path then, from rules (5g), (6g),
(7g), we have I (2") = { L }. Since p" (v*) =2! hence
2¥ is deleted by rule 6g) or 7g). Conversely, for all
nodes z! €V3 such that p”(v*) =z for some n > 0,
if there does not exist any path composed of r-
edges from z" to 2! (I < h) in B(G¢(C)) such that
1 €l3(z") or P,=P € I3(2") then z* is not deleted
from V3 by rules 6g) or 7g).
In addition, if P,—P € I3(z*) for some P € N¢
then l(z*) = {L}. Assume that there exists a
path composed of r-edges from z! to 2* (k < I) in
B(G¢(0)) such that L € I3(z") or P,—P € I3(z"),
and p"(vk) =2! for some n > 0. From rules (5g),
(6g), (7g), we have I5(z*) = {L}. Conversely, as-
sume that P, —P ¢ I3(z*) for all P € N¢ and l5(2%)
= {L}. This implies that [3(z*) is modified by rules
(6g), (7g). Thus, there exists a path composed of
r-edges from z" to 2 (k < h) in B(G¢(C)) such
that L € I3(2") or P,=P € I3(z").
To construct a bijection between V5 and V; |, we
can construct a bijection ¢ between the sets of
neighbourhoods in G and G°(C'). Note that neigh-
bourhoods n* such that label(n*) = {1} corre-
spond to leaves of trees, i.e., N(n¥) = (. We set
#(n°) = m® where n°, m® are 0-neighbourhoods,
respectively, in G& and G°(C). It is obvious that
label(n®) = {1} iff label(m®) = {L}. In fact, la-
bel(m®) = { L}, by Lemma above, iff P,~P € la-
bel(m®) for some P € N¢, or there exist neigh-
bourhoods m! € N(mP),..m! € N(m!'™!) in
G¢(C) and r-edges (vrv!),...,(v'"1ro!) € E, 0! €
mb, v2 € m?,..., v' € m! such that P, =P € [(v})
U l(vh), vi, vt € m!, P e N (v} # vb) or I(v}) =
{L} (v} = v}). By Definition 7, this implies that
there exists a 1-clash [v°], v° € n°. By Lemma 3,
label(n®) = {L} iff there exists 1-clash [v°].
Assume that ¢(n*) = m* and label(n*) = la-
bel(m*) # {L}. Let n**' € N(n*) be a r-
neighbourhood (Vr-neighbourhood) in G§. As-
sume that label(n®t1) # { 1}. By Lemma 3, there
exists a r-neighbourhood (Vr-neighbourhood) m*+!
€ N(mF) in G¢(C) such that mF*+1 = nF+l N V3,
and there does not exist any g-clash [0}, ..., vkt
such that {vf™', .., vk*1} C m*1. Definition 7
yields that there do not exist neighbourhoods
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mkt2 € N(m*H) . mtt e N(m!) (I > k+1)
in G¢(C) and r-edges (vk+1rvk+2), ey (Vo) €
B, vF Tt e mktt ol € m! such that P, =P €
I(vh) U l( b, Uf,vj em!, P€ Ngor {L} =1}
(vl =2t ) By Lemma above, we have that the la-
bel of the node that corresponds to m*+! is dif-
ferent from {_L}, i.e., label(m**1) # {1} and thus
label(nf*+1) = label(m*+1).

Conversely, from this neighbourhood m*+! we
can determine uniquely n**1 = VV(n*) if m*+!
is a Vr-neighbourhood (i.e. m*+! = nF+1 0 13),
or nFHl = {pF+1} U (Ve }, mEtl = pFtl 0
V3 (notations in the definition of neighbourhood)
where v¥t1 € m**l is a r-successor if m**! is a
r-neighbourhood. Thus label(n*+1) = label(m**1)
# {L1}. We can follows the schema : label(m*+1)
# {1} (by Lemma above) => no existence of se-
quence of neighbourhood => no existence of clash
(Lemma 3) => label(n**1) = label(m**1) #£ {1}.
Therefore, we set ¢(n*+1) = mF+L,

Assume that label(n**1) = {1}. By Lemma
3, it is obvious that nF*! is a Vr-neighbourhood
and there exists a g-clash [vFF! . ., 0N such
that {vy™,..,v5*1} C V¥(n*). By Definition 7,
there exist neighbourhoods m*+2 € N(m*+1)..,
m!*t e N(m!) (I > k+1) in G¢(O), {vy ", ..., vF+1
C mF*! and r-edges (U’H‘lrvk”) ey (01 1rvl) €
E, ol ¢ m’“r1 ., v' € m! such that P, =P €
I(v}) U l( ), ’UWUJ em!, P € Noor {1} =1(v)
(v = h). By Lemma above, we have label(m**1)
= {J_} and m**! is a Vr-neighbourhood. Con-
versely, from this neighbourhood mF*!
uniquely determine n**1 = V¢(n*) and thus la-

bel(nk*1) = label(m**1) = {L}. We set ¢(n*+1)
= mk+L,

we can

By consequent, we have constructed an isomor-
phism ¢ between H and B(G§) . [ |

Proposition 1 Let C' be an ALE-concept descrip-
tion. There exists an isomorphism between B(G)
and Gc.

Proof: Assume that C' is in the weak normal
form. Let G(C) = (V, E,v°,1) and its e-tree G¢(C)
= (V,EUE<l'). Let B(G(C)) = (V4, Eq,u°, 7).
Let G(C") = (Va, Ea,w", I2) be the description tree
of the concept description C’ obtained from C' by
applying rules 1, 2 in Definition 2. From Lemma
3, we only need to prove that there exists an iso-
morphism between the tree obtained by applying
the rules in Lemma 3 to B(G¢(C)), and G¢. First,

we show that there exists an isomorphism between
B(G<(C)) and G(C").

We construct by induction on level k£ (0 < k <
IG(C)]) a bijection ¢: Vo — V4 such that l(w?)
= l(u?), la(w) = l1(¢p(w)) for all w € Va, and
(Pp(wy)ep(ws)) € By for all (wiews) € Es.

Level k£ = 0. Since G¢(C) has unique 0-neighbour-
hood (v°), we obtain the root u® of B(G¢(C))
where [1(u®) = I'(v°) = 1(v°). We obtain also the
root w® of G(C') where l(w®) = [(v°). We set
d(w?) = uP.

Level & > 0. Let w* € V; be a node at level
k of G(C'). We have that w* corresponds to a
set of nodes {v¥,....,vF}, vF ... ok e |4 resultmg
from the normalization. Hence, l(w*) = {I(vF) U

. Ul(v¥)}. By induction hypothesis, assume that
#(w*) = u* where the node u*, which is obtained
from executing Algorithm 1 for operator B, cor-
responds to the k- nelghbourhood (Ul,. " m) of
G“(C) and Iy (u¥) = label(u¥) = {1(¥)U...Ul(oh )}
(Note that G(C") and G¢(C') share the set of nodes
V). If there is not any confusion we write neigh-
bourhood u* for node u*. We consider the following
two cases:

1. Let ’Uerl,...,’UlkJrl be all Vr-successors of
the nodes vf, ..., v% . {vk+1,...,vlk+1} =
Vv(uk). The apphcatlon of mnormalization
rule 1 yields a (k + 1)-node w*+! =
{of*h v of G(C') and a Vr-edge that
connects w* to wktl, d.e., (wFVrw*tl) €
Es. Let w**1 be the Vr-neighbourhood of uk,
pe., uFtt = VY(Wk). If L e {I(F™hu... U
(v, k“ )}, we have that label(uft!) = {1}
and 1L € lp(w**l). Otherwise, label(u*+1) =
{I(vFHU...Ul(v k+1)}:lg(wk“).Therefore,
the unique Vr-successor w®t! of w¥ corre-
sponds to the unique Vr-successor u**1 of u*
and lo(wFh) = Iy (uF ). We set gp(wht1) :=
uktt,

2. Let v§+1 be a r-successor of one of nodes
vF, ..., vk and ’Uk+1 k'H be all Vr-successors
of nodes v}, ..., vk . The application of the

normalization rule 2 yields a (k + 1)-node
wktl = {v(l)c-i-l ’Ulf—H, k+1} of g(C/) and
a r-edge that connects wk to whtl e,
(wFrwk*t1) € Ey. Let uF*1 and (uFruft1) be
a node and a r-edge that are generated from
node u* by Algorithm 1.

Since ’uk'H is either a Vr-successor or a r-

successor of one of nodes v, ..., v¥ for all



i € {0,..,1}, we have p(vFt!) € {vF, ... ,vE }.
Furthermore, since each node vf where vf €
{vF,...,oF} is connected to a mnode vf €
{vk,..,vE} by an e-edge, hence by Defini-
tion 5, two nodes ka, f“ where UkH S
{v’f“, ey ZH} are connected by an e-edge.
Hence, according to Algorithm 1 for opera-
tor B, the node u**! corresponds to (k + 1)-
neighbourhood (v§™, vf™, ... vF 1), (Note
that Vek R T H} (vErolth)
€ E) and I1(uF*1) = label(uf*h). If L €
{1 UL (™) UL UL(uf )}, we have that
label(u**1) = {1} and L € lo(w**1). Other-
wise, label(u*t1) = {I(vfT) UI(FM U ..U
( k+1)} =1, ( k+1).

Conversely, from the (k + 1)-neighbourhood
{oR+t bt 0T we can show that G(C)
has a node w’“r1 = {oftt, ’u’f“, 0y Y and
a r-edge which connects w® to w**t!.

We set ¢p(wh*1) := uF+L,

We have constructed a bijection ¢ as specified
above from tree B(G¢(C')) into the tree G(C’). Ac-
cording to Lemma 3, there exists an isomorphism
between B(G¢,) and H where the tree H is obtained
from B(G¢(C)) by applying the rules in Lemma 3.
Therefore, it is sufficient to prove that the descrip-
tion tree G can be obtained from the tree G(C")
by applying the rules in Lemma 3 (which corre-
spond to rules 5, 6, 7 in Definition 2). In fact, each
application of rules 5, 6, 7 to C’ corresponds to
each application of rules 5g, 6g, 7g to G(C’) and
conversely. Moreover, the application of rules 5, 6,
7 to C' allows us to obtain the strong normal form
of C' from which the description tree G¢ is built.
Let G’ be the tree obtained by applying the rules
5g, 6g, 7g to G(C"). Thus, G’ is isomorph to G-. W

Proposition 2 Let C' and D be ALE-concept de-
scriptions, and let G¢ and Gf, be their normaliza-
tion graphs. Algorithm 2 applied to G¢ and Gf, can
decide subsumption between C' and D in polyno-
mial space and exponential time.

Proof: According to Remark 1, the trans-
formation from ALE-concept descriptions into the
corresponding e-trees takes a polynomial time in
the size of input concept descriptions C' and D
(note that C' and D must be transformed into weak
normal form before building the corresponding e-
trees G°(C') and G¢(D)). Additionally, Remark 3
shows that adding nodes for stocking clashes in-
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creases polynomially the size of e-trees. Thus, the
size of normalization graphs G¢ and Gf, is polyno-
mial in the size of C' and D.
Algorithm 2 checks the existence of a homo-
morphism between between two description trees
B(G¢), B(H®). According to Theorem 1, Algorithm
2 allows us to decide subsumption between C' and
D.
According to Definition 9 (extended-neighbourhood),
the number of (k 4 1)-neighbourhoods generated
from a k-neighbourhood is polynomial in the size
of H¢ (or G°). Furthermore, since the height of
He (or G°) is bounded by the size of tree and vis-
ited branches can be freed, the algorithm needs a
piece of memory polynomial in the size of H¢ (or
G°) to store the neighbourhoods along the path
(wo, Wkt1, ...y Wy) from root wy to leaf w,. These
paths are built by inductive calls in the algorithm.
This implies that the algorithm takes an exponen-
tial time (¢f. Remark 5) and a polynomial space.
]

Lemma 4 Let k' = {u1,...,un} and nfy' =

{wi, ..., wy} be (k —1)-neighbourhoods respectwely
in G M € T§re. Let nkly be a (K — 1)-
neighbourhood in G x He. Assume that
(w101, e, (s wa)} € 0 Yy and
lGXH(ui,wJ) = 0, (u;,w;) does not have any r-
successor and Vr-successor for all
(uiij) € ”Z;IH \ {(u17w1)7 sy (umawn)}'
It holds that there exist r-neighbourhoods (Vr-
neighbourhoods) nf, = {v1,..,vn} and n¥ =
{21,.., 21} such that nf, € N(nk™') and n¥ €
N(nkY) iff there exists a r-neighbourhood (¥r-
neighbourhood) nk,. . € N(nGXH) such that
{(v1,21), o0 (v, 20)} C nkyy and laxn (vi, 25) =
0, (vi,zj) does not have any r-successor and Vr-
successor for all
(Ui’ Zj) € nng \ {(Ula 21); e ('Uh? Zl)}

Proof: 1. Let nf= (vi,...,v,) and nf=
(21, -, 2) be Vr- neighbourhoods respectively of
nktand nf . Let nfy ;€ N(ny ;) be the Vr-

neighbourhood First, we show that VGX a (et
£ 0 Vil £ 0 and Vil £ 0. As

sume that v; € VY (nk 1) and z; € VV( nk1) e,
(upVrv;) € Eg and (rizj) € Ey where u;, €
n’éﬁ and wy € nh ' We have {(u1,w1), .., (W, wn )}
C nily. By Definition 10 (product), that means
that (vi,2;) € V¥, y(nt.Y). Conversely, assume

that (v;, zj) € VvaH(n’éle) i.e., ((up, w)Vr(vi, z5))
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€ Egxu where (up,w;) € ng;lH. We have (up, wy)
€ {(ug,w1), ..o, (U, wy)} since
{(ulawl)a-"7(umawn)} - ng;lH and (uh'awl’)
does not have any Vr-successor for all (up/,wy) €
nko b\ {(ur,wh), e, (U, wy) }. By Definition 10
(product), that means that v; € V¥ (n
€ Vii(ni ).
By consequent, we obtain there exists a Vr-
neighbourhood of nGX  iff there exist Vr-neighbour-
hoods of nG ! and n’;{ L
1.1) Assume that label(nf,) = {1} and label(n%)
={Ll}.
The definition of neighbourhood yields that I (vo)
= {J_} for some vo €nk and lg(z0) = {L} for some
2o € nfy, and nk, = V() nk = Vi (nh 1) are
the Vr-neighbourhoods of nG_l and n’;{_l
tively.
We show that nGxH = V(i k,
VE(ng™) x Vi(ng ') U Vg U Vip= ”GxHa
lGXH(v,,z] = {L} for some (v, zj) € Nk 1
laxu(vir,zjr) = 0, (v, zj) does not have any r-
successor and Vr-successor for all (v;r, z;) € Nk, g,
(vir, zj1) # (vi, 25) 5 andlaxm (vi, zn) = 0, (1, 21)
does not have any r-successor and Vr-successor
for all (vj,2;) such that (v, z,) € V¥(nk Y,
(v1, 2n)e(vi, 25) € By gp, (viy 2j) € nk i (%) . Note
that
Vi = {(v,2) | UGVG( kD), (ve) € ES, v €
VE(nk), = € Vi (nly 1)) and
Ve = {(v, Z) | v € V&g ), 2 eVg(ny )
(ze2') € ES, 2 € Vi (nko 1)}
Assume that v; € V5(nE™h) and 25 € Vg (nl ).
This means that ZG(UZ') {1} (unique) or
pv)) € ni tlg(u) = 0, (vev;) € Eg, v €
VInETh), v ¢ VYA, v does not have
any Vr—successor and r-successor, and lg(z;) =
{L} (unique) or 0, p(z;) € n’fi L (P(v;) and
P(z;) are singleton), Iy (zn) = 0, (2nez;) € Ef,
€ VYY), 2 ¢ Vv(n];,_l), z; does not
have any Vr—successor and r-successor. Hence,
we have (v, zp) € Vv(nGXH) laxu(v, zn) = 0,
(01, 20)e(ir 23)) € By g ploi 23) = ((01), p())
€ néns (Vi) € VY () loxn (i, z) = {1}
(unique) or (). Therefore, according to Definition 9
(extended- neighbourhood), (vi, zj) GVGH(nGXH)
Thus, V5(ng ') x Vi(ny ) © ny and ngy g
= VGH(ngle)

Assume that (v, z;) €V3g. By the definition,
we have ((vi,zn)e(vi,2;)) € E&y g, (vi,zn) €

k) and z;

respec-

VGH(ng;lH) (UiaZJ ¢ VGH(qk_l)v p(viazj) €
ngle where zj, €V (n; Kby, (znezj) € EY, la(v;)
=0, lg(zn) = 0, z; € Vg(nk "), This implies
that (v;, z;) € VGH(ncxH) and lgxpg(vi, zn) = 0,
laxu(vi,z;) = 0 and (v;,2;) does not have any
r-successor and Vr-successor. Similarly, if (v;, z;)
eV then (vi, 2;) € VEy (nt ) and lgs (v, 25)
=0,lgxm(vi,zj) =0 and (v;, z;) does not have any
r-successor and Vr—successor where v; €V (ng; Eh,
(viev;) € BS, v; € VE(nk™).

Conversely, assume that (vi,zj) € nb g =
V&g (nely). According to Definition 6 (neigh-

bourhood), we have that (v, 2,) € V&, (nk k),

(v, 2n)e(vi, 7)) € Egyers (vi,2) ¢ Viu(nGly),
(v, zj) € n’é;lH. From Definition 10 (product),
we have v; € Vv(ng_l), (vev;) € EE and z), €
V¥l ), (snezy) € B, plos) € mb1, plz;) €
2P and either v; € VY(niY), 2 € Vg(nht)
or v; € V&), z; € VY(nk ). This im-
plies that (’U“ZJ) € Vs(nk ) x vgmhit) U
Vip U Vig It is obv1ous that for all (uz,’uj) €
VE(nETh) x Vig(nk ) U VI, U VY it holds that
lGXH(v“ zj) = {i} (unique) or @ and (v;, z;) does
not have any r-successor and Vr-successor. Fur-
thermore, lgx g (v, 2) = 0, (v, z) does not have any
r-successor and Vr-successor for all (v, z) such that
(U,Z) € Vv(ngle) (U,Z)e(’l)i,Zj) € E&XH’ (Ui’zj)
€ N
1.2) Assume that label(nf,) = {L} and label(nf;)
# {L} (or label(nf,) # {L} and label(n%,) = {L}).
The induction hypothesis (for G¢ and H¢) yields
that nk, = VG( k1) and nk is the Vr-neighbour-
hoods of nG L This means that for all v; €
ng, we have lg(v;) = {L} (unique) or 0, p(v;)
€ ni b (P(v;) is singleton),lg(v) = 0, (viev;)
€ E5, v € VI, v ¢ VInE™), v does
not have any Vr-successor and r-successor; lg(v;)
= (0, v; does not have any Vr-successor and 7-
successor for all v, such that v, € VI(nk™)
(vev;) € B, v € V&(ni ') (by the Simphﬁca—
tion of normalization graphs). Furthermore, 17 (2)
# {1} for all z € n¥. These imply that (v, z)
€ Viun&u)s (v, zn)e(viy 2n)) € By g, (vi, 21)
¢ VGH(nGXH) p(vi,zn) € nisly where zj, €
VE(nk ) (P(vw) and P(zp,) are singleton since
v, zp, are Vr-successors). Thus, by Definition 9
(extended-neighbourhood), (vi, z1,) € V&g (nely)

# 0 and n’éxH = VGEH(n]Zv‘XlH)

)



Let vg € nf, such that lg(vg) = {L}. Accord-
ing to the definition of product in [3] we ob—
tain that the subtree B(G®)(nk) x B(H)(nk)
is equal to the subtree B(H¢)(nk;). This implies
that (nf,nk) = . On the other hand, from
Definition 10 (product), we have that the prod-
uct graph G¢ x H€ contains the subgraph (G¢
x H)((vo,21), ..., (vo,2p)) where this subgraph
is obtained from the subgraph H¢(zy, ..., 2,). We
have to prove that {(vo,z1), ..., (vo,25)} C nk 5
and loxm(vir,z5) = 0, (vir,z;:) does not have
any Vr-successor and r-successor for all (v, z;/)
€ nl gy \ {(vo,21), ..., (vo, 2)}. Furthermore, we
show that lgxm(vi, zn) = 0, (v, 21,) does not have
any Vr-successor and r-successor for all (v, zp)
such that (vy, 2) €V ek, (v, zn)e(vi, )
and (v;,zj) € Ny -

Assume that n% = V7 (n% ). Similar to above,

we have (v, z;,) € VGVH(ng;lH) ((vr, zn)e(vo, 21))
€ EEGxHa ('UOv Zh) ¢ VCYH(ngle) p(U07 Zh) € ng—le

for all z;, € Vj (k1) where v, € VI (k1) Lrr(21)
# {L}, lg(vo) = {L} such that (vievg) € E, vo ¢
Va(ng ), p(vo) € ng ' (P(vo) and P(2y,) are sin-
gleton) Therefore, {(vo, 21), ..., (vo, 25)} C nk 5.
Let now (vir, 2j1) € nf g \ {(v0,21), -y (v0, 2) }-
By Definition 9 (extended-neighbourhood), we
have (v, zn) € Viu(ngy), (v, zn)e(vir, 27)) €
E&yn ('Ui’vzj’) ¢ VCYH(ng;lH)a p(Ui’aZj') € nleH
(P(vis) and P(z;/) are singleton). This implies that
v € VE(nEY), lg(vir) = 0 or if vis a Vr-successor
then Ilg(vir ) = () and vy does not have any Vr-
successor and r-successor (the property (*) of Veis
proven above). Therefore, lgxm(vir, zj7) = 0 and
(vir, zj) does not have any Vr-successor and r-
successor. Furthermore, if (v, 2,) €V, (nk k),
((vi, zn)€(viy 2;)) and (v, 2;) € nk 4 then v, €
VInE), lg(u) = 0, (nev) € Eg, v € VS(nkh).
This implies that lgxm (v, zn) = 0, (v, 2p) does
not have any Vr—successor and r-successor.
Assume that nf, = V5(n '), We have (v, 2)
€ VGH(nGxH) (('Ulvzh)e(vmzj)) € EGun (UO’Zj)
¢ VgH(ngle) p(vo, ;) € ”gle for all z; €
Vg (nh ) where v € VI(nk ™), lg(vo) = {1}
such that (vievg) € E&, vo ¢ VI (nE™), p(vo)
€ ni ! (P(z) is singleton since (zpez;) € Ef
and z, is a Vr-successor). This implies that
{(vo,21), -y (v0,25)} C nE . Let now (vir, zj)
enk. 5\ {(vo,21), ., (v0, 2p)}. Similar to above,
we have that vy € Vé(ng_l), lg(vy) = 0 or if
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vyis a Vr-successor then lg(vi) = 0 and v does
not have any successor (the property (*) of V¢is
proven above). Therefore, lgxm(vir,z;:) = 0 and
(vis, zj) does not have any Vr-successor and 7-
successor. Furthermore, if (v;,zn) €V, (nk k),
((v1, zn)€(vi, 7)) and (vs, 2;) € nk, 5 then we can
show that lgx (v, zn) = 0, (v, z,) does not have
any Vr-successor and r-successor.

Thus, we have shown {(vo, 1), ..., (Vo, 26)} C N
and lgxm(vir,z5) = 0, (vir,z;:) does not have
any Vr-successor and r-successor for all (v, zj/) €
ngm \ {(vo, 21), ..., (vo, ) }.

1.3) Assume that label(nf,) # {L} and label(nf;)
# {L}. We consider the three following cases:

i) Assume that nf = VI(n&') and nf =
Vi ().

It holds that n¥. , = VG I (n’é;lH) since if niy

= VGH(ng;lH) then n§ = V&(ng ') or nfy =
Vi (n%1). Moreover, we have

VGH(ngle) - {(Ulvzl)a sy (Uaazb)}

ii) Assume that ng = Vé(ng_l) and nk, =
Vi ") (or ng = VE(ng ™), nly = Vig(nig "))

We show that

nléXH = VéH(ng;lH) = {(Ulvzl)a ey (vaazb)}'
Let (v, zn) €{(v1,21),..., (Va, 2p)}. We have that

(1, 20) € Vg gy, (v, 2n)e(vi, 20)) € Egyyy,

(v020) £ Varksl). pl0i,) € nly for all
zn € VE(nkY) and for all v; € V&(ng ') such
that v; € VI(nk ), (vev;) € ES, v ¢ VG( Eh,
plv;) € nkt (P(v;) and P(z) are smgleton
since zp is a Vr-successor and (vev;) € Eg,
and v; is a Vr-successor). Therefore, (v;,v,) €
Vén (ngnly) and {(vi,21),., (vay )} C néyp-
Conversely, let (v;,z;) € V&g (nk k). We have

(Ulazh) € VCYH(ngle) (('Ulvzh) ('UHZJ)) € EGXH’
(vi,2n) € VGH(anlH) (v, 2j) ¢ VgH(ngle)

p(vi, zj) € nk Y. This implies that vl € VI (nk™,

Zh € VH( i 1)7 and Ui ¢ VG( G )7 p(Ui) €
R or 2 ¢ VRO, plz) € ny L I 2 ¢

VE k), p(z;) € nf! then z; € Vi (k) and
Vi (nkh). This is a contradiction.
{(v1,21), .., (vay )} As

above, we can show that if (v, zh) EVGH(ngle)

thus n]}{
Therefore, V55 (nG x H)

((vi, zn)€(vs, 25)) and (vi, z5) € ncxH then
laxm (v, zn) = 0, (v, 2,) does not have any Vr-
successor and r-successor.

iii) Assume that mF = V§(n

V().

b1y and nf =
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We show that nf, ,; = V&g (nk.Y;) and
{(v1,21)5 05 (Va, 20) } C nng and lGxH(Ui’aZj’) =
0, (vir, zj) does not have any Vr-successor and r-
successor for all (vy,zj) € Nk g5 \
{(v1,21), -, (Va, 2p) }. Furthermore, we show that
lesxu(vi,zn) = 0, (v, 2,) does not have any Vr-
successor and r-successor for all (v, zp) such
that (v, 2n) € Vg (ngys), (i, zn)e(vs, 2;)) and
(Uiazj) € nng'
We have (v, z) € Vg (e ), (v, zn)e(vi, 25))
€ EéxH? ('Uivzj) ¢ VGVH(nIZJle) p(vivzj) € ng—le
for all v; € V&(nis ) and z; € Vg(nkh) (P(w)
and P(z;) are singleton). This implies that
{(vo,21), -y (V0, 25)} € Ny gy Let now (vir, zj1) €
g \ {(v1,21), ..., (v1, 2) }. Similar to above, we
have that vy € V§ (n’é_l) or if v;/is a Vr-successor
then lg(vy) = 0@ and vy does not have any Vr-
successor and r-successor (the property (*) of V¢
is proven above). Therefore, g i (vi, zj) = ) and
(vir, zj) does not have any Vr-successor and r-
successor. Furthermore, if (vj,2,) €V, (nk k),
((Ulazh) ('UHZ])) € EEGXH and (’U,,Z]) € nng
then v € V¥(ni ), 2, € Vi(nk ') such that
(viev;) € ES, v; € V&(niY) or (znez;) € EY,
zj € Vﬁ(n’f{l). This implies that lgxm (v, 2n) =
0, (v;,2p) does not have any Vr-successor and 7-
SUCCESSOT.
2. Let m¥ and nf be r-neighbourhoods respectively
of nf ! and nf; . Let qu be a r-neighbourhood of
nGxH such that

z = {vi}UVep, Vg = {ull (viev)) € EG, P(u)N

7’é 0}, (uirv;) € Eg,
={2}UVig . Vie = {2l (zjez)) € By, P()N
Tt A0}, (wrz;) € Ea,

% ={(vi,z))} VU yl,yl,)ew(vz,yz')a where
(‘{}‘Z {(ve, 20)| (Vi z)e(vi, 20), Plog, ze) gty #
First, we show that there exists (v;,z;) € qu iff
v; € m and z; € nF. Assume that v; € mF and
zj € n , i.e., (uprv;)) € Eg and (wirz;) € En
where uy € ng*1 and u; € n’f{l. By the induc-
tion hypothesis, we have {(u1,w1), ..., (Um,wn)}
C n’éXIH By Definition 10 (product), we ob-
tain (v, z;) € qf] Conversely, assume that (v;, 2;)
€ qu , te, ((up,u)r(vi,z;)) € Egxm where
(up,wy) € nng By the induction hypothesis,
we have (up,w;) € {(u1,w1), ..., (Um,w,)} since

{(u1,w1)y eoey (U, wp)} C ng_XlH and  (up,wy)

does not have any r-successor for all (up,wy) €
"1\ {(u1,w1), ..., (U, wy)}. By Definition 10
(product), that means that v; € m¥ and z; € nf
We have to prove that mf X n? = qu We have that
label(gf;) # {L} if label(ng) # {1} and label(n};)
# { L} (if G¢ and H€ are normalization graphs then
label(nk) # {L} and label(nf;) # {L} ).

What remains to be shown is that i) if (v, zy) €
Ve then vy €Vip and zp € Vi ii) if vy €V5p and
z € Vi then (v, zp) € VE.

1. For each (v, yrr) € V' we obtain that v; €V5
and yr € V.
Let (v, y1r) € V€. This yields that there exist
edges (viayj)e(vlayl/) € E&XH;
(us, wj)r(vi,y;) € FEaxwm and Plu,yy) =
(P(v1), P(yrr)) N ¢"~! # (. This implies that
(view;) € Eg, (yjeyr) € Ef where P(v) N
mk=t £ 0, P(yy) N nk~t # 0. From u; €
mkE=t (u;rv;) € Eg, P(u) N mF~1 £ () and
(viev)) € E§, we obtain v; € V&g, From
w; € n*7L (wiry;) € Eg, Pyy) Nnk~1 #0
and (yjeyr) € E;, we obtain yy € V.

2. For each v; €V5y, and yp € V5, we obtain
that (v, yr) € V©.
Let v; €V5y and yrr € V. This yields that
there are e-edges (viev;) € E¢,, (yeyr) € Ef,
P(v) Nnmk=t £ 0, P(yy) N nF~1 #£ () and
(uirv;) € Eq, (wjry;) € Eg. This implies
that (vi, y;)e(vr, yr) € Egy s ((wi wy)r(vi, y5))
€ Egxu and P(u,yr) = (P(w),Plyr)) N
ok~ £ (. Thus, (v, yr) € V.

Theorem 2 Let G°,H® € Tﬁﬁg. There exists an
isomorphism between B(G® x H¢) and B(G®) x
B(H°).

Lemma A. Let {uy,...,un} and {wi,...,w,} be
k-neighbourhoods respectively on graphs Gf =
(‘/i,El U Ef,ll) and gg = (‘/2,E2 U E§7l2). Let
{(ur,w1)y ooy (U, wp)} be the corresponding k-
neighbourhood of the product graph G{ x GS. If

label{w1, ..., um}= {L} (label{wy,...,w,} = {L})
then label{(u1,w1), ..., (Um, w,)} = label{wy, ..., w,}
(label{wu1, ..., um }). Otherwise, it holds that

label{ (u1,w1), ..., (Um,wy)} = label{uy, ..., upn} N

label{w1, ..., wy }

Proof of the lemma. According to the definition of
function label, label{(uy,w1), ..., (um,wn)} = {L}
iff label(u;,w;) = {L} for some i € {1,...,m},



j € {1,..,n}. From this, Definition 10 (prod-
uct) yields that label{us,...,un}= {L} and la-
bel{wi, ..., w,}= {L}. Assume that

label{uy, ..., um}# {L} and label{ws,...,w,} #

{L}. (if label{wy, ..., um }={L} or label{w1, ..., w, }
= {L} the Lemma is obvious from Definition
10). We have that label{(ui,w1), ..., (tm,wy)} =
Hug,wy) U oo U (g, wy) = ([(ug)Nl(wy)) U ... U
((um) 0 1(wn));

On the other hand, according to the definition

of function label, it is that label{ui,...,u,} =
l(ur) U ... Ul(tup,) and label{wy, ..., wy}= l(wy) U
.. Ul(wy,). Therefore, label{ (w1, w1), ..., (tm, wn)}
= label{uq, ..., um } N label{wn, ..., wy}.

Proof: (Proof of the theorem).
Let G¢ = (Vg,EG @] Eé,lc) and H = (VH,EH @]

E%, 1) and v°,w® be the roots of G¢, H. We de-
note |G¢| as the depth of graph G¢. Assume that
|G| < |HE|. We will construct by induction on
the level of graph G¢ an isomorphism ¢ from tree
B(G¢) x B(H®)=(Va, Ea, 2%, 12) to tree B(G¢ x H€)
- (‘/I;Elazoall)'

Level £ = 0.

At level 0, since product G¢ x H€ has unique neigh-
bourhood {(v°,w®)} without outgoing or ingoing
e-edge (with the exception of e-cycle), B(G® x H€)
has the root 2° = (v°,w?). Similarly, since G¢ has
unique node v° without outgoing or ingoing e-edge
(with the exception of e-cycle) and H€ has unique
node w® without outgoing or ingoing e-edge at
level 0 (with the exception of e-cycle), thus B(G€)
x B(H€) has the root 2% = (09, wY).

Assume that Ig(v°) = {L} (Iy(w®) = {L}). From
Definition 10 we have that B(G¢ x H¢) = B(H¢)
(B(G® x H®) = B(G®)). On the other hand, we also
have B(G¢) = {v°} (B(H¢) = {w"}) where [(v°) =
{L} (I(w®) = {L}) (Algorithm 1), and thus B(G¢)
x B(H) = B(H") (B(G" x M) =B(G")) TG (")
£ {1} 1 (a?) = Tabel(10.00) = (16 (o) 1 1 ()
and l2(2°) = (Ig(v°) N 1 (w?)). Thus, we set ¢(2°)

= 20,

Level £ > 0

Let mF=! = {uy, ..., umm } be a (k—1)-neighbourhood
of G¢ and n*~! = {wy,..,w,} be a (k — 1)-

neighbourhood of H¢. Let ¢*~! be a (k — 1)-
neighbourhood of G¢ x H€ such that ¢(m*~1, nk=1)
= ¢* 1. If label(m*~!) = {1} and label(n*~!) =
{1} then label(¢g"~1) = {1} (since ¢ is an isomor-
phism) and N*(¢gF=1) = NF(mF~1) = N¥(nk-1)
= 0.
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Let m*=! x n*=1 = {(ug,w1), ..., (Um,wy)} and
we denote (mF~1 nF~1) as a node in B(G¢) x
B(H¢). As induction hypothesis, we assume that

1. mF=1 x nk=1 C ¢F1
2. One of two following conditions is satisfied:

(a) label(m*=1 n*=1) = label(¢"~1) = {L};
= ve and for all (u;,w;) € ¢*~ 1\
mk=1 x nk 1'it holds that I(u;,w;) = 0
or {_L} (unique (u;, w;) such that I(u;, w;)
= {1}) and (u;,w;) does not have any 7-
successor and Vr-successor. Furthermore,
lexmr(u,w) = 0 and (u,w) does not have
any r-successor and Vr-successor for all
(u,w) € Vaxm such that ((u,v)e(u;, w;))
€ E&y .y, (v,w) is a Vr-successor and
(wi,wy) eqk_l.

(b) label(m*~1 n*=1) = label(¢"~1) # {J_},
and for all (vz,z]) € g" 1\ mht x nk
it holds that I(v;, z;) = 0 and (v;, z;) does
not have any r-successor and Vr-successor.
Furthermore, if ¢* 1= V¢ then lgx i (u, w)
= @ and (u,w) does not have any 7-
successor and Vr-successor for all (u,w) €
Vaxm such that ((u, v)e(u;, w;)) € E&y g,
(v, w) is a Vr-successor and (u;, w;) €¢F 1.

Note that this hypothesis is verified if G¢ and H¢
are normalization graphs.

I) label(m*~1) = {1} and label(n*~1) # {1} (or
label(m*~1) # { L} and label(n*=1) = {1}).

By the induction hypothesis, we have that lg(u;)
= {1} for some u; € m*~! and, lg(uir) = 0, uy
does not have any Vr-successor and r-successor
for all uy € mF=1', u; # w;. Furthermore, from
label(n®=1) # {1} the definition of function la-
bel yields that Iy (w;) # {L} for all w; € nF~1.
From Definition 10 (product), it is that the prod-
uct graph G¢ x H€ contains the subgraph (G¢ x
H)((us, w1), ..., (u;, wy)) which is obtained from
the subgraph H¢(w1, ..., wy,) where lg(u;) = {L}.
By the induction hypothesis, we have ¢*~'= V¢,
{(ug,wy), oy (g, wy)} C gF1 such that lg(u;) =
{L}, and lgx g (uir, w;) =0, (uy, w;) does not have
any r-successor and Vr-successor for all (vy/, z;) €
¢\ {(ui, w1), e, (s, wn) )

On the other hand, according to the definition
of product in [3] we obtain that the subtree
B(G)(m*~1) x B(H®)(n*"1) is equal to the sub-
tree B(H¢)(n*~!). This implies that B((G¢ x
HO)(q* 1)) = B(G) (m*~1) x B(H)(n* ).
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IT) label(m*~1) # {1} and label(n*~1) # {L}.

1. Let mF= (v1,...,v,) and nF= (z1,...,2) be
Vr-neighbourhoods (or r-neighbourhoods) respec-
tively of m*~! and n*~!. By Lemma 4 and
the induction hypothesis, there exists the Vr-
neighbourhood (or r-neighbourhood) ¢* of ¢*~!
such that m* x n¥ C ¢* and for all (v;, z;) € ¢* \
m* x n* it holds that [(v;, z;) = ) and (v;, z;) does
not have any r-successor and Vr-successor (*).

i) If label(m*) = {1} and label(n*) = {1} then
there exist v, € m* and z € n* such that Ig(vp)
={L}andly(z) = {L}. It is obvious that (v, z;)
€ mF x n* and lgxm(vn,z) = {L}. Therefore,
label(¢¥) = {L}.

ii) If label(m*) = {L} and label(n*) # {L}
(or label(m*) # {1} and label(n*) = {1}) then
there exist v, € mF such that lg(vy) = {L}
and ly(z;) # {L} for all z; € n*. Accord-
ing to the definition of product in [3] we ob-
tain that the subtree B(G®)(mF) x B(H®)(n*)
is equal to the subtree B(H¢)(n*). This implies
that (mF n*)=nF. On the other hand, from Def-
inition 10 (product), we have that the product
graph G x H° contains the subgraph (G¢ x
H)((vn, 21), vy (Vn, 2p)) Where this subgraph is ob-
tained from the subgraph H¢(z1, ..., z). Moreover,
according to (*), we have {(vp,21), ..., (vn,25)} C
¢" and lgxp(vir, zy) = 0, (vir, 2j:) does not have
any Vr-successor and r-successor for all (vy, zj/) €
q* \ {(vn,z1), ..., (vn, 25)}. Therefore, label(¢g") =

label(n*).
iii) If label(m”) # {1} and label(n*) # {L} then
from (*) and Lemma A, we have label(¢*) = la-

bel(m*) N label(n*).

To sum up, the isomorphism is extended as fol-
lows: ¢(m”, nk) := ¢* where m*, n*and ¢* are Vr-
neighbourhoods (r-neighbourhoods) respectively
of mF=1, n*~land ¢*~'. The induction principle
guarantees that ¢ is an isomorphism between trees

B(G¢ x H¢) and B(G) x B(H®). »

Proposition 4 Let C = Cy U ... U C), be an ALC-
concept description where 1. = (4, ..., C),. The ap-
proximation of C' by ALE-concept description can
be computed as follows:

approz ace (C) = les{approx acs (Ch), ... ,

approzace(Cn)}

Proof: The proof is direct from the definitions
of les and approzx.

First, prove the proposition with n = 2. We have

that

Cy U Cy C les{approxace(Ch), approxaces(Ca)}

since C1 C approzace (C1), Co E approrace(C2),

approxace(Ch) E les{approx ace (Ch),

approz ace(C2)} and

approxace (C2) T les{appror ace (Ch),

approzace(Ca)}.

Assume that there exists an ALE-concept descrip-

tion D such that

gl*uCg C D Cles{approx are(Ch), approxace(Ca)}
).

We show that approzace(Ci) U approxacs(Cs)

[Z D is impossible.

Indeed, there exist an interpretation (A, .7) and an

individual d* € A such that d* € (approz.ace(Ch)

U approzace (C2))* (L © C1,C) and d* ¢ DT.

There are the two following possibilities:

— If d* € (approzace(C1))* and d* ¢ DZ, then
C1 T D Napproxaces(Cr) T approzace (Ch),
which contradicts the approximation defini-
tion since D M approxace(Cy) is an ALE-
concept description.

— If d* € (approz ace(C2))* and d* ¢ DZ, then
Cy C D Mapprozace(Ca) T approx ace (Ciz),
which contradicts the approximation defini-
tion since D 1 approxace(Cs2) is an ALE-
concept description.

Hence, we obtain that
approz ace(C1) U approxace(Cy) E D. This im-
plies that
les(approx e (Ch), approxace(Ca)} = D since
the hypothesis (**),
approxace(C1) T D, approxacs(Ce) T D and
les{approx ace(Ch), approxace(Ca)} is the least
ALE-concept description such that
approzace(Ch) E les{approx ace (Ch),
approz.ace (Ca)},
approxace (C2) T les{approrace (Ch),
approx ace(Ca)}.
By induction on n, the proposition can be proven
for n > 2 by using the following property of the
les:

les{C1,....,Cp} = les{les{C1,....Cr1},Cr} ®



