
Université Joseph Fourier UFR - IMAG
MIAGE Licence 3
Année 2007-2008

La sérialisation
Sébastien Laborie et Philippe Morat

1 Objectifs

Construire des classes dites sérialisables. Sérialiser et désérialiser des objets.

2 Rappel

Le concept de “sérialisation" permet de lire ou d’écrire l’état des objets. Il ne s’agit pas, lorsqu’il
s’agit d’écrire un objet, de donner une représentation textuelle d’un objet, mais de donner une re-
présentation binaire. Cette représentation bien que propriétaire sera évidemment indépendante de la
plate-forme utilisée donc portable.

En Java, les classes ObjectInputStream et ObjectOutputStream, dont les documentations sont four-
nies en annexe, sont utilisées pour pouvoir sérialiser des objets.

3 Sérialiser des points cartésiens

Soit la classe PointCartesien vue dans les précédents TD et représentée ci-dessous :

On désire utiliser une sérialisation standard pour sauvegarder des instances de PointCartesien.

Question 1 Que faut-il spécifier dans la classe PointCartesien pour pouvoir sérialiser ce type
d’objets ?

On souhaite maintenant sérialiser chaque point cartésien contenu dans une liste. Pour cela, on
spécifie la méthode suivante : public void sauver(Vector liste){...}.

1

Question 2 Ecrire le contenu de la méthode sauver à l’aide de la classe ObjectOutputStream.

Question 3 Existe-t-il une technique plus simple évitant de sérialiser manuellement chaque point
cartésien contenu dans une liste ?

4 Désérialiser des points cartésiens

La désérialisation consiste à restituer l’état d’un objet ayant été sérialisé. Lors de la question
précédente nous avons sérialiser un ensemble de points cartésiens. Nous souhaitons dans cette partie
désérialiser cet ensemble de points.

Pour cela, on spécifie la méthode suivante : public Vector charger(InputStream input){...}.

Question 4 Ecrire le contenu de la méthode charger à l’aide de la classe ObjectInputStream.

Question 5 Est-il possible dans l’état actuel de récupérer les données contenues dans la variable
static epsilon ?

5 Contrôler la sérialisation

Question 6 Que faut-il modifier dans les méthodes sauver et charger pour sérialiser la variable static
epsilon ?

On souhaite ne sérialiser que les abscisses des points cartésiens.

Question 7 En modifiant la classe PointCartesien, donner deux solutions pour ne sérialiser que les
abcisses des objets PointCartesien.

2

Overview Package Class Use Tree Deprecated Index Help JavaTM 2 Platform
Std. Ed. v1.4.2

 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
All Classes

SUMMARY: NESTED | FIELD | CONSTR | METHODDETAIL: FIELD | CONSTR | METHOD

java.io
Class ObjectInputStream
java.lang.Object
 java.io.InputStream
 java.io.ObjectInputStream

All Implemented Interfaces:
DataInput, ObjectInput, ObjectStreamConstants

public class ObjectInputStream
extends InputStream
implements ObjectInput, ObjectStreamConstants

An ObjectInputStream deserializes primitive data and objects previously written using an
ObjectOutputStream.

ObjectOutputStream and ObjectInputStream can provide an application with persistent storage for
graphs of objects when used with a FileOutputStream and FileInputStream respectively.
ObjectInputStream is used to recover those objects previously serialized. Other uses include passing
objects between hosts using a socket stream or for marshaling and unmarshaling arguments and
parameters in a remote communication system.

ObjectInputStream ensures that the types of all objects in the graph created from the stream match
the classes present in the Java Virtual Machine. Classes are loaded as required using the standard
mechanisms.

Only objects that support the java.io.Serializable or java.io.Externalizable interface can be read from
streams.

The method readObject is used to read an object from the stream. Java's safe casting should be used
to get the desired type. In Java, strings and arrays are objects and are treated as objects during
serialization. When read they need to be cast to the expected type.

Primitive data types can be read from the stream using the appropriate method on DataInput.

The default deserialization mechanism for objects restores the contents of each field to the value and
type it had when it was written. Fields declared as transient or static are ignored by the
deserialization process. References to other objects cause those objects to be read from the stream as
necessary. Graphs of objects are restored correctly using a reference sharing mechanism. New
objects are always allocated when deserializing, which prevents existing objects from being
overwritten.

Reading an object is analogous to running the constructors of a new object. Memory is allocated for
the object and initialized to zero (NULL). No-arg constructors are invoked for the non-serializable
classes and then the fields of the serializable classes are restored from the stream starting with the
serializable class closest to java.lang.object and finishing with the object's most specific class.

For example to read from a stream as written by the example in ObjectOutputStream:

 FileInputStream fis = new FileInputStream("t.tmp");
 ObjectInputStream ois = new ObjectInputStream(fis);

 int i = ois.readInt();
 String today = (String) ois.readObject();
 Date date = (Date) ois.readObject();

 ois.close();

Classes control how they are serialized by implementing either the java.io.Serializable or
java.io.Externalizable interfaces.

Implementing the Serializable interface allows object serialization to save and restore the entire state
of the object and it allows classes to evolve between the time the stream is written and the time it is
read. It automatically traverses references between objects, saving and restoring entire graphs.

Serializable classes that require special handling during the serialization and deserialization process
should implement the following methods:

 private void writeObject(java.io.ObjectOutputStream stream)
 throws IOException;
 private void readObject(java.io.ObjectInputStream stream)
 throws IOException, ClassNotFoundException;
 private void readObjectNoData()
 throws ObjectStreamException;

The readObject method is responsible for reading and restoring the state of the object for its
particular class using data written to the stream by the corresponding writeObject method. The
method does not need to concern itself with the state belonging to its superclasses or subclasses.
State is restored by reading data from the ObjectInputStream for the individual fields and making
assignments to the appropriate fields of the object. Reading primitive data types is supported by
DataInput.

Any attempt to read object data which exceeds the boundaries of the custom data written by the
corresponding writeObject method will cause an OptionalDataException to be thrown with an eof
field value of true. Non-object reads which exceed the end of the allotted data will reflect the end of
data in the same way that they would indicate the end of the stream: bytewise reads will return -1 as
the byte read or number of bytes read, and primitive reads will throw EOFExceptions. If there is no
corresponding writeObject method, then the end of default serialized data marks the end of the
allotted data.

Primitive and object read calls issued from within a readExternal method behave in the same
manner--if the stream is already positioned at the end of data written by the corresponding
writeExternal method, object reads will throw OptionalDataExceptions with eof set to true, bytewise
reads will return -1, and primitive reads will throw EOFExceptions. Note that this behavior does not
hold for streams written with the old ObjectStreamConstants.PROTOCOL_VERSION_1 protocol, in which
the end of data written by writeExternal methods is not demarcated, and hence cannot be detected.

The readObjectNoData method is responsible for initializing the state of the object for its particular
class in the event that the serialization stream does not list the given class as a superclass of the
object being deserialized. This may occur in cases where the receiving party uses a different version
of the deserialized instance's class than the sending party, and the receiver's version extends classes
that are not extended by the sender's version. This may also occur if the serialization stream has been
tampered; hence, readObjectNoData is useful for initializing deserialized objects properly despite a
"hostile" or incomplete source stream.

Serialization does not read or assign values to the fields of any object that does not implement the
java.io.Serializable interface. Subclasses of Objects that are not serializable can be serializable. In this
case the non-serializable class must have a no-arg constructor to allow its fields to be initialized. In
this case it is the responsibility of the subclass to save and restore the state of the non-serializable
class. It is frequently the case that the fields of that class are accessible (public, package, or

protected) or that there are get and set methods that can be used to restore the state.

Any exception that occurs while deserializing an object will be caught by the ObjectInputStream and
abort the reading process.

Implementing the Externalizable interface allows the object to assume complete control over the
contents and format of the object's serialized form. The methods of the Externalizable interface,
writeExternal and readExternal, are called to save and restore the objects state. When implemented by
a class they can write and read their own state using all of the methods of ObjectOutput and
ObjectInput. It is the responsibility of the objects to handle any versioning that occurs.

Since:
JDK1.1

See Also:
DataInput, ObjectOutputStream, Serializable, Object Serialization Specification, Section 3,
Object Input Classes

Nested Class Summary
static class ObjectInputStream.GetField

 Provide access to the persistent fields read from the input stream.

Field Summary

Fields inherited from interface java.io.ObjectStreamConstants
baseWireHandle, PROTOCOL_VERSION_1, PROTOCOL_VERSION_2, SC_BLOCK_DATA, SC_EXTERNALIZABLE,
SC_SERIALIZABLE, SC_WRITE_METHOD, STREAM_MAGIC, STREAM_VERSION,
SUBCLASS_IMPLEMENTATION_PERMISSION, SUBSTITUTION_PERMISSION, TC_ARRAY, TC_BASE, TC_BLOCKDATA,
TC_BLOCKDATALONG, TC_CLASS, TC_CLASSDESC, TC_ENDBLOCKDATA, TC_EXCEPTION, TC_LONGSTRING,
TC_MAX, TC_NULL, TC_OBJECT, TC_PROXYCLASSDESC, TC_REFERENCE, TC_RESET, TC_STRING

Constructor Summary
protected ObjectInputStream()

 Provide a way for subclasses that are completely reimplementing
ObjectInputStream to not have to allocate private data just used by this implementation
of ObjectInputStream.

 ObjectInputStream(InputStream in)
 Creates an ObjectInputStream that reads from the specified InputStream.

Method Summary

 int available()
 Returns the number of bytes that can be read without blocking.

 void close()
 Closes the input stream.

 void defaultReadObject()
 Read the non-static and non-transient fields of the current class
from this stream.

protected boolean enableResolveObject(boolean enable)
 Enable the stream to allow objects read from the stream to be
replaced.

 int read()
 Reads a byte of data.

 int read(byte[] buf, int off, int len)
 Reads into an array of bytes.

 boolean readBoolean()
 Reads in a boolean.

 byte readByte()
 Reads an 8 bit byte.

 char readChar()
 Reads a 16 bit char.

protected
 ObjectStreamClass

readClassDescriptor()
 Read a class descriptor from the serialization stream.

 double readDouble()
 Reads a 64 bit double.

 ObjectInputStream.GetField readFields()
 Reads the persistent fields from the stream and makes them
available by name.

 float readFloat()
 Reads a 32 bit float.

 void readFully(byte[] buf)
 Reads bytes, blocking until all bytes are read.

 void readFully(byte[] buf, int off, int len)
 Reads bytes, blocking until all bytes are read.

 int readInt()
 Reads a 32 bit int.

 String readLine()
 Deprecated. This method does not properly convert bytes to
characters. see DataInputStream for the details and alternatives.

 long readLong()
 Reads a 64 bit long.

 Object readObject()
 Read an object from the ObjectInputStream.

protected Object readObjectOverride()
 This method is called by trusted subclasses of
ObjectOutputStream that constructed ObjectOutputStream using the
protected no-arg constructor.

 short readShort()
 Reads a 16 bit short.

protected void readStreamHeader()
 The readStreamHeader method is provided to allow subclasses
to read and verify their own stream headers.

 Object readUnshared()
 Reads an "unshared" object from the ObjectInputStream.

 int readUnsignedByte()
 Reads an unsigned 8 bit byte.

 int readUnsignedShort()
 Reads an unsigned 16 bit short.

 String readUTF()
 Reads a UTF format String.

 void registerValidation(ObjectInputValidation obj, int prio)
 Register an object to be validated before the graph is returned.

protected Class resolveClass(ObjectStreamClass desc)
 Load the local class equivalent of the specified stream class
description.

protected Object resolveObject(Object obj)
 This method will allow trusted subclasses of
ObjectInputStream to substitute one object for another during
deserialization.

protected Class resolveProxyClass(String[] interfaces)
 Returns a proxy class that implements the interfaces named in
a proxy class descriptor; subclasses may implement this method to
read custom data from the stream along with the descriptors for
dynamic proxy classes, allowing them to use an alternate loading
mechanism for the interfaces and the proxy class.

 int skipBytes(int len)
 Skips bytes, block until all bytes are skipped.

Methods inherited from class java.io.InputStream
mark, markSupported, read, reset, skip

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Methods inherited from interface java.io.ObjectInput
read, skip

Submit a bug or feature
For further API reference and developer documentation, see Java 2 SDK SE Developer Documentation. That
documentation contains more detailed, developer-targeted descriptions, with conceptual overviews, definitions of
terms, workarounds, and working code examples.

Copyright 2003 Sun Microsystems, Inc. All rights reserved. Use is subject to license terms. Also see the
documentation redistribution policy.

Overview Package Class Use Tree Deprecated Index Help JavaTM 2 Platform
Std. Ed. v1.4.2

 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
All Classes

SUMMARY: NESTED | FIELD | CONSTR | METHODDETAIL: FIELD | CONSTR | METHOD

java.io
Class ObjectOutputStream
java.lang.Object
 java.io.OutputStream
 java.io.ObjectOutputStream

All Implemented Interfaces:
DataOutput, ObjectOutput, ObjectStreamConstants

public class ObjectOutputStream
extends OutputStream
implements ObjectOutput, ObjectStreamConstants

An ObjectOutputStream writes primitive data types and graphs of Java objects to an OutputStream.
The objects can be read (reconstituted) using an ObjectInputStream. Persistent storage of objects can
be accomplished by using a file for the stream. If the stream is a network socket stream, the objects
can be reconsituted on another host or in another process.

Only objects that support the java.io.Serializable interface can be written to streams. The class of
each serializable object is encoded including the class name and signature of the class, the values of
the object's fields and arrays, and the closure of any other objects referenced from the initial objects.

The method writeObject is used to write an object to the stream. Any object, including Strings and
arrays, is written with writeObject. Multiple objects or primitives can be written to the stream. The
objects must be read back from the corresponding ObjectInputstream with the same types and in the
same order as they were written.

Primitive data types can also be written to the stream using the appropriate methods from
DataOutput. Strings can also be written using the writeUTF method.

The default serialization mechanism for an object writes the class of the object, the class signature,
and the values of all non-transient and non-static fields. References to other objects (except in
transient or static fields) cause those objects to be written also. Multiple references to a single object
are encoded using a reference sharing mechanism so that graphs of objects can be restored to the
same shape as when the original was written.

For example to write an object that can be read by the example in ObjectInputStream:

 FileOutputStream fos = new FileOutputStream("t.tmp");
 ObjectOutputStream oos = new ObjectOutputStream(fos);

 oos.writeInt(12345);
 oos.writeObject("Today");
 oos.writeObject(new Date());

 oos.close();

Classes that require special handling during the serialization and deserialization process must
implement special methods with these exact signatures:

 private void readObject(java.io.ObjectInputStream stream)
 throws IOException, ClassNotFoundException;
 private void writeObject(java.io.ObjectOutputStream stream)
 throws IOException

The writeObject method is responsible for writing the state of the object for its particular class so
that the corresponding readObject method can restore it. The method does not need to concern itself
with the state belonging to the object's superclasses or subclasses. State is saved by writing the
individual fields to the ObjectOutputStream using the writeObject method or by using the methods
for primitive data types supported by DataOutput.

Serialization does not write out the fields of any object that does not implement the
java.io.Serializable interface. Subclasses of Objects that are not serializable can be serializable. In this
case the non-serializable class must have a no-arg constructor to allow its fields to be initialized. In
this case it is the responsibility of the subclass to save and restore the state of the non-serializable
class. It is frequently the case that the fields of that class are accessible (public, package, or
protected) or that there are get and set methods that can be used to restore the state.

Serialization of an object can be prevented by implementing writeObject and readObject methods that
throw the NotSerializableException. The exception will be caught by the ObjectOutputStream and
abort the serialization process.

Implementing the Externalizable interface allows the object to assume complete control over the
contents and format of the object's serialized form. The methods of the Externalizable interface,
writeExternal and readExternal, are called to save and restore the objects state. When implemented by
a class they can write and read their own state using all of the methods of ObjectOutput and
ObjectInput. It is the responsibility of the objects to handle any versioning that occurs.

Primitive data, excluding serializable fields and externalizable data, is written to the
ObjectOutputStream in block-data records. A block data record is composed of a header and data.
The block data header consists of a marker and the number of bytes to follow the header.
Consecutive primitive data writes are merged into one block-data record. The blocking factor used
for a block-data record will be 1024 bytes. Each block-data record will be filled up to 1024 bytes, or
be written whenever there is a termination of block-data mode. Calls to the ObjectOutputStream
methods writeObject, defaultWriteObject and writeFields initially terminate any existing block-data
record.

Since:
JDK1.1

See Also:
DataOutput, ObjectInputStream, Serializable, Externalizable, Object Serialization
Specification, Section 2, Object Output Classes

Nested Class Summary
static class ObjectOutputStream.PutField

 Provide programatic access to the persistent fields to be written to
ObjectOutput.

Field Summary

Fields inherited from interface java.io.ObjectStreamConstants
baseWireHandle, PROTOCOL_VERSION_1, PROTOCOL_VERSION_2, SC_BLOCK_DATA, SC_EXTERNALIZABLE,
SC_SERIALIZABLE, SC_WRITE_METHOD, STREAM_MAGIC, STREAM_VERSION,
SUBCLASS_IMPLEMENTATION_PERMISSION, SUBSTITUTION_PERMISSION, TC_ARRAY, TC_BASE, TC_BLOCKDATA,
TC_BLOCKDATALONG, TC_CLASS, TC_CLASSDESC, TC_ENDBLOCKDATA, TC_EXCEPTION, TC_LONGSTRING,

TC_MAX, TC_NULL, TC_OBJECT, TC_PROXYCLASSDESC, TC_REFERENCE, TC_RESET, TC_STRING

Constructor Summary
protected ObjectOutputStream()

 Provide a way for subclasses that are completely reimplementing
ObjectOutputStream to not have to allocate private data just used by this implementation
of ObjectOutputStream.

 ObjectOutputStream(OutputStream out)
 Creates an ObjectOutputStream that writes to the specified OutputStream.

Method Summary
protected void annotateClass(Class cl)

 Subclasses may implement this method to allow class data to
be stored in the stream.

protected void annotateProxyClass(Class cl)
 Subclasses may implement this method to store custom data
in the stream along with descriptors for dynamic proxy classes.

 void close()
 Closes the stream.

 void defaultWriteObject()
 Write the non-static and non-transient fields of the current
class to this stream.

protected void drain()
 Drain any buffered data in ObjectOutputStream.

protected boolean enableReplaceObject(boolean enable)
 Enable the stream to do replacement of objects in the stream.

 void flush()
 Flushes the stream.

 ObjectOutputStream.PutField putFields()
 Retrieve the object used to buffer persistent fields to be
written to the stream.

protected Object replaceObject(Object obj)
 This method will allow trusted subclasses of
ObjectOutputStream to substitute one object for another during
serialization.

 void reset()
 Reset will disregard the state of any objects already written to
the stream.

 void useProtocolVersion(int version)
 Specify stream protocol version to use when writing the
stream.

 void write(byte[] buf)
 Writes an array of bytes.

 void write(byte[] buf, int off, int len)
 Writes a sub array of bytes.

 void write(int val)
 Writes a byte.

 void writeBoolean(boolean val)
 Writes a boolean.

 void writeByte(int val)
 Writes an 8 bit byte.

 void writeBytes(String str)
 Writes a String as a sequence of bytes.

 void writeChar(int val)
 Writes a 16 bit char.

 void writeChars(String str)
 Writes a String as a sequence of chars.

protected void writeClassDescriptor(ObjectStreamClass desc)
 Write the specified class descriptor to the
ObjectOutputStream.

 void writeDouble(double val)
 Writes a 64 bit double.

 void writeFields()
 Write the buffered fields to the stream.

 void writeFloat(float val)
 Writes a 32 bit float.

 void writeInt(int val)
 Writes a 32 bit int.

 void writeLong(long val)
 Writes a 64 bit long.

 void writeObject(Object obj)
 Write the specified object to the ObjectOutputStream.

protected void writeObjectOverride(Object obj)
 Method used by subclasses to override the default
writeObject method.

 void writeShort(int val)
 Writes a 16 bit short.

protected void writeStreamHeader()
 The writeStreamHeader method is provided so subclasses
can append or prepend their own header to the stream.

 void writeUnshared(Object obj)
 Writes an "unshared" object to the ObjectOutputStream.

 void writeUTF(String str)
 Primitive data write of this String in UTF format.

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Submit a bug or feature
For further API reference and developer documentation, see Java 2 SDK SE Developer Documentation. That
documentation contains more detailed, developer-targeted descriptions, with conceptual overviews, definitions of
terms, workarounds, and working code examples.

Copyright 2003 Sun Microsystems, Inc. All rights reserved. Use is subject to license terms. Also see the
documentation redistribution policy.

