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Abstract an approximation method, and can all be seen as a patrtial
observation method too. They behave in$t way, but
We investigateobservation logic an intuitionnistic with a few adaptions. The most important one is that ax-
modal logic designed for reasoning about approximation iom T : K; ¢ — ¢ is not valid, but weaker versions of
and multiple contexts, and propose a sequent-calculus for-this axiom are valid, namelff2 : K; K; ¢ — K; ¢ and
mulation of this logic. Due to the validy of an axiom (called LT : K; (K; ¢ — ). If the latter is just a characteristic
T2) which is a weakening dF, one needs an adaptation of of the way knowledge behaves internally, the former is very
the usual sequent-calculus formalism in order to have someimportant, and is a cornerstone of the theory, as it permits
classical properties of sequent calculus, such as cut elimi- to relate knowledge and information between different con-
nation and the subformula property. texts.
To solve this problem, we propose to assign to each
proposition inside a proof a label, carrying some context  In the present paper, we present a sequent calculus for
information, and show the validity of some expected prop- the logic, and show some of its properties, and some proofs
erties and manipulations in this framework. manipulations. The main characteristic of this calculus is
the use of labels (represented by finite words over the set of
indexes) for propositions, which permits to deal with axiom
T2, and have thesubformula propertyerified. We also

1. Introduction o
show expected results such as thatatFelimination

Observation logic [4, 3] is a formalization of the way in- . .
formation behaves in partial-observationcontext, when 2. Observation Logic
all knowledge comes from some possibly partial observa-
tion. This logic originated as an axiomatization of a valid-  In this section, we provide an overview@jpresentation
ity predicate defined over some general algebraic structuressystemandobservation logic Further developments can be
calledrepresentation systemdhose structures have been foundin[4, 3].
designed as an attempt to provide a general construction
which embodies the notion of approximate representation2.1. Representation Systems
(since our observations, being partial, can be seen as a par-
tial description of its state), but without having the studied = Representation systems were introduced as an attempt to
or observed system explicitly represented. provide a general algebraic framework for formalizing the

notions ofpartial observatiorandpartial description Intu-

This provides a new and general approach to the prob-itively, one may define an approximation process using the
lem of reasoning about approximation [12, 13, 19, 17] and following structures : first, the system to be studied and ap-
about multiple contexts and theories [18, 16, 1]. In particu- proximated can be represented by a pd#&t <s) which
lar, observation logids a modal intuitionnistic logic with  elements can be seen for instance as sets of possible states,
a collection of modal operators (denotéd) which can in a Kripke’s possible worlds approach [15], where the par-
all be associated to a partial way to consider informations tial order<gs is such that ifd; <gs ds, thend; is a more
about a system. Thus, those operators each correspond tprecise description of the state of the system thar{in



terms of possible worlds, the set of possible states associ-

Thus, in our formalism, one manipulates approximations

ated tod; is included in the set of possible states associatedand partial descriptions of a given system, but the system

to d;). The result of the approximation can also be for-
malized using a posét4, < 4). Then, the approximation

itself is not present explicitly in the algebraic structure and
is only present through the relationship that exist between

relation between those two posets can be defined as a Galoithe different partial representations.

surjection [20, 21, 2, 7, 6] :

2l
a

(Ps,<s) (Pa,<a)

In order to provide a general and flexible way to study
the way knowledge and information behaves in this formal-
ism, we will now introduce a logical formalization of those

This provide a natural way to express approximations, asstructures.

given an elemend of Ps corresponding to a set of possible
states of the system, one associates the eleai@htof Py

2.2. Logical Translation

which can be seen as an approximate description of the state

of the system. In particular, it can be seen as an approxima-

tion of d, since from the definition of Galois surjections, one
has :

d <s~vyoa(d) a(d) = aovyoal(d)

Let us first define our langageé; ¢ by the grammar :
P=AP|lL|PVP|PANP|P— P|K;P

In this definition, a termAP stands for an element in
the set of atomic propositions, and in a term of the form

This construction can be generalized by considering a col- 5, P, the indicei is an element of .

lection of approximation methods (indexed by elements
of a setZ), each defined by a poséP;, <;) and a Galois
surjection{c;, ;).

From this, it is possible to introduce some “transforma-
tion functions” relating the different approximate posgets
by defining f;;; = «; o v;. With these functions, it is pos-

To relateL7 ¢ and a representation systefhindexed
by Z, we will define a collection of interpretation functions
['li : Lzo — e'(P) (wherep!(P;) stands for the set
of ideals, i.e. of downward-closed subsetsFpf. Given a
propositiony, the ideal[y]; corresponds to the set of ele-
ments ofP; which, seen as partial descriptions of the state of

sible to express relationships between the different possi-the system, provide enough informations in order to prove
ble approximations of a given system, without making ex- that propertyy actually holds. This set has to be an ideal,
plicitly reference to this system. Moreover, considerations since if a elementl is in this set, so will be any element
about the properties verified by Galois surjections can bed’ <; d, sinced’ provides more information that

used to identify properties verified by tifg; functions in
our formalism, which we will use as a characterization of
our “transformation functions”. This leads to the definition
of representation systems

Definition 1 (Representation System)
A representation systeima triplet :

(TP <)}i s { it })

where T is a set of indexes, for each i € I, (P;,<;) is
a poset call a representationand such that the functions
fijj + By — P verify :

fijp =1d; Identity
d<;d = f;;(d) <i fi;(d) Monotony
fie < fagj o fik Composition

Actually, this definition is sufficient for ensuring that all

This function is defined inductively from the structure
of terms. For atomic propositions, one has to provide an
atomic interpretation; : ¥ — o!(P;). For the classical
connector, the interpretation corresponds to intuitionnistic
logic, since all propositions are interpreted as ideals of a
poset. For modal connector, the interpretatjéf ], re-
lies on the use of the transformation functiofjs;, since
it is the set of elements of; which, after transforma-
tion in P; by f;;, lie in the interpretatior[¢];, so that
[K;¢li = {d]| f;i(d) € [¢];}. The definition off-]; is
summarized in figure 1, where the explicit reference to a
representation syste and an atomic interpretation is
omitted.

With this interpretation function, it is possible to define a
validity notion, so as to identify which propositions 6f v
do properly correspond to the behavior of information in our
partial description approach.

the representations can be considered as approximations dbefinition 2 (Validity)

a single system, since given a representation systeih
is possible to build a posdts and a collection of Galois
surjections(c;, v;) from Ps to P; such thatf;; = a; o ;.

A proposition ¢ is valid for a representation system S
and an atomic interpretation v over S (which we denote
(S8,v) |Es ) ifand only ifVi, [¢] s, = Pi.



[V)i =vi(v) e W Moreover, in this logic, valid propositions are exactly the

[Vl = [¢]: U [ propositions which are valid in every context. The classi-
cal Nec rule tells that valid propositions are valid within
[ A oli = Lol N [¥]: every context. But inOL, the Univ-rule states the con-
[p = ¢li={d|Vd <d,d €[¢]; =d € [¢]} verse, that is if a proposition is valid in every context, then
[L]: = 0; this proposition is considered as valid “objectively”, with
IK; o] = {d ‘ fi1i(d) € [[‘P]]j} no reference to any context. In the case where there is a

single context (wher& is a singleton{.}), then the unique

modal operator’, has no meaning, since one has in that
Figure 1. Interpretation Function casev y, F ¢ « K, . If the setZ is finite, then this rule
is equivalent to the axiorf\, K; ¢ — ¢. In the following,
we will see that ifZ is infinite, this rule can actually be sup-
pressed, since if an indéxdoes not appear in a formula
then proving the validity ofi(; ¢ is equivalent to proving
that of p itself, and ifZ is infinite, it is always the case.

A proposition  is valid for representation system if and
only if it is valid for all representation systems and for all
atomic interpretations for this representation system :

S@¢>V87VV7 871/ S P . - .

= S As expected, this logic is sound and complete with re-
It has to be noted that, even though it is not clearly statedgards to representation systems, as we show in the follow-

here, we are considering propositions and representatioring proposition :

systems which relate to a given fixed index5et
Proposition 1

2.3. Axiomatization The logic OL is a sound and complete axiomatization of
Es-
We now provide an axiomatization of the notion of valid-
ity for representation systems by defining the I0@E, as Proof It is easy to check thats is sound w.r.t.OL by
the intuitionnistic logic [14, 8, 23] together with the modal checking that all its axioms are valid for representation sys-
axioms and rules listed in figure 2. tems.
The completeness proof can be done in a classical way
using a canonical model [8, 23]. The specific proof L

Ki(p—v) > Kip— K¢ K can be found in [4, 3]. O
Kip — 2K~ D
K (p o K ) L 3. Sequent Calculus
Ki(pvi) — KipV Kiy v 3.1. Words and Orders
. Before defining the rules that constitute our labeled se-
Fo Vi, F K;p AR .
Nec — " Univ guent calculus, we will first introduce a few notations for
FEKip Ee dealing with those labels. Lé&t* denote the set of finite
words over the alphab&t We also introduce the following
Figure 2. Modal Axioms and Rules of OL notations :e is the empty word|A| the length of the word

A, - the concatenation operation and given a ward\,,

A few comments can be done abdDiL. First, it can is the word),, . .. \, with a andb being integers giving the
be seen as a multi-context reasoning logic. As exposedrange of the sub-word of.
in [16, 5], axiom K-modalities is a good candidate for
defining formal systems for contexts. Moreover, axi@m Intuitively, such words will be used to represent succes-
(K; ¢ — ¢) is not valid, so that in our logic, facts inside sions of K; operators. Terms will appear in sequents with
a context need not be true, which emphasizes the fact thatabels, and a term of the forriy], in a sequent will be
we are considering our contexts as approximations [18]. Athough of as equivalentty ... Kx, ¢.
weaker axiom T2 : K; K; ¢ — K ) is valid, which,
while not referring to “reality”, allows to relate the different Now, since inOL, K; K; ¢ and K; ¢ are equivalent
contexts, and thus reason with multiple contexts. (and more generallys, K; K; Kq ¢ andKy K; Kq p are



equivalent), it follows that an equivalence relation can be
defined on words in order to capture the equivalence on the

; e J Sk gt J S« gt
Kp. Thus, let~7 denote the symmetric, transitive and re- —_— —_—
flexive closure of the relation defined by : 0] IF [el; [¥];.4 IF [¥];
0] 1F [ V¥l [¢];.: I [o Vo,
VA,i,Q, Aii-Q ~ Ai-Q z . J J
(K@l IF K5 (0 V)l (KG9l IF K (0 V)l
) Flrom nowfon, we IWiII identidf:y the Zetthof WorIdE* with y (K oV K; ¢, I [Kj (o V)],
its classes of equivalence w.rt:z, and those classes wi
by represented by words with no letter repetition. Let us [Ki (Kj oV EK;9)] IF[K;(eV),
now introduce two partial orders ¢ft (or more precisely, I-[K; (KjoV Kjv) — Kj(e V)],

on its equivalence classes). The first og¢ ¢orresponds to
the word inclusion ordering, while the other ong,{ will
be used to simulate the action of axidi2.

First, let us show that our sequent calculus is correct with
regards to the observational logixL.

Proposition 2
The sequent calculus defined in figure 3 is sound and com-
plete w.r.t. OL. More precisely, one has :

Definition 3 (Partial Orders on Z*)

Giventwo words Q2 = wq ... wpand A = A1 ... A, Q < A
if and only if Q) is a sub-word of A, that is if and only if there
exists an increasing function o : [1...n] — [1...m] such Vo€ Lrw, FoL v < 01k (o],

that Vi, w; = )\U(i)'

Moreover, ) <, A if and only if Q@ < A and either Proof The=--implication can be easily proved by check-
Q=A=corw = \. ing that all the axioms 0®L can be proved in the sequent-
calculus formalism.

To prove the<-implication, it suffice to show that all
the rules are valid w.r.t. the following translation in terms
of representation systems :

The partial order, has a very close relation to tHe;
operators’ behavior with axiofii'2, since one can show that
if Ka o stands fori, ... Ky, ¢, then one has :

Q= AeVe, FEyp— Koy Mila, - [mlan IF [@lp ~ Vi, /\[[KAJ v € [Ka o]
j
This constitutes an alternate definition €q, and in that ) S
case < can be defined in terms 6f,, as It follows from this that one has the implication :

Vo, 0IF[pl, = Fs ¢

To conclude, one can remark thatyr, is sound and
This shows that how our two partial orders &n can be complete w.r.t}=s. 0

closely related to the modal operatordnd.

Q<ASVIiel, i<, iA

Now, in order to use this sequent calculus efficiently for
A last point to be noted is that with our equivalence the search of proofs, this system cannot be used without pre-
classes, our partial orders are such that given a word cautions, especially due to the presence of two rules : first,
7*, the sets{Q | @ < A} and {Q | Q <, A} are finite.  the Cut-rule which may introduce new formulas, and the
Thus, they both are well-founded, which will be important Univ-rule, which introduces new indexes. In the following

in the induction order used for cut-elimination. section, we will investigate some proofs manipulations, and
show that theCut-rule is not necessary and can always be
3.2. Definition of the Calculus eliminated, and that th&niv-rule, though necessary, can

always be used at most once as the first rule if all the in-
With those notations, we can now define our sequent cal-dexes off are present in the sequent, and it can be not used

culus, as given in figure 3. In this definition, each sequent is &t all if an index does not appear.

of the forme[y1], .. [va]s, IF [¢]4, SO that each propo- _ _

sition appearing in a sequent comes withZaword, called 4. Proofs Manipulation

its localization The use of localization permits to have the

subformula propertyerified for -, since K-operators can  4.1. Label Manipulation On Proofs

be removed and replaced by the addition of an index in the

localization. This can be illustrated in the following exam- We will first study the way localisations behave inside
ple : proofs of the systent. From its rules, one can first remark



that for any sequerit - [¢], , all localized propositiofry],
in " is such that\ < . This result can be shown by induc-

Let us now express a few basic properties verified by this
operation. First, given two words < A’, operation /A’:A

tion on the height of the proof, since this property appearsis <-monotonous :

in the rulesAxiom and L, and it is preserved by the appli-
cation of the other rules (and it even appears explicitly for
rule KL).

Moreover, another property can be stated : given a proof

IT of a sequent” I [¢],, any sequeni\ I+ [¢], in IT is
such thatA < Q. By combining those two properties, one
gets the following result :

Proposition 3
Given a proof II of a sequent I' - [¢],, any term [1],,
appearing in I1 is such that A < A’.

This property suggests some ways to manipulate the lo-
calizations appearing in a proof. For instance, given a proof

IT of T - [p],, proposition 3 asserts that any localization
Q in II can be written as$); o Qs with A <, Q5. The
<,-relationship betweer and (2 in this case can be in-
terpreted by the application of tHéniv-rule which adds
indexes on the right a2, and of theL.oc-rule which adds
“garbage”.

This means that one would want to “clean” a proof by re-
placingf2 by Q; o A for every localizatiorf2 of II. An even
more interesting manipulation would be to replace those lo-
calizations by2; o A’ for someA’ <, A. Such manipulation

appears to be in fact necessary in one wants to have the cut-

elimination property fott, since if one has a proof @i of
T IF [¢] . then forA” <, A, the following provides a proof
of " IF [¢] 5/

II

I'IF (@] o

Axiom

Cut

N<Q = Q/N:A<L<Q/NA
If A <, A/, then itis<,-monotonous :
N< Q= Q/NA<, Q/NA
Moreover, forA <, A’, operation /A’":A is <,-reductive :
Q/N:A <, Q
Finally, if A <, A’, one can express a composition rule :
Q<Q = Q/UuQ/N:A) <, V/N:A

As one can see, the/_:_ operations have, considering the
previous properties, some connections with the transforma-
tions functionsf; ; used in the definition of representation
systems, and as a consequence they are convenient tools for
dealing with localizations. The next proposition shows how
they can apply to proof manipulation.

Proposition 4

Given a proof II of a sequent I" - [¢] , , it is possible to turn
it into a proof II' of T'jp.ps F ], for A" <, A.

The notation I /5.5, corresponds to replacing each [],
inI" by W)]SZ/A:A"

Moreover, the structure of 11’ differs only from that of T
by the addition of some applications of the Loc-rule.

Sketch of Proof This result can be proven by induction
on the size of the proof, and rely mainly on the properties
of the operation /_:_. The main rules to be examined are

But then, eliminating cuts implies in that case that one hasLoc, Cut and— L.

a way to transfornil into a proof ofl" I [¢] ..
For this to be done, we will now introduce a operation on
words which does the right manipulation on localizations.

Definition 4

Given three words A’ < A < ), we define Q)/A:A’ as the
word . ; o A’ where | is the greatest integer such that
A< Q-

The operation works as follows : given two wordand
Q such thatA < Q (or, stated another way, is included in
), one finds the rightmost way to includein €2, “cuts”
at this position, and appends another wardnstead. For
instance,abcdcbad/dba:a = abca, as illustrated in the
following decomposition :

abcldcbad ~» abcla

The validity of Loc comes from the fact that faY’ <, A,
then _/A:A’ is <,-monotonous.

The validit of rulesCut and— L is a consequence of the
composition property : i\ <, A < Q' < Q, then one has
Q/Q (Y /AN) <, Q/AN. O

Corollary 4.1
Given a proof IT of a sequent " - [] , , it is possible to turn
it into a proof II' of T' =[], for A" <, A.

Moreover, the structure of 11’ differs only from that of T
by the addition of some applications of the Loc-rule.

Proof It is a combination of the previous proposition and
the application of thé.oc-rule. O



Corollary 4.2

Given a proof II of a sequent T', [p] , F [¢],, it is possible

to turn it into a proof II" of T, [¢] ,, = [¢],, for A" <, A.
Moreover, the structure of II' differs only from that of TI

by the addition of some applications of the Loc-rule.

This corollary is the justification of our/_:_ operation,
since it is the central tool for “lowering” the localization of
the right-side proposition of a sequent. This is necessary for
achieving cut-elimination, which is our next topic.

4.2. Cut-Elimination

would want to simply erase it frofl. This can actually be
done, and one has the following proposition :

Proposition 7
Given a proof II of a sequent I's; |F [] ., such that i is not

present in the sequent I' I [¢] ,, it is possible to transform

IT into a proof of T' I [¢] , without changing its structure.

We have now turn to the case where the Bést infi-
nite. Suppose one has a prdafof a sequent” I+ [¢],.
As 7 is infinite, there exists an indexe Z which appears
nowhere inl" |- [¢],. One can turdl into a proofIl; of
I'oi IF [@]ro;- It has to be noted thdil; does not contain

The manipulations presented in the previous section arethe Univ-rule. Now, asi appears nowhere ifi I- [¢],, it

essential to the cut-elimination, and together with the classi-
cal cut-elimination procedure [10, 22, 11, 9]. The detailled
specific proof forOL can be found in [3], and we just pro-
vide the theorem’s statement :

Theorem 5
Given a proof II of a sequent " - [¢],, it is possible to
transform I1 into a cut-free proof Il of the same sequent.

4.3. Univ-Elimination

Another rule which deserves close examination of the
Univ-rule. The main problem with this rule is the question
of meaning it can have in the case of an infinite indexZset
since this would lead to infinite proofs. Before tackling this
problem, we will first show how to have a “normal” form of
proofs with regards to thEniv-rule.

First, given a proofI of a sequent’ I [¢],, it is possi-
ble to obtain a proof of',; I- [¢], ., where each localiza-
tion 2 in II is replaced by2 o i. All rules exceptUniv is
left unchanged, since it remains valid after addiran the
right of the localizations. For thBniv-rule, one just has to
select thath premise.

Thus, from a proofI of I' I [¢],, one can get for each
i € T a proofIl; of I'y; IF [¢],.,;. It has to be noted that
due to its requirements, none of those proofs contain an in-
stance of thé@/niv-rule. Combining them together, one gets
a proofIl’ of I" IF [¢] , with the Univ-rule at the root. This
manipulation can be summarized in the following proposi-
tion :

Proposition 6

Any proof IT of a sequent T I+ [¢] , can be transformed so
as to have a single instance of the Univ-rule, which instance
is a the root.

Now, suppose that one has a prébbf a sequent’,; I+
[¢]Ao; Wherei appears nowhere in the sequént- [¢],.
Then, the index appears to be not relevantify and one

can be turned into &niv-free proof ofI" I [¢],, using
proposition 7. This leads to the following theorem :

Theorem 8
For any sequent I" I [¢] , that can be proven, there exists a

proof of it with no instance of the Univ-rule.

5. Conclusion

In this article, we present an overview refpresentation
systemdramework and obbservation logicand present it
in a multi-context approach. Then, we have introduced a
sequent-calculus formulation of this logic. Due to the pres-
ence of a special modal axiom, namdl2 : K; K; ¢ —

K p, some addition to a “classical” formulation are needed

for having the cut elimination and subformula property.

In order to solve this problem, we introduce and study
the notion oflocalizationwhich are labels indicating, for
each proposition appearing in a proof, a “path” on the differ-
ent contexts. Those labels are actually finite words defined
using the indexes of contexts, and an examination of the be-
havior of modal operators led us to the definition of two par-
tial orders on those words (together with an equivalence re-
lation), and a ternary operation which permits to manipulate
localizations in a convenient way f@L. With those ele-
ments, we have defined a sequent-calculus formulation of
our logic, and given some basic proofs-manipulations the-
orems, mainly the cut- and univ- eliminations, allowing to
ease and make more efficient the search of proofs.
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