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Introduction

Based on attempts to formalize notions like information or knowledge, the techniques
which are now known as information flow analysis have helped to understand the way
communication and interaction operate as an exchange of information. They have suc-
cessfully been applied to different domains such as the study of multi-agent systems,
communication protocols and enabled to make connections with philosophical issues
such as knowledge and belief.

In the present paper, we analyse the problem of information representation in dis-
tributed systems and use it to set up a generic framework for the study of properties
such as knowledge preservation or cancellation between agents. The starting point for
this work is theFirst Principle of Information Flowgiven in [1] :

Information flow results from regularities in a distributed system
This way, information flow can be described as a structural property of the system,

permitting a statical approach to the problem. The main idea used for designing this
framework expresses the fact that a complex system can be seen as a “black-box”
whose inner structure is known but which can only be observed in approximate ways.
For instance, in a multi-agent system, if an agent can only have access to its own state,
this can be seen as a partial observation of the state of the whole system.

It follows that the notion of approximation (here, an agent knows only an approxi-
mation of the state of the system) has to be present in a general theory of information
representation in distributed system.

Following this, we set up a framework based on partial orders (which embody the
notion of approximation) and a class of operators which represent the way observations
keep only a limited amount of information. Similarities between those operators and
some axioms of modal logic (namely, the axiomsT and4) lead us to the study of the
relationship between such systems and modal logic, and we show that the description
systems defined in our framework act as a model for a variant of the modal logicIS4.

In a first part of this article, we present a simplified formalism of distributed sys-
tems in order to show some concepts which we think are important in the study of the
flow of information between different parts or agents of a system. Then, we use those
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basic concepts and generalize them to define an algebraic framework for formalizing
distributed systems. Finally, we study the logical structure of this framework and show
that in this formalism, the distributed systems form a model for the intuitionistic modal
logic IS4+KV .

1 Partial Knowledge in Distributed Systems

In the most basic approach, we consider that a “system” (in an extremely general way)
can be defined by a set of statesS which represents its structure, and a particular state
s ∈ S, its actual state. We suppose that the structureS is common knowledge, but not
its states.

Now, let us consider that there exists a set of possible observations{Oi}i∈I of
the system. Since its structureS is known, the observations only provide information
about the actual states of the system. But different observations shall give different
results, so that one actually gets an approximation of the actual state, that is a collection
of possible candidates for it. In this approach, each observationOi can be formalized
by a functionfi : S → ℘(S), so that if the actual state iss, the possible candidates
given by observationOi are the elements offi(s). The first property we want those
functions to verify is that they are consistent, by always letting the actual state be a
possible candidate :

∀ i ∈ I, ∀ s ∈ S, s ∈ fi(s)

The fi functions can be seen as a possibility function : ifx is possible (or said
another way, is a candidate for the actual state), andy is in fi(x), theny is also pos-
sible. It acts as a binary relation→i such thatx →i y ⇔ y ∈ fi(x). The previous
property is then equivalent to saying that→i is reflexive. In the following, we want the
further assumption that the relations be also transitive, which in terms offi rewrites as
∀ y ∈ fi(x), fi(y) ⊆ fi(x), so that all the possible states are found in only one step.
Such relations are pre-orders, announcing the poset structure we will introduce in the
next section.

Partial observations can be used to formalize knowledge issues in a multi-agent
system, since the “knowledge” of an agent (which generally amounts to its internal
state) is an approximation of the state of the whole system, and thus can be obtained by
using a partial observation which selects the information available to the agent. This
motivates the definition of a partial observation based framework for modelling multi-
agent systems.

2 Description Systems

In the previous section, we have presented a simple way of obtaining partial informa-
tion from the state of a system, by the means of observations which would return a
description of the system in the form of a set of states containing the actual one. Thus,
the set of possible descriptions of the actual state is a set of subsets, which verifies the
property of being ordered (using the inclusion relation). This is an expected property,
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since it is natural to compare descriptions depending on the amount of information they
carry.

Such orderedness is the only property we want to have in our framework so as to
keep it as general as possible. This gives the set of possible descriptions of the system
a structure of poset. We will use the convention that given two descriptionx andy,
x ≤ y means thatx is more accurate thany.

We now want to generalize the notion of partial observations introduced previously.
They were presented as filters which would only keep available information with re-
gards to a particular “point of view”. In the general case, this loss of information
corresponds to returning a description which is less accurate that the initial one. Math-
ematically, if a functionρi embodies the loss of information done by observationOi,
then one can write :∀x, x ≤ ρi(x). Another important property thatρi verifies is that
it is monotonous, since if one has two descriptionsx ≤ y, any piece of information
in y which is not lost through observationOi remains in descriptionx too. We want
a last property to be verified, that of idempotence (ρi◦ρi(x) = ρi(x)). It corresponds
to the transitivity assumption for→i in the previous section, which meaning is that all
the unwanted information is lost at once, or equivalently, that all the possible states are
found in one step in the case of set of states as seen previously.

Functions verifying these three properties are called upper closure operators (uco)
in lattice literature [5] where they are commonplace.

We sum up the definition of our framework by introducing the following notion :

Definition 1 (Description system)
A description systemover a set I of agents (or more generally, of indexes) is a tuple
〈P,≤, {ρi}I〉 where 〈P,≤〉 is a poset and the ρi’s are upper closure operators on P.

3 The Logic of Knowledge

With the structure defined in the previous section, we can now set up a logical language
for expressing propositions on our system. Aside from this language, we introduce
the modal logicIS4 + KV and show that this logic exactly reflects the behaviour of
description systems, as we will show in a determination theorem.

3.1 The logical languageL(Ψ, I)

To study the properties of the behaviour of information in a distributed system, we need
a logical language for expressing propositions about the knowledge of the different
agents. For this purpose, we defineL(Ψ, I) as the least language containing some
primitive propositions (the elements of a setΨ), closed under the classical operations
– disjunction∨, conjunction∧, implication→ and falsehood⊥ – and containing a
collection of unary operators{Ki}i∈I whereKi ϕ means that agentAi knows that
propositionϕ holds. Following usual logical convention, we define equivalenceϕ↔ ψ
as(ϕ→ ψ) ∧ (ψ → ϕ), and negation¬ϕ asϕ→ ⊥.
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We now want to define the semantics of this logical language in terms of description
systems. Thus, given such a system〈P,≤, {ρi}〉, we want to relate a propositionϕ to
a subset[[ϕ]] of those elements ofP where the property holds. Such a subset[[ϕ]] has
to verify the fact that ifϕ holds at a descriptionx, ϕ must also hold at any description
y which is more informative thanx (i.e. such thaty ≤ x), since the truthness of a
proposition is not affected by the addition of consistent information. It follows that
[[ϕ]] is an ideal (i.e. a downward closed subset) of〈P,≤〉. Let Id(P) denote the set of
ideals ofP.

We can now define an interpretation function[[·]] from L(Ψ, I) to Id(P). We first
have to define an interpretation of the primitive propositions and then to give a struc-
tural definition of [[·]]. The meaning of the primitive propositions is provided by a
functionν : Ψ → Id(P). We give the interpretation of a binary connectivec, by defin-
ing [[ϕ c ψ]] = {x | ∀ y ≤ x, (y ∈ [[ϕ]]) c (y ∈ [[ψ]])}. This ensures that the computed
subset is indeed an ideal. The last rule, that ofKi, is based on the fact thatx ∈ [[Ki ϕ]]
is equivalent toρi(x) ∈ [[ϕ]]. The translation rules are summed up in Table 1.

∀ϕ ∈ Ψ, [[ϕ]] = ν(ϕ)
[[⊥]] = ∅

[[ϕ ∧ ψ]] = [[ϕ]] ∩ [[ψ]]
[[ϕ ∨ ψ]] = [[ϕ]] ∪ [[ψ]]

[[ϕ→ ψ]] = {x | ∀ y ≤ x, y ∈ [[ϕ]] ⇒ y ∈ [[ψ]]}
[[Ki ϕ]] = {x | ρi(x) ∈ [[ϕ]]}

Table 1: Translation rules fromL(Ψ) to Id(P)

The interpretation function[[·]] can then be defined given a description structure and
an interpretation for primitive propositions. Thus, we introduce the definition of a de-
scription model which contains all the information necessary to define an interpretation
of the languageL(Ψ, I).

Definition 2 (Description Model)
A description model of L(Ψ, I) is a tuple D = 〈P,≤, {ρi}I , ν〉 where 〈P,≤, {ρi}I〉
is a description system over I and ν : Ψ → Id(P) is the interpretation function for the
primitive propositions.

In the following, we might write[[·]]D to emphasize that the interpretation function
is the one defined by the description modelD.

3.2 The logics IS4+KV and IS4+KVI
Intuitionistic logic was developed by Brouwer and formalized by Heyting in the thirties
as a constructivist approach to logic [10], and is based on the idea that if an object
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can be proved to exist, it can be constructed. One of the most striking features of
intuitionistic logic is that the rule of excluded middle (ϕ ∨ ¬ϕ) is no longer valid.

Apart from its philosophical interest, intuitionistic logic proved to be extremely
useful in computer science (illustrated by the Curry-Howard correspondence [2]). We
define the modal logicIS4 as an extension of the propositional intuitionistic logic, to
which a modal operator� (usually callednecessityoperator) is added. This operator
verifies the following axioms and rules :

` ϕ entails ` �ϕ Knowledge Generalization Rule

` �(ϕ→ ψ) → (�ϕ→ �ψ) Deduction axiomK

` �ϕ→ ϕ Knowledge axiomT

` �ϕ→ ��ϕ Positive introspection axiom4

We also introduce an axiom which permits to distribute the disjunction over the�
operator :

` �(ϕ ∨ ψ) → �ϕ ∨�ψ Distribution axiomKV

Considering this axiom in addition toIS4, one getsIS4+KV . We define the logic
IS4+KVI similarly as IS4+KV , but in which the operator� is replaced by modal
operatorsKi wherei is an element of a set of indexesI and where eachKi behaves
like �. An axiomatic formulation of this logic is given in Appendix A.

In the following, we will only deal withIS4 + KVI , even though we might some-
times writeIS4+KV . This is just for a matter of readability, since a more complete
denotation would beIS4 + KVΨ,I .

Much work exist on different models for intuitionistic modal logic. The classical
approach is based on Kripke’s “possible worlds” models, where both modal logic and
intuitionistic logic have a natural translation. Such semantics are described in [13].
Other approach include categorical ones [3, 4], computational ones [3, 11, 9] and others
[8].

3.3 Relating IS4+KV and description models

We now show that there is a close relation between the logicIS4 + KVΨ,I and the
description models ofL(Ψ, I). For this, we define two notions of “truth” and prove
that they are equivalent.

First, we definè IS4+KV ϕ as the fact that there exists a finite proof ofϕ using the
axioms ofIS4+KV . We then define|=Ψ,I ϕ to express thatϕ holds everywhere in any
description model ofL(Ψ, I). More formally, if DΨ,I denotes the set of description
models ofL(Ψ, I), then

|=Ψ,I ϕ ⇔ ∀D ∈ DΨ,I , D |= ϕ

where ifD = 〈P, {ρi}I , ν〉, D |= ϕ means that[[ϕ]]D = P. With those notions, we
can now give the following theorem which expresses that they are equivalent :
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Theorem 1 (Determination)
The class of description models determines the logic IS4+KV , that is :

∀ϕ ∈ L(Ψ, I), `IS4+KV ϕ ⇔ |=Ψ,I ϕ

Sketch of Proof The proof of this theorem can be divided in two parts. The first
one, the soundness part, states that given a correct sequentΓ1, . . . ,Γn ` ϕ (i.e. such
thatϕ can be proved by the axioms ofIS4+KV using propositionsΓi), then for any
D ∈ DΨ,I , we have[[ϕ]]D ⊆

⋂
i [[Γi]]D.

The second part, that of completeness, states that in a special modelC, called the
canonical model, the formulasϕ such thatC |= ϕ are exactly those provable inIS4+KV
(that is those which verifỳ IS4+KV ϕ). The proof of this theorem is given more
precisely in Appendix B.

�

This theorem provides a simple and general class of model for the modal logic
IS4+KV . While many classes of model exist, either based on Kripke structures [13],
on categories [3, 4] or on adaptations ofλ-calculus [9, 11], the present model originates
from approximation techniques and its application to information flow formalisms [6],
offering new possibilities in the logical study of complex systems and knowledge rep-
resentation.

4 Conclusion

In this paper, we have introduced description systems, a general framework for formal-
izing complex systems. It is based on the notion of partial observation, which appears
as a central feature for reasoning about a system when one has not got a total descrip-
tion of it, which is the case in multi-agent systems.

The study of the logical behavior of those systems has shown us that in such case,
the properties concerning the knowledge given from the different observations have
to behave in an intuitionistic way. This is not completely surprising though, since by
observing a system, if one is not sure whether a propertyϕ holds – said another way,
if one has not got enough information to ensure thatϕ holds – it does not entail that he
is sure that¬ϕ holds too. The need for a proof in intuitionistic logic for truthness is
replaced by the need for information.

This approach is to be further developped, by adding functional and dynamical
aspects, but we feel that it constitutes an interesting foundation for the study of general
knowledge-related issues, and would in the long term be a basis for a semantical (as
opposed to probabilistic) theory of information.
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A The Axioms and Rules for IS4+KV

ϕ→ ϕ ∧ ϕ
ϕ ∧ ψ → ψ ∧ ϕ

(ϕ→ ψ) → ((ϕ ∧ ϑ) → (ψ ∧ ϑ))
ϕ→ (ψ → ϕ)

ϕ ∧ (ϕ→ ψ) → ψ

ϕ→ ϕ ∨ ψ
ϕ ∨ ψ → ψ ∨ ϕ

(ϕ→ ϑ) ∧ (ψ → ϑ) → ((ϕ ∨ ψ) → ϑ)
⊥ → ϕ

Ki (ϕ→ ψ) → (Ki ϕ→ Ki ψ)
Ki ϕ→ ϕ

Ki ϕ→ KiKi ϕ

Ki (ϕ ∨ ψ) → Ki ϕ ∨Ki ψ

` ϕ entails ` Ki ϕ

B Proof the Determination Theorem

B.1 Proof of Soundness

The soundness part of the determination theorem is stated as follows :

Theorem 2 (Soundness)
Given a sequent Γ1, . . . ,Γn ` ϕ, if it can be proved in IS4+KV , then for any descrip-
tion model D, we have

⋂
i [[Γi]]D ⊆ [[ϕ]]D.

Proof We prove this theorem by induction on the length of the proof, by case de-
pending on the last rule used in this proof.

The proofs for the rules corresponding to non-modal connectives are routine. We
shall only focus on the rulesKiL, KiR andKiV , which define the behavior ofKi

operators in the sequent calculus formulation ofIS4+KV . Those rules are defined as
follows :

KiL
Γ, ϕ ` ψ

Γ,Ki ϕ ` ψ
KiR

Ki Γ ` ϕ
Ki Γ ` Ki ϕ

KiV
Γ ` Ki (ϕ ∨ ψ)
Γ ` Ki ϕ ∨Ki ψ

In the first case (KiL), it suffices to see that[[Ki ϕ]] ⊆ [[ϕ]]. Similarly, in the third
case, one has[[Ki (ϕ ∨ ψ)]] = [[Ki ϕ ∨Ki ψ]].
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In the second case (KiR), suppose that the sequent to prove isKi Γ ` Ki ϕ where
Ki Γ is a short-cut forKi ψ1, . . . ,Ki ψn. Then we haveKi Γ ` ϕ, which by induction
implies : ⋂

j

[[Ki ψj ]] ⊆ [[ϕ]]

But since[[Ki ψ]] = {x | ρi(x) ∈ [[ψ]]}, the previous inclusion rewrites

∀x, (∀ j, ρi(x) ∈ [[ψj ]]) ⇒ x ∈ [[ϕ]]

so that
∀ y,

(
∀ j, ρ2

i (y) ∈ [[ψj ]]
)
⇒ ρi(y) ∈ [[ϕ]]

which, sinceρ2
i = ρi, is equivalent to⋂

j

[[Ki ψj ]] ⊆ [[Ki ϕ]]

�

B.2 Proof of Completeness

To prove thatDΨ,I is complete forIS4 + KVI , we develop an appropriate model
C called the canonical model, and show that anyϕ valid in this model is provable in
IS4+KV , following the usual method for completeness [7, 12].

Definition 3 (Prime Sets)
A prime setis a subset Γ of L(Ψ) which is consistent (⊥ 6∈ Γ), closed under deduction
(Γ ` ϕ⇒ ϕ ∈ Γ).

We introduce two notations for selecting the knowledge of a given agent. LetΓ/i =
{ϕ | Ki ϕ ∈ Γ} andKΓ/i = {Ki ϕ | Ki ϕ ∈ Γ}. One easily proves that ifΓ ⊆ L(Ψ)
is prime, then so isΓ/i.

We can now define our canonical model :

Definition 4 (Canonical Model)
We define our canonical model C as 〈PC ,≤C , {ρi,C} , νC〉 where :

PC = {Γ ⊆ L(Ψ) | Γ is prime} Γ ≤C ∆ ⇔ ∆ ⊆ Γ
ρi,C(Γ) = {ϕ | KΓ/i ` ϕ} νC(α) = {Γ | α ∈ Γ}

In this definition, the poset〈PC ,≤C〉 has a greatest element, which is precisely{ϕ | `IS4+KV ϕ}.
ρi,C(Γ) is the deductive closure of the assertions ofΓ known by agenti. The following
proposition shows that it is indeed prime.

Proposition 3
Given a prime set Γ, one has ρi,C(Γ) = Γ/i.
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Proof Because of axiomT (Ki ϕ → ϕ), we haveΓ/i ⊆ ρi,C(Γ). Conversely, using
axiom4 (Ki ϕ → KiKi ϕ), if Ki ϕ ∈ KΓ/i, thenKiKi ϕ ∈ KΓ/i, so thatKi ϕ ∈
Γ/i. Thus, we have shown thatKΓ/i ⊆ Γ/i. As a consequence,ϕ ∈ ρi,C(Γ) ⇔
KΓ/i ` ϕ⇒ Γ/i ` ϕ⇔ ϕ ∈ Γ/i.

�

Proposition 4
For all Γ prime and ϕ in L(Ψ), we have :

KΓ/i ` ϕ⇔ KΓ/i ` Ki ϕ⇔ Γ ` Ki ϕ

Proof The first equivalence comes directly from axioms4 and T. For the second
equivalence, asKΓ/i ⊆ Γ, if KΓ/i ` Ki ϕ, thenΓ ` Ki ϕ. Conversely, ifΓ ` Ki ϕ,
asΓ is prime, it implies thatKi ϕ ∈ Γ, so thatKi ϕ ∈ KΓ/i.

�

We can now prove the following theorem :

Theorem 5
For all ϕ ∈ L(Ψ),

Γ ` ϕ⇔ Γ ∈ [[ϕ]]C

Proof This proof in done by induction on the size ofϕ. In the case of a primitive
proposition, one has :Γ ∈ [[α]] ⇔ Γ ∈ νC(α) ⇔ α ∈ Γ ⇔ Γ ` α.

In the case of a disjunction,[[ϕ ∨ ψ]] = [[ϕ]]∪[[ψ]], so that by induction,Γ ∈ [[ϕ ∨ ψ]]
is equivalent toΓ ` ϕ or Γ ` ψ. We conclude by considering the definition of a prime
set.

The case of the conjunction is straightforward.
By definition of[[ϕ→ ψ]] and induction,Γ ∈ [[ϕ→ ψ]] is equivalent to the implica-

tion ∀∆ ≤ Γ, ∆ ` ϕ⇒ ∆ ` ψ. Now, with∆ = Γ ∪ {ϕ}, this impliesΓ, ϕ ` ψ, and
thenΓ ` ϕ→ ψ or equivalentlyϕ→ ψ ∈ Γ asΓ is prime. Conversely, ifϕ→ ψ ∈ Γ,
then for any∆ ⊆ Γ, ∆ ` ϕ implies that∆ ` ψ since it is deductively closed.

The last case to prove is that ofKi ϕ. By definition of [[Ki ϕ]], we haveΓ ∈
[[Ki ϕ]]C ⇔ ρi,C(Γ) ∈ [[ϕ]]. But by induction, this is equivalent toρi,C(Γ) ` ϕ, or
KΓ/i ` ϕ using the definition ofρi,C . We conclude by using Proposition 2.

�

B.3 Proof of Determination

What remains to do now is to prove the determination theorem itself, that is :

∀ϕ ∈ L(Ψ, I), `IS4Ψ,I ϕ ⇔ |=Ψ,I ϕ

Suppose that̀ IS4Ψ,I ϕ. Then, the soundness theorem tells us that for all descrip-
tion modelD, we have[[ϕ]]D = PD, implying that|=Ψ,I ϕ. Conversely, suppose that
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|=Ψ,I ϕ. It implies that in particular,C |= ϕ, and considering the greatest element of
PC , it follows that`IS4 ϕ.
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