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Abstract. We propose a new family of Description Logics (DLs), called DL-
Lite, specifically tailored to capture basic ontology languages, while keeping low
complexity of reasoning. Reasoning here means not only computing subsumption
between concepts, and checking satisfiability of the whole knowledge base, but also
answering complex queries (in particular, unions of conjunctive queries) over the
instance level (ABox) of the DL knowledge base. We show that, for the DLs of
the DL-Lite family, the usual DL reasoning tasks are polynomial in the size of the
TBox, and query answering is LogSpace in the size of the ABox (i.e., in data
complexity). To the best of our knowledge, this is the first result of polynomial time
data complexity for query answering over DL knowledge bases. Notably our logics
allow for a separation between TBox and ABox reasoning during query evaluation:
the part of the process requiring TBox reasoning is independent of the ABox, and the
part of the process requiring access to the ABox can be carried out by an SQL engine,
thus taking advantage of the query optimization strategies provided by current Data
Base Management Systems. Since it can be shown that even slight extensions to
the logics of the DL-Lite family make query answering at least NLogSpace in data
complexity, thus ruling out the possibility of using on-the-shelf relational technology
for query processing, we can conclude that the logics of the DL-Lite family are the
maximal DLs supporting efficient query answering over large amounts of instances.

1. Introduction

One of the most important research directions in Description Logics
(DLs) is concerned with the trade-off between expressive power and
computational complexity of sound and complete reasoning. Research
carried out in the past on this topic has shown that many DLs with

c© 2007 Kluwer Academic Publishers. Printed in the Netherlands.

main.tex; 19/04/2007; 11:07; p.1



2 Calvanese et al.

efficient, i.e., worst-case polynomial time, reasoning algorithms lack
modeling power required in capturing conceptual models and basic on-
tology languages, while most DLs with sufficient modeling power suffer
from inherently worst-case exponential time behavior of reasoning [5, 6].

Although the requirement of polynomially tractable reasoning might
be less stringent when dealing with relatively small ontologies, we be-
lieve that the need for efficient reasoning algorithms is of paramount
importance when the ontology system is to manage large amount of
objects (e.g., from thousands to millions of instances). This is the
case of several important applications where the use of ontologies is
advocated nowadays. For example, in the Semantic Web, ontologies are
often used to describe the relevant concepts of Web repositories, and
such repositories may incorporate very large data sets, which constitute
the instances of the concepts in the ontology. In such cases, two require-
ments emerge that are typically overlooked in DLs. First, the number of
objects in the knowledge base requires managing instances of concepts
(i.e., ABoxes) in secondary storage. Second, significant queries to be
posed to the knowledge base are more complex than the simple queries
(i.e., concepts and roles) usually considered in DL research. Another
interesting context where these requirements are relevant is data inte-
gration, where an ontology is used as a conceptual, unified view of data
stored in a collection of heterogeneous sources. Again, queries posed to
this unified representation are usually more complex than just simple
concept and role expressions, and the amount of data accessed through
the ontology is likely to be of significant size. Unfortunately, in these
contexts, whenever the complexity of reasoning is exponential in the
number of instances (as for example in Fact1, Racer2, and in [16]), there
is little hope for effective instance management and query answering
algorithms.

In this paper we propose a new family of DLs, called the DL-Lite
family3, specifically tailored to capture basic ontology languages, while
keeping all reasoning tasks tractable, in particular, with polynomial
time complexity with respect to the size of the knowledge base. No-
tably, reasoning here means not only computing subsumption between
concepts, and checking satisfiability of the whole knowledge base, but
also answering complex queries, i.e., unions of conjunctive queries, over
the set of instances maintained in secondary storage.

The specific contributions of the present article are the following:

1 http://www.cs.man.ac.uk/~horrocks/FaCT/
2 http://www.sts.tu-harburg.de/~r.f.moeller/racer/
3 A first description of some members of the DL-Lite family appeared in [13].
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1. We define the DL-Lite family, and show that the DLs of this family
are rich enough to capture significant ontology languages. As usual,
a knowledge base expressed in any logic of the DL-Lite family is
constituted by a TBox and an ABox, where the first component
specifies general properties of concepts and roles, whereas the sec-
ond component specifies the instances of concepts and roles. The
basic logic of the family is called DL-Litecore , and allows for ex-
pressing (cyclic) ISA assertions on concepts, disjointness between
concepts, role-typing, participation constraints, i.e., assertions stat-
ing that all instances of a concept participate to a specified role,
and non-participation constraints. The two other logics studied in
the paper are called DL-LiteF and DL-LiteR, respectively. The
former adds to the core the possibility of expressing functionality
restrictions on roles, whereas the latter adds ISA and disjointness
assertions between roles. Although at first sight both DL-LiteF
and DL-LiteR appear to be very simple DLs, the kind of model-
ing constructs in these logics makes them suitable for expressing
a variety of representation languages widely adopted in different
contexts, such as basic ontology languages, conceptual data mod-
els (e.g., Entity-Relationship [17]), and object-oriented formalisms
(e.g., basic UML class diagrams4).

2. For all DLs of the DL-Lite family, we present techniques for the
usual reasoning tasks of DLs, such as concept and role subsumption,
knowledge base satisfiability, and instance checking. We show that
all these tasks are computationally tractable. More precisely, the
time complexity of both concept and role subsumption is poly-
nomial in the size of the knowledge base, whereas both knowledge
base satisfiability and instance checking are in polynomial time with
respect to the size of the knowledge base, and in LogSpace with
respect to the size of the ABox only, i.e., in what we can call data
complexity [30].

3. For all DLs of the DL-Lite family, we present algorithms for an-
swering unions of conjunctive queries posed to knowledge bases
expressed in such DLs, and we show that their complexity is poly-
nomial with respect to the size of the whole knowledge base, and
in LogSpace with respect to the size of the ABox only. Note that
this is one of the few results on answering complex queries (i.e., not
corresponding simply to a concept or a role) over a DL knowledge
base [16]. In fact, answering conjunctive queries in DLs is a challeng-
ing problem, even in the case of DL-Litecore , where the combination

4 See http://www.omg.org/uml/.
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of constructs expressible in the knowledge base does not pose partic-
ular difficulties to TBox reasoning. Indeed, in spite of the simplicity
of DL-Litecore TBoxes, the ability of taking TBox knowledge into
account during the process of answering (unions of) conjunctive
queries goes beyond the two-variable fragments (with counting) of
first-order logic represented by DLs [5]. Finally, we observe that the
worst-case complexity of query answering is exponential in the size
of the queries, but this is unavoidable, as the complexity of database
query evaluation is already exponential. Overall, our complexity
results show that, despite the expressive power of the DLs of the
DL-Lite family, the complexity of query answering in these logics is
no worse than traditional query evaluation in relational databases.

A notable consequence of the results presented in this article is that
our approach is perfectly suited to representing ABox assertions as
relations managed in secondary storage by a Data Base Management
System (DBMS). Indeed, our query answering algorithms are based on
the idea of expanding the original query into a set of queries that can
be directly evaluated by an SQL engine over the ABox, thus taking
advantage of well-established query optimization strategies supported
by current industrial strength relational technology. Note that this was
one of the motivations behind several research works done on CLASSIC
in the 80’s [7]. Based on this idea, we have developed a reasoning
system for DL-LiteF , called QuOnto [2], whose main core is the query
answering component.

In [14], we present further results on the data complexity of DLs,
showing in particular that the DLs of the DL-Lite family are essentially
the maximal DLs for which conjunctive query answering can be com-
puted in LogSpace, and allowing one to delegate query evaluation to
a relational engine. Indeed, even slight extensions to DL-LiteF and DL-
LiteR make query answering (actually already instance checking, i.e.,
answering atomic queries) at least NLogSpace in data complexity, and
thus rule out the possibility of using off-the-shelf relational technology
for query processing. In this sense, the DL-Lite family includes the
first DLs specifically tailored for effective query answering over large
amounts of instances.

The paper is organized as follows. The next section defines the DL-
Lite family and the associated reasoning services, arguing that the DLs
of this family are indeed interesting logics for capturing the basic mod-
eling constructs of ontology languages. Section 3 deals with traditional
DL reasoning services for the DL-Lite family, such as concept and
role subsumption, knowledge base satisfiability, and instance checking.
In Section 4, we discuss preliminary properties of query answering in
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the DL-Lite family, while in Sections 5 and 6 we address the problem
of query answering for DL-LiteF and DL-LiteR, respectively. In Sec-
tion 7, we compare our approach with related work on reasoning about
ontologies, and, finally, in Section 8 we conclude the paper.

2. The DL-Lite Family

Description Logics (DLs) [5] are logics that represent the domain of
interest in terms of concepts, denoting sets of objects, and roles, denot-
ing binary relations between (instances of) concepts. Complex concept
and role expressions are constructed starting from a set of atomic con-
cepts and roles by applying suitable constructs. Different DLs allow for
different constructs. Properties of concepts and roles can be specified
through inclusion assertions, stating that every instance of a concept
(resp., role) is also an instance of another concept (resp., role).

In this paper, we focus on a family of DLs, called the DL-Lite family.
In particular, we deal with three DLs of this family, called DL-Litecore ,
DL-LiteF , and DL-LiteR, respectively.

2.1. DL-Litecore

The language of DL-Litecore is the core language for the whole family.
Concepts and roles are formed according to the following syntax:

B −→ A | ∃R
C −→ B | ¬B

R −→ P | P−

E −→ R | ¬R

where A denotes an atomic concept, P an atomic role, and P− the
inverse of the atomic role P . B denotes a basic concept, i.e., a concept
that can be either an atomic concept or a concept of the form ∃R, and
R denotes a basic role, i.e., a role that is either an atomic role or the
inverse of an atomic role. Note that ∃R is the standard DL construct
of unqualified existential quantification on basic roles. Sometimes we
write R− with the intended meaning that R− = P− if R = P , and
R− = P , if R = P−. Finally, C denotes a (general) concept, which
can be a basic concept or its negation, whereas E denotes a (general)
role, which can be a basic role or its negation. Sometimes we write ¬C
(resp., ¬E) with the intended meaning that ¬C = ¬A if C = A (resp.,
¬E = ¬R if E = R), and ¬C = A, if C = ¬A (resp., ¬E = R, if
E = ¬R).

A DL knowledge base (KB) K = 〈T ,A〉 represents the domain of
interest in terms of two parts, a TBox T , specifying the intensional
knowledge, and an ABox A, specifying extensional knowledge.
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A TBox is formed by a finite set of inclusion assertions of the form

B ⊑ C

i.e., we allow general concepts to occur on the right-hand side of
inclusion assertions, whereas only basic concepts may occur on the left-
hand side of inclusion assertions. As we said before, such an inclusion
assertion expresses that all instances of concept B are also instances of
concept C. We observe that we might include B1⊔B2 in the constructs
for the left-hand side of inclusion assertions (where ⊔ denotes union)
and C1 ⊓C2 in the constructs for the right-hand side (where ⊓ denotes
conjunction). In this way, however, we would not extend the expressive
capabilities of the language, since these constructs can be simulated by
considering that B1 ⊔ B2 ⊑ C is equivalent to the pair of assertions
B1 ⊑ C and B2 ⊑ C, and that B ⊑ C1 ⊓ C2 is equivalent to B ⊑ C1

and B ⊑ C2. Similarly, we might add ⊥ (denoting the empty set) to the
constructs for the left-hand side and ⊤ (denoting the whole domain)
to those for the right-hand side.

An ABox is formed by a finite set of membership assertions on
atomic concepts and on atomic roles, of the form

A(a) P (a, b)

stating respectively that the object denoted by the constant a is an
instance of A and that the pair of objects denoted by the pair of
constants (a, b) is an instance of the role P .

In this article, we will not consider membership assertions involving
general concepts and roles. However, it can be shown that, with respect
to the forms of reasoning considered here, a membership assertion C(a)
can be simulated in DL-Litecore by adding A ⊑ C to the TBox, and
A(a) to the ABox, where A is a new atomic concept. Membership asser-
tions of the form E(a, b), can be simulated with the same mechanisms,
in those extensions of DL-Litecore (see later) that allow for inclusion
assertions on roles.

The semantics of a DL is given in terms of interpretations, where
an interpretation I = (∆I , ·I) consists of a non-empty interpretation
domain ∆I and an interpretation function ·I that assigns to each
concept C a subset CI of ∆I , and to each role R a binary relation
RI over ∆I . In particular, for the constructs of DL-Litecore we have:

AI ⊆ ∆I

P I ⊆ ∆I ×∆I

(P−)I = {(o2, o1) | (o1, o2) ∈ P
I}

(∃R)I = {o | ∃o′. (o, o′) ∈ RI}
(¬B)I = ∆I \BI

(¬R)I = ∆I ×∆I \RI
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An interpretation I is a model of an inclusion assertion B ⊑ C, if
BI ⊆ CI . We extend the notion of model also to inclusion assertions
of more general forms with respect to the one allowed in DL-Litecore .
An interpretation I is a model of C1 ⊑ C2, where C1, C2 are general
concepts, if CI

1 ⊆ C
I
2 . Similarly, I is a model of E1 ⊑ E2, where E1, E2

are general roles, if EI
1 ⊆ E

I
2 .

To specify the semantics of membership assertions, we extend the
interpretation function to constants, by assigning to each constant a
a distinct object aI ∈ ∆I . Note that this implies that we enforce the
unique name assumption on constants [5]. An interpretation I is a
model of a membership assertion A(a), (resp., P (a, b)) if aI ∈ AI (resp.,
(aI , bI) ∈ P I).

Given an (inclusion, or membership) assertion α, and an interpre-
tation I, we denote by I |= α the fact that I is a model of α. Given
a (finite) set of assertions κ, we denote by I |= κ the fact that I is
a model of every assertion in κ. A model of a KB K = 〈T ,A〉 is an
interpretation I such that I |= T and I |= A. With a little abuse of
notation, we also write I |= K. A KB is satisfiable if it has at least one
model. A KB K logically implies an assertion α, written K |= α, if all
models of K are also models of α. Similarly, a TBox T logically implies
an assertion α, written T |= α, if all models of T are also models of α.

2.2. DL-LiteR and DL-LiteF

We now present two DLs that extend DL-Litecore , and that are the
subject of our investigation in the following sections.

The first DL that we consider is DL-LiteR, which extends DL-
Litecore with the ability of specifying inclusion assertions between roles
of the form

R ⊑ E

where R and E are defined as above. The semantics of this kind of
assertions has been already specified in the previous subsection.

In fact, DL-LiteR might be enhanced with the capability of man-
aging qualified existential quantification on the right-hand side of
inclusion assertions on concepts [14]. This construct, however, can be
simulated by suitably making use of inclusions between roles and un-
qualified existential quantification of concepts in inclusions between
concepts, and therefore we do not consider it explicitly.

The second extension of DL-Litecore we consider is called DL-LiteF ,
which extends DL-Litecore with the ability of specifying functionality
on roles or on their inverses. Assertions used to this aim are of the form

(funct R)
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where R is defined as above.
An interpretation I is a model of an assertion (funct R) if the binary

relation RI is a function, i.e., (o, o1) ∈ RI and (o, o2) ∈ RI implies
o1 = o2.

Despite the simplicity of the language and of the assertions al-
lowed, the DLs in the DL-Lite family are able to capture the main
notions (though not all, obviously) of both ontologies and conceptual
modeling formalisms used in databases and software engineering (i.e.,
Entity-Relationship and UML class diagrams). In particular, DL-Lite
assertions allow us to specify:

− ISA, e.g., stating that concept A1 is subsumed by concept A2,
using A1 ⊑ A2;

− disjointness, e.g., between concepts A1 and A2, using A1 ⊑ ¬A2;

− role-typing, e.g., stating that the first (resp., second) component
of the relation P is an instance of A1 (resp., A2), using ∃P ⊑ A1

(resp., ∃P− ⊑ A2);

− mandatory participation, e.g., stating that all instances of con-
cept A participate to the relation P as the first (resp., second)
component, using A ⊑ ∃P (resp., A ⊑ ∃P−);

− mandatory non-participation, using A ⊑ ¬∃P or A ⊑ ¬∃P−;

− functionality restrictions on roles, using (funct P ) or (funct P−).

Notice that DL-LiteF is a strict subset of OWL5 (in fact of
OWL Lite). Notice that, the latter includes constructs (e.g., some kinds
of role restrictions) and forms of inclusion assertions that are not ex-
pressible in DL-Lite, and that make reasoning (already in OWL Lite)
non-tractable in general.

Instead, DL-LiteR can be seen as an extension of (the DL-like part
of) the ontology language RDFS6. Indeed, DL-LiteR adds to RDFS the
ability of expressing disjointness of concepts and roles, and mandatory
participation and non-participation.

EXAMPLE 1. Consider the atomic concepts Professor and Student ,
the roles TeachesTo and HasTutor , and the following DL-Litecore TBox

5 http://www.w3.org/TR/owl-features/
6 http://www.w3.org/RDF/
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T :
Professor ⊑ ∃TeachesTo

Student ⊑ ∃HasTutor
∃TeachesTo− ⊑ Student
∃HasTutor− ⊑ Professor

Professor ⊑ ¬Student

Such a TBox states that professors do teach to students, that students
have a tutor, which is also a professor, and that no student is also a
professor (and vice-versa).

Notice that in DL-LiteR we could add the assertion

HasTutor− ⊑ TeachesTo

stating that a tutor also teaches the student s/he is tutoring.
On the other hand, in DL-LiteF we could add the assertion

(funct HasTutor)

stating that everyone has at most one tutor.
Finally, we show a simple ABox A:

Student(John), HasTutor(John,Mary), TeachesTo(Mary,Bill).

We conclude this subsection with a brief discussion on the finite
model property [5]. We remind the reader that a DL enjoys the finite
model property if every satisfiable KB expressed in this logic admits
a model with a finite domain. It is interesting to observe that, while
DL-LiteR has the finite model property [29], DL-LiteF does not, as the
following example shows. Consider the DL-LiteF KB K = 〈T ,A〉 with

T = { A ⊑ ∃P, ∃P− ⊑ A, (funct P−), B ⊑ ∃P B ⊑ ¬A }

and A = {B(a)}. It is easy to see that K admits only infinite models.

2.3. Queries

We start with a general notion of queries in first-order logic, and then
we move to the definition of queries over a DL KB.

A query is an open formula of first-order logic with equalities (FOL
in the following). We denote a (FOL) query q as follows

{ ~x | φ(~x) }
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where φ(~x) is a FOL formula with free variables ~x. We call the size
of ~x the arity of the query q. Given an interpretation I, qI is the set
of tuples of domain elements that, when assigned to the free variables,
make the formula φ true in I [1].

A boolean query is a query that does not involve any free variable
(i.e., it is a closed formula). Given a boolean query q = { | φ}, we
may denote it simply by φ. Given an interpretation I, φI consists of
the only empty tuple, i.e., the tuple of arity 0, in the case in which φ is
true in I, whereas φI is obviously empty if φ is false in I.

Among the various queries, we are interested in conjunctive queries
and union of conjunctive queries. A conjunctive query (CQ) q is a query
of the form

{ ~x | ∃~y.conj (~x, ~y) }

where conj (~x, ~y) is a conjunction of atoms and equalities, with free
variables ~x and ~y. A union of conjunctive queries (UCQ) q is a query
of the form

{ ~x |
∨

i=1,...,n

∃~yi.conj i(~x, ~yi) }

where each conj i(~x, ~yi) is, as before, a conjunction of atoms and equal-
ities with free variables ~x and ~yi. Obviously, the class of union of
conjunctive queries contains the class of conjunctive queries.

Sometimes, we use the standard datalog notation (see e.g., [1]) to
denote conjunctive queries and unions of conjunctive queries. Namely,
a conjunctive query q = { ~x | ∃~y.conj (~x, ~y) } is denoted in datalog
notation as

q(~x′) ← conj ′(~x′, ~y′)

where conj′(~x′, ~y′) is the list of atoms in conj (~x, ~y) obtained after having
equated the variables ~x, ~y according to the equalities in conj (~x, ~y). As a

result of such equality elimination, we have that ~x′ and ~y′ can actually
contain constants and multiple occurrences of the same variable. We
call q(~x′) the head of q, and conj ′(~x′, ~y′) the body. Moreover, we call

the variables in ~x′ the distinguished variables of q and those in ~y′ the
non-distinguished variables.

The datalog notation is then extended to unions of conjunctive
queries as follows. A union of conjunctive queries

q = { ~x |
∨

i=1,...,n

∃~yi.conj i(~x, ~yi) }

is denoted in datalog notation as

q = { q1, . . . , qn }
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where each qi is the datalog expression corresponding to the conjunctive
query qi = { ~x | ∃~yi.conj i(~x, ~yi) }.

With the general notion of query in place, we can now define queries
over a DL KB. In particular, we will concentrate on conjunctive queries
and unions of conjunctive queries. A conjunctive query over a KB K
is a conjunctive query whose atoms are of the form A(z) or P (z1, z2),
where A and P are respectively an atomic concept and an atomic role
of K, and z, z1, z2 are either constants in K or variables. Similarly, we
define unions of conjunctive queries over a KB K.

Given a query q (either a conjunctive query or a union of conjunctive
queries) and a KB K, the answer to q over K is the set ans(q,K) of
tuples ~a of constants appearing in K such that ~aM ∈ qM, for every
model M of K. Notice that by definition ans(q,K) is finite since K
is finite, and hence the number of constants appearing in K is finite.
Notice also that the tuple ~a can be the empty tuple in the case in which
q is a boolean conjunctive query. More precisely, in this case the set
ans(q,K) consists of the only empty tuple if and only if the formula q
is true in every model of K.

Observe that, if K is unsatisfiable, then ans(q,K) is trivially the set
of all possible tuples of constants in K whose arity is the one of the
query. We denote such a set by AllTup(q,K).

2.4. Reasoning services

In studying the DL-Lite family, we are interested in several reason-
ing services. Obviously, we want to take into account traditional DL
reasoning services, and in particular, for both DL-LiteR and DL-LiteF
KBs, we consider the following problems:

− knowledge base satisfiability, i.e., given a KB K, verify whether K
admits at least one model;

− logical implication of KB assertions, which consists of the following
subproblems:

• instance checking, i.e., given a KB K, a concept C and a
constant a (resp., a role E and a pair of constants a and b),
verify whether K |= C(a) (resp., K |= E(a, b));

• subsumption of concepts or roles, i.e., given a TBox T and
two general concepts C1 and C2 (resp., two general roles E1

and E2), verify whether T |= C1 ⊑ C2 (resp., T |= E1 ⊑ E2).

• checking functionality, i.e., given a TBox T and a basic role
R, verify whether T |= (funct R).
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In addition we are interested in:

− query answering, i.e., given a KB K and a query q (either a con-
junctive query or a union of conjunctive queries) over K, compute
the set ans(q,K).

The following decision problem, called recognition problem, is associated
to the query answering problem: given a KB K, a query q (either a
conjunctive query or a union of conjunctive queries), and a tuple of
constants ~a of K, check whether ~a ∈ ans(q,K). When we talk about
the computational complexity of query answering, in fact we implicitly
refer to the associated recognition problem.

In analyzing the computational complexity of a reasoning problem
over a DL KB, we distinguish between data complexity and combined
complexity [30]: data complexity is the complexity with respect to the
size of the ABox only, while combined complexity is the complexity with
respect to the size of all inputs to the problem.

2.5. The notion of FOL-reducibility

We now introduce the notion of FOL-reducibility for both satisfiability
and query answering, which will be used in the sequel.

First, given an ABox A (of the kind considered above), we denote
by db(A) = 〈∆db(A), ·db(A)〉 the interpretation defined as follows:

− ∆db(A) is the non-empty set consisting of all constants occurring
in A,

− adb(A) = a, for each constant a,

− Adb(A) = {a | A(a) ∈ A}, for each atomic concept A, and

− P db(A) = {(a1, a2) | P (a1, a2) ∈ A}, for each atomic role P .

Observe that the interpretation db(A) is a minimal model of the ABox
A.

Intuitively, FOL-reducibility of satisfiability (resp., query answer-
ing) captures the property that we can reduce satisfiability checking
(resp., query answering) to evaluating a FOL query over the ABox A
considered as a relational database, i.e., over db(A). The definitions
follow.

DEFINITION 2. Satisfiability in a DL L is FOL-reducible, if for every
TBox T expressed in L, there exists a boolean FOL query q, over
the alphabet of T , such that for every non-empty ABox A, 〈T ,A〉 is
satisfiable if and only if q evaluates to false in db(A).
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DEFINITION 3. Query answering in a DL L for unions of conjunctive
queries is FOL-reducible, if for every union of conjunctive queries q
and every TBox T expressed in L, there exists a FOL query q1, over
the alphabet of T , such that for every non-empty ABox A and every
tuple of constants ~a occurring in A, ~a ∈ ans(q, 〈T ,A〉) if and only if

~adb(A) ∈ q
db(A)
1 .

3. Techniques for DL reasoning

In this section, we study traditional DL reasoning services for KBs ex-
pressed using the DL-Lite family. In particular, we consider knowledge
base satisfiability and logical implication, which means (concept/role)
instance checking, (concept/role) subsumption, and implication of func-
tionality assertions. We show that all such reasoning services are in
PTIME w.r.t. combined complexity, and that instance checking and
satisfiability (which make use of the ABox) are FOL-reducible, and
hence in LogSpace with respect to data complexity. We start our
investigation from KB satisfiability, and then we tackle logical im-
plication. In fact, logical implication can be basically reduced to KB
satisfiability, and therefore we first give algorithms for KB satisfiability
and then we show how to reduce logical implication to such a service.
Finally, we provide the complexity results mentioned above.

Hereinafter, we call positive inclusions (PIs) assertions of the form
B1 ⊑ B2 or of the form R1 ⊑ R2, whereas we call negative inclusions
(NIs) assertions of the form B1 ⊑ ¬B2 or R1 ⊑ ¬R2.

3.1. Knowledge base satisfiability

Our goal in this subsection is to show that knowledge base satisfiability
is FOL-reducible. To this aim, we resort to two main constructions,
namely the canonical interpretation and the closure of the negative
inclusions. We present them in turn below.

3.1.1. Canonical Interpretation
The canonical interpretation of a KB expressed either in DL-LiteR or
in DL-LiteF is an interpretation constructed according to the notion
of chase [1]. In particular, we adapt here the notion of restricted chase
adopted by Johnson and Klug in [25].

We start by defining the notion of applicable positive inclusion as-
sertions (PIs), and then we exploit applicable PIs to construct the chase
for DL-LiteR and DL-LiteF knowledge bases. Finally, with the notion
of chase in place, we give the definition of canonical interpretation.
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14 Calvanese et al.

In the following, as usual, we denote an atomic concept with the
symbol A, possibly with subscript, an atomic role with the symbol P ,
possibly with subscript, and a basic role with the symbol R, possibly
with subscript. Furthermore, for easyness of exposition, we make use
of the function ga that takes as input a basic role and two constants
and returns a membership assertion, as specified below

ga(R, a, b) =

{

P (a, b), if R = P
P (b, a), if R = P−

DEFINITION 4. Let S be a set of DL-LiteR or DL-LiteF membership
assertions, and let Tp be a set of DL-LiteR or DL-LiteF PIs. Then, a
PI α ∈ Tp is applicable in S to a membership assertion f ∈ S if

− α = A1 ⊑ A2, f = A1(a), and A2(a) /∈ S;

− α = A ⊑ ∃R, f = A(a), and there does not exist any constant b
such that ga(R, a, b) ∈ S;

− α = ∃R ⊑ A, f = ga(R, a, b), and A(a) /∈ S;

− α = ∃R1 ⊑ ∃R2, f = ga(R1, a, b), and there does not exist any
constant c such that ga(R2, a, c) ∈ S;

− α = R1 ⊑ R2, f = ga(R1, a, b), and ga(R2, a, b) /∈ S.

Applicable PIs can be used, i.e., applied, in order to construct the
chase of a KB. Roughly speaking, the chase of a DL-LiteR or DL-LiteF
KB K = 〈T ,A〉 is a (possibly infinite) set of membership assertions,
constructed step-by-step starting from the ABox A. At each step of
the construction, a PI α ∈ T is applied to a membership assertion f
belonging to the current set S of membership assertions. Applying a PI
means adding a new suitable membership assertion to S, thus obtaining
a new set S ′ in which α is not applicable to f anymore. For example,
if α = A1 ⊑ A2 is applicable in S to f = A1(a), the membership
assertion to be added to S is A2(a), i.e., S ′ = S ∪A2(a). In some cases
(i.e., α = A ⊑ ∃R or α = ∃R1 ⊑ ∃R2), to achieve an analogous aim, the
new membership assertion has to make use of a new constant symbol
that does not occur in S.

Notice that such a construction process strongly depends on the
order in which we select both the PI to be applied at each step and
the membership assertion to which such a PI is applied, as well as
on which constants we introduce at each step. Therefore, a number of
syntactically distinct sets of membership assertions might result from
this process. However, it is possible to show that the result is unique
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The DL-Lite family 15

up to renaming of constants occurring in each such a set. Since we
want our construction process to come out with a unique chase of
a certain knowledge base, along the lines of [25], we assume in the
following to have a fixed infinite set of constants, whose symbols are
ordered in lexicographic way, and we select PIs, membership assertions
and constant symbols in lexicographic order. More precisely, given a
knowledge base K = 〈T ,A〉, we denote with ΓA the set of all constant
symbols occurring in A. Also, we assume to have an infinite set ΓN of
constant symbols not occurring in A, such that the set ΓC = ΓA ∪ ΓN

is totally ordered in lexicographic way. Then, our notion of chase is
precisely given below.

DEFINITION 5. Let K = 〈T ,A〉 be a DL-LiteR or a DL-LiteF KB, let
Tp be the set of positive inclusion assertions in T , let n be the number of
membership assertions in A, and let ΓN be the set of constants defined
above. Assume that the membership assertions in A are numbered from
1 to n following their lexicographic order, and consider the following
definition

− S0 = A

− Sj+1 = Sj ∪ {fnew}, where fnew is a membership assertion
numbered with n+ j + 1 in Sj+1 and obtained as follows

let f be the first membership assertion in Sj such that
there exists a PI α ∈ Tp applicable in Sj to f

let α be the lexicographically first PI applicable in Sj to f
let anew be the constant of ΓN that follows lexicographically

all constants occurring in Sj

case α, f of
(cr1) α = A1 ⊑ A2, f = A1(a)

then fnew = A2(a)
(cr2) α = A ⊑ ∃R and f = A(a)

then fnew = ga(R, a, anew )
(cr3) α = ∃R ⊑ A and f = ga(R, a, b)

then fnew = A(a)
(cr4) α = ∃R1 ⊑ ∃R2 and f = ga(R1, a, b)

then fnew = ga(R2, a, anew )
(cr5) α = R1 ⊑ R2 and f = ga(R1, a, b)

then fnew = ga(R2, a, b).

Then, we call chase of K, denoted chase(K), the set of membership
assertions obtained as the infinite union of all Sj , i.e.,

chase(K) =
⋃

j∈N

Sj .
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16 Calvanese et al.

In the above definition, cr1, cr2, cr3, cr4, and cr5 indicate the five
rules that are used for constructing the chase, each one corresponding
to the application of a PI. Such rules are called chase rules, and we
say that a chase rule is applied to a membership assertion f if the
corresponding PI is applied to f . Notice that rules cr1, cr2, cr3, cr4
are applied in the construction of the chase of both DL-LiteR and DL-
LiteF KBs, whereas cr5 is meaningful only for DL-LiteR KBs, since
PIs of the form R1 ⊑ R2 do not occur in DL-LiteF KBs. Observe also
that NIs and functionality assertions in K have no role in constructing
chase(K). Indeed chase(K) depends only on the ABox A and the PIs
in T .

In the following, we will denote with chasei(K) the portion of the
chase obtained after i applications of the chase rules, selected ac-
cording to the ordering established in Definition 5, i.e., chasei(K) =
⋃

j∈{0,..,i} Sj = Si.
The following property shows that the notion of chase of a knowledge

base is fair.

PROPOSITION 6. Let K = 〈T ,A〉 be a DL-LiteR or a DL-LiteF KB,
and let α be a PI in T . Then, if there is an i ∈ N such that α is
applicable in chasei(K) to a membership assertion f ∈ chasei(K), then
there is a j ≥ i such that chasej+1(K) = chasej(K) ∪ f ′, where f ′ is
the result of applying α to f in chasej(K).

Proof. Assume by contradiction that there is no j ≥ i such that
chasej+1(K) = chasej(K) ∪ f ′. This would mean that either there are
infinitely many membership assertions that precede f in the ordering
that we choose for membership assertions in chase(K), or that there are
infinitely many chase rules applied to some membership assertion that
precedes f . However, none of these cases is possible. Indeed, f is as-
signed with an ordering number m such that exactly m−1 membership
assertions precede f . Furthermore, a PI can be applied at most once to
a membership assertion (afterwards, the precondition is not satisfied
and the PI is not applicable anymore), and also there exists only a
finite number ℓ of PIs. Therefore, it is possible to apply a chase rule
to some membership assertion at most ℓ times. We can thus conclude
that the claim holds.

With the notion of chase in place we can introduce the notion of
canonical interpretation. We define the canonical interpretation can(K)
as the interpretation 〈∆can(K), ·can(K)〉, where:

− ∆can(K) = ΓC ,

− acan(K) = a, for each constant a occurring in chase(K),
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− Acan(K) = {a | A(a) ∈ chase(K)}, for each atomic concept A, and

− P can(K) = {(a1, a2) | P (a1, a2) ∈ chase(K)}, for each atomic role
P .

We also define cani(K) = 〈∆can(K), ·cani(K)〉, where ·cani(K) is analogous
to ·can(K) but it refers to chasei(K) instead of chase(K). According to
the above definition, it is easy to see that can(K) (resp., cani(K)) is
unique. Notice also that can0(K) is tightly related to the interpretation
db(A). Indeed, while ∆db(A) ⊆ ∆can(K), we have that ·db(A) = ·can0(K).

We point out that chase(K) and can(K) (resp., chasei(K))
and cani(K)) are strongly connected. In particular, we note that,
whereas chasei+1(K) is obtained by adding a membership assertion to
chasei(K), cani+1(K) can be seen as obtained from cani(K) by adding
either an object to the extension of an atomic concept of K, or a pair
of objects to the extension of an atomic role of K (notice that the
domain of interpretation is the same in each cani(K), and in particular
in can(K)). By virtue of the strong connection discussed above, in the
following we will often prove properties of can(K) (resp., cani(K)) by
reasoning over the structure of chase(K) (resp., chasei(K)).

Now, we are ready to show a notable property that holds for can(K).

LEMMA 7. Let K = 〈T ,A〉 be a DL-LiteR or a DL-LiteF KB and let
Tp be the set of positive inclusion assertions in T . Then, can(K) is a
model of 〈Tp,A〉.

Proof. Since 〈Tp,A〉 does not contain NIs, to prove the claim we only
need to show that can(K) satisfies all membership assertions in A and
all PIs in Tp. The fact that can(K) satisfies all membership assertions
in A follows from the fact that A ⊆ chase(K). Then, it remains to
prove that can(K) |= Tp. Let us proceed by contradiction considering
all possible cases.

Suppose by contradiction that a PI of the form A1 ⊑ A2 ∈ Tp, where
A1 and A2 are atomic concepts, is not satisfied by can(K). This means
that there exists a constant a ∈ ΓC such that A1(a) ∈ chase(K) and
A2(a) /∈ chase(K). However, such a situation would trigger the chase
rule cr1, since A1 ⊑ A2 would be applicable to A1(a) in chase(K) and
Proposition 6 ensures that such a PI would be applied at some step
in the construction of the chase, thus causing the insertion of A2(a) in
chase(K), hence contradicting the assumption.

Now, assume by contradiction that a PI of the form A ⊑ ∃R ∈ Tp,
where A is an atomic concept and R is a basic role, is not satisfied
by can(K). This means that there exists a constant a ∈ ΓC such that
A(a) ∈ chase(K) and there does not exist a constant b ∈ ΓC such

main.tex; 19/04/2007; 11:07; p.17



18 Calvanese et al.

that ga(R, a, b) ∈ chase(K). However, such a situation would trigger
the chase rule cr2, since A ⊑ ∃R would be applicable to A(a) in
chase(K) and Proposition 6 ensures that such a PI would be applied at
some step in the construction of the chase, thus causing the insertion
of ga(R, a, c) in chase(K), where c ∈ ΓC follows lexicographically all
constants occurring in chase(K) before the execution of cr2, hence
contradicting the assumption.

Then, assume by contradiction that a PI of the form ∃R ⊑ A ∈ Tp,
where R is a basic role and A is an atomic concept, is not satisfied
by can(K). This means that there exists a pair of constants a, b ∈ ΓC

such that ga(R, a, b) ∈ chase(K) and A(a) /∈ chase(K). However, such
a situation would trigger the chase rule cr3, since ∃R ⊑ A would
be applicable to ga(R, a, b) in chase(K) and Proposition 6 ensures that
such a PI would be applied at some step in the construction of the chase,
thus causing the insertion of A(a) in chase(K), hence contradicting the
assumption.

Furthermore, assume by contradiction that a PI of the form ∃R1 ⊑
∃R2 ∈ Tp, where R1 and R2 are basic roles, is not satisfied by can(K).
This means that there exists a pair of constants a, b ∈ ΓC such that
ga(R1, a, b) ∈ chase(K) and there does not exist a constant c ∈ ΓC such
that ga(R, a, c) ∈ chase(K). However, such a situation would trigger the
chase rule cr4 since ∃R1 ⊑ ∃R2 would be applicable to ga(R1, a, b) in
chase(K) and Proposition 6 ensures that such a PI would be applied at
some step in the construction of the chase, thus causing the insertion
of ga(R, a, d) in chase(K), where d ∈ ΓC follows lexicographically all
constants occurring in chase(K) before the execution of cr4, hence
contradicting the assumption.

Finally, assume by contradiction that a PI of the form R1 ⊑ R2 ∈ Tp,
where R1 and R2 are basic roles, is not satisfied by can(K) (notice that
this kind of PIs needs to be taken into account only for DL-LiteR KBs).
This means that there exists a pair of constants a, b ∈ ΓC such that
ga(R1, a, b) ∈ chase(K) and ga(R2, a, b) /∈ chase(K). However, such
a situation would trigger the chase rule cr5, since R1 ⊑ R2 would
be applicable to ga(R1, a, b) in chase(K) and Proposition 6 ensures
that such a PI would be applied at some step in the construction of
the chase, thus causing the insertion of ga(R2, a, b) in chase(K), hence
contradicting the assumption.

As a consequence of Lemma 7, every DL-LiteR or DL-LiteF KB
K = 〈T ,A〉 with only positive inclusions in the TBox, i.e., such that
T = Tp, is always satisfiable, since we can always construct can(K)
which is a model for K. Now, one might ask if and how can(K) can
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be exploited for checking the satisfiability of a KB with also negative
inclusions and, for DL-LiteF KBs, functionality assertions.

As for functionality assertions, the following lemma shows that, to
establish that they are satisfied by can(K), we have to simply verify
that the interpretation db(A) satisfies them (and vice-versa).

LEMMA 8. Let K = 〈T ,A〉 be a DL-LiteF KB, and let Tf be the set
of functionality assertions in T . Then, can(K) is a model of 〈Tf ,A〉 if
and only if db(A) is a model of 〈Tf ,A〉.

Proof. “⇒” We show that db(A) |= 〈Tf ,A〉 if can(K) |= 〈Tf ,A〉. This
can be easily seen by observing that A ⊆ chase(K), and therefore
if a membership assertion in A or a functionality assertion in Tf is
satisfied by can(K), it is also satisfied by db(A) (notice in particular
that ∆db(A) ⊆ ∆can(K)).

“⇐” We show that can(K) |= 〈Tf ,A〉 if db(A) |= 〈Tf ,A〉. By virtue
of the correspondence between can(K) and chase(K), we proceed by
induction on the construction of chase(K).

Base step. We have that chase0(K) = A, and since db(A) |= 〈Tf ,A〉,
it follows that can0(K) |= 〈Tf ,A〉.

Inductive step. Let us assume by contradiction that for some i ≥ 0,
cani(K) is a model of 〈Tf ,A〉 and cani+1(K) is not. Notice that cr2 and
cr4 are the only rules which may lead to a violation of a functionality
assertion in cani+1(K). Let us consider first rule cr2, and assume that
chasei+1(K) is obtained by applying cr2 to chasei(K). This means that
a PI of the form A ⊑ ∃R, where A is an atomic concept and R is a basic
role, is applied in chasei(K) to a membership assertion of the form A(a),
such that there does not exists c ∈ ΓC such that ga(R, a, c) ∈ chasei(K).
Therefore, chasei+1(K) = chasei(K) ∪ ga(R, a, anew ), where anew ∈
ΓC follows lexicographically all constants occurring in chasei(K). Now,
if cani+1(K) is not a model of 〈Tf ,A〉, there must exist (at least) a
functionality assertion α which is not satisfied by cani+1(K). However,

− in the case in which α = (funct R), for α to be violated, there must
exist two pairs of objects (x, y), (x, z) ∈ Rcani+1(K) such that y 6= z;
however, we have that (a, anew ) ∈ Rcani+1(K) and a /∈ ∃Rcani(K),
since by applicability of A ⊑ ∃R in chasei(K) it follows that there
does not exist a constant b ∈ ΓC such that ga(R, a, b) ∈ chasei(K).
Therefore, there exists no pair (a, a′) ∈ Rcani+1(K) such that a′ 6=
anew . Hence, we would conclude that the pairs (x, y), (x, z) we are
looking for are such that (x, y), (x, z) ∈ Rcani(K), but this would
lead to a contradiction;

− in the case in which α = (funct R−), for α to be violated, there
must exist two pairs of objects (y, x), (z, x) ∈ Rcani+1(K) such that
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y 6= z; since anew is a fresh constant, not occurring in chasei(K),
we can conclude that there exists no pair (a′, anew ), with a′ 6= a,
such that ga(R, a′, anew ) ∈ chasei(K), and therefore, there exists
no pair (a′, anew ) ∈ Rcani+1(K). Hence, we would conclude that the
pairs (y, x), (z, x) we are looking for, are such that (y, x), (z, x) ∈
Rcani(K), but this would lead to a contradiction;

− in the case in which α = (funct R′), with R′ 6= R, we would
conclude that α is not satisfied already in cani(K), but this would
lead to a contradiction.

With an almost identical argument we can prove the inductive step
also in the case in which chasei+1(K) is obtained by applying cr4 to
chasei(K).

3.1.2. NI-closure
Let us now consider negative inclusions. In particular, we look for a
property which is analogous to Lemma 8 for the case of NIs. Notice
that, in this case, even if db(A) satisfies the NIs asserted in the KB
K = 〈T , A〉, we have that can(K) may not satisfy K. For example, if
T contains the inclusion assertions A1 ⊑ A2 and A2 ⊑ ¬A3, and A
contains the membership assertions A1(a) and A3(a), it is easy to see
that db(A) |= A2 ⊑ ¬A3, but can(K) 6|= A2 ⊑ ¬A3.

However, as suggested by the simple example above, we get that
to find the property we are looking for, we need to properly take into
account the interaction between positive and negative inclusions. To
this aim we construct a special TBox by closing the NIs with respect
to the PIs.

DEFINITION 9. Let T be a DL-LiteR or a DL-LiteF TBox. We call
NI-closure of T , denoted by cln(T ), the TBox defined inductively as
follows:

1. all negative inclusion assertions in T are also in cln(T );

2. all functionality assertions in T are also in cln(T );

3. if B1 ⊑ B2 is in T and B2 ⊑ ¬B3 or B3 ⊑ ¬B2 is in cln(T ), then
also B1 ⊑ ¬B3 is in cln(T );

4. if R1 ⊑ R2 is in T and ∃R2 ⊑ ¬B or B ⊑ ¬∃R2 is in cln(T ), then
also ∃R1 ⊑ ¬B is in cln(T );

5. if R1 ⊑ R2 is in T and ∃R−
2 ⊑ ¬B or B ⊑ ¬∃R−

2 is in cln(T ), then
also ∃R−

1 ⊑ ¬B is in cln(T );

main.tex; 19/04/2007; 11:07; p.20



The DL-Lite family 21

6. if R1 ⊑ R2 is in T and R2 ⊑ ¬R3 or R3 ⊑ ¬R2 is in cln(T ), then
also R1 ⊑ ¬R3 is in cln(T ).

7. (a) in the case in which T is a DL-LiteF TBox, if one of the
assertions ∃R ⊑ ¬∃R, or ∃R− ⊑ ¬∃R− is in cln(T ), then both
such assertions are in cln(T );
(b) in the case in which T s a DL-LiteR TBox, if one of the asser-
tions ∃R ⊑ ¬∃R, ∃R− ⊑ ¬∃R−, or R ⊑ ¬R is in cln(T ), then all
three such assertions are in cln(T ).

Notice that in the construction of the NI-closure of DL-LiteF
TBoxes, we make use only of Rules 1, 2, 3, and 7(a) whereas for
DL-LiteR TBoxes, we make use only of Rules 1, 3, 4, 5, 6, and 7(b).

The following lemma shows that cln(T ) for DL-LiteR KBs does not
imply new negative inclusions not implied by T .

LEMMA 10. Let T be a DL-LiteR TBox, and α a negative inclusion
assertion. We have that, if cln(T ) |= α, then T |= α.

Proof. To prove the claim it is sufficient to observe that all assertions
contained in cln(T ) are logically implied by T .

An analogous property holds for DL-LiteF KBs, where also impli-
cation of functionality assertions is taken into account.

LEMMA 11. Let T be a DL-LiteF TBox, and α a negative inclusion
assertion or a functionality assertion. We have that, if cln(T ) |= α,
then T |= α.

Proof. Analogous to the proof of Lemma 10.

We are now ready to show that, provided we have computed cln(T ),
the analogous of Lemma 7 and Lemma 8 holds also for NIs.

LEMMA 12. Let K = 〈T ,A〉 be a DL-LiteR or a DL-LiteF KB. Then,
can(K) is a model of K if and only if db(A) is a model of 〈cln(T ),A〉.

Proof. We provide the proof for the case of DL-LiteR KBs. The case
of DL-LiteF KBs can be proved in an analogous way.

“⇒” By construction, db(A) cannot contradict a membership asser-
tion in A. Moreover, since can(K) is a model of K and, by Lemma 10,
each assertion in cln(T ) is logically implied by K , then can(K) is a
model of cln(T ). Notice that Adb(A) = Acan0(K) ⊆ Acan(K) for every
atomic concept A in K, and similarly P db(A) = P can0(K) ⊆ P can(K)

for every atomic role P in K. Now, considering that the structure of
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NIs (and also functionalities for DL-LiteF ) is such that they cannot be
contradicted by restricting the extension of atomic concepts and roles,
we can conclude that db(A) is a model of cln(T ).

“⇐” We now prove that if db(A) is a model of 〈cln(T ),A〉, then
can(K) is a model of K. From Lemma 7 it follows that can(K) is a
model of 〈Tp,A〉, where Tp is the set of PIs in T 7. Hence, it remains to
prove that can(K) is a model of 〈T \ Tp,A〉. We show this by proving
that can(K) is a model of 〈cln(T ),A〉 (notice that T \ Tp is contained
in cln(T )). The proof is by induction on the construction of chase(K).

Base step. By construction, chase0(K) = A, and therefore
Acan0(K) = Adb(A) for every atomic concept A in K, and P can0(K) =
P db(A) for every atomic role P in K. Hence, by the assumption that
db(A) |= 〈cln(T ),A〉, it follows that can0(K) is a model for 〈cln(T ),A〉.

Inductive step. Let us assume by contradiction that cani(K) is a
model of 〈cln(T ),A〉 and cani+1(K) is not, and that chasei+1(K) is
obtained from chasei(K) by execution of the rule cr1. According to cr1,
a PI of the form A1 ⊑ A2, where A1 and A2 are atomic concepts in T , is
applied in chasei(K) to a membership assertion of the form A1(d), such
that A2(d) 6∈ chasei(K). Therefore chasei+1(K) = chasei(K)∪ {A2(d)}

(notice that this means that d ∈ A
cani+1(K)
2 ). Now, if cani+1(K) is

not a model of cln(T ), there must exist a NI in cln(T ) of the form
A2 ⊑ ¬A3, where A3 is an atomic concept, (or A2 ⊑ ¬∃R, where R
is a basic role) or of the form A3 ⊑ ¬A2 (resp., ∃R ⊑ ¬A2), such
that A3(d) ∈ chasei(K) (resp., there exists a constant c such that

ga(R, a, c) ∈ chasei(K)). Notice that this means that d ∈ A
cani(K)
3

(resp., d ∈ ∃Rcani(K)). It is easy to see that, if such a NI exists,
then also A1 ⊑ ¬A3 (resp., A1 ⊑ ¬∃R) belongs to cln(T ), according
to NI-closure rule 3. Since chasei+1(K) = chasei(K) ∪ {A2(d)}, then
A1 ⊑ ¬A3 (resp., A1 ⊑ ¬∃R) is not satisfied already by cani(K), if
A3 6= A2. If A3 = A2, we need to again consider NI-closure rule 3,
according to which, from the fact that A1 ⊑ A2 in Tp, and A1 ⊑ ¬A2

in cln(T ), it follows that A1 ⊑ ¬A1 is in cln(T ), which is therefore not
satisfied already by cani(K). In both cases, we have thus contradicted
the assumption that cani(K) is a model of cln(T ). With an almost
identical argument we can prove the inductive step also in those cases
in which chasei+1(K) is obtained from chasei(K) by executing rule cr3
or rule cr5 (in this last case, in particular, we need to use in the proof
NI-closure rules 4, 5 and 6). As for the cases in which chasei+1(K) is
obtained from chasei(K) by applying rule cr2, we proceed as follows
(for rule cr4 the proof is analogous). According to cr2, a PI of the

7 Notice that, for the case of DL-LiteF KBs, from Lemma 8 it follows that can(K)
is a model of 〈Tf ,A〉, where Tf is the set of functionality assertions in K.
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form A ⊑ ∃R, where A is an atomic concept in T , and R is a basic
role in T , is applied in chasei(K) to a membership assertion A(d) such
that there does not exist f ∈ ΓC such that ga(R, d, f) ∈ chasei(K).
Therefore chasei+1(K) = chasei(K) ∪ {ga(R, d, e)}, where e follows
lexicographically all constants appearing in chasei(K) (notice that this
means that d ∈ ∃Rcani+1(K)). Now, if cani+1(K) is not a model of
cln(T ), there must exist a NI in cln(T ) of the form ∃R ⊑ ¬B, where B
is a basic concept, or of the form ∃R− ⊑ ¬∃R−, or of the form R ⊑ ¬R.
As for the first form of NI, we can reach a contradiction as done above
for the case of execution of chase rule cr1. As for the last two forms of
NIs, according to NI-closure rule 7(b), we have that if (at least) one of
these NIs is in cln(T ), then also ∃R ⊑ ¬∃R is in cln(T ), and thus we
can again reason on a NI of the first form to reach a contradiction.

The following corollary is an interesting consequence of the lemma
above.

COROLLARY 13. Let T be a DL-LiteR or a DL-LiteF TBox, and α a
negative inclusion assertion or a functionality assertion. We have that,
if T |= α, then cln(T ) |= α.

Proof. We first consider the case in which α is a NI. We prove the
claim by contradiction. Let us assume that T |= α and cln(T ) 6|= α.
We show that from cln(T ) 6|= α one can construct a model of T which
does not satisfy α, thus obtaining a contradiction.

Let us assume that α = A1 ⊑ ¬A2, where A1 and A2 are atomic
concepts in T , and consider the DL-LiteR KB K = 〈T ,A〉, where A =
{A1(a), A2(a)}. We show that can(K) is the model we are looking for,
i.e., can(K) |= T but can(K) 6|= α. The last property follows trivially
by the form of A. Hence, in the following we concentrate on proving
that can(K) |= T .

We recall that db(A) is such that A
db(A)
1 = {a}, A

db(A)
2 = {a},

Adb(A) = ∅ for each atomic concept A ∈ T such that A 6= A1 and
A 6= A2, and Rdb(A) = ∅ for each atomic role R ∈ T . Therefore, the only
NIs that can be violated by db(A) are A1 ⊑ ¬A2, A2 ⊑ ¬A1, A1 ⊑ ¬A1,
and A2 ⊑ ¬A2. By assumption, we have that cln(T ) 6|= A1 ⊑ ¬A2, and
therefore also cln(T ) 6|= A2 ⊑ ¬A1. From this, it follows also that
cln(T ) 6|= A1 ⊑ ¬A1 and cln(T ) 6|= A2 ⊑ ¬A2, since either A1 ⊑ ¬A1

or A2 ⊑ ¬A2 logically implies A1 ⊑ ¬A2. Therefore, we can conclude
that db(A) |= cln(T ) and hence db(A) |= 〈cln(T ),A〉, for either the
case in which T is a DL-LiteR KB (and hence cln(T ) implies only
NIs), or the case in which T is a DL-LiteF KB, since it is obvious
that, being A = {A1(a), A2(a)}, db(A) cannot violate functionality
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assertions. Then, from Lemma 12 it follows that can(K) is a model of
K.

Proceeding analogously as done above, we can easily prove the claim
in those cases in which α = A ⊑ ¬∃R, α = ∃R ⊑ ¬A, α = ∃R1 ⊑ ¬∃R2,
or α = R1 ⊑ ¬R2 (the last one only for DL-LiteR TBoxes).

The proof for the case in which α is a functionality assertion of the
form (funct R) can be obtained in an analogous way, by constructing
the canonical interpretation starting from an ABox with the assertions
ga(R, a, b) and ga(R, a, c).

3.1.3. FOL-reducibility
Before providing the main theorems of this subsection, we need also
the following property, which asserts that to establish satisfiability
of a knowledge base, we can resort to constructing the canonical
interpretation.

LEMMA 14. Let K = 〈T ,A〉 be a DL-LiteR or a DL-LiteF KB. Then,
can(K) is a model of K if and only if K is satisfiable.

Proof. We prove the lemma for DL-LiteR KBs. The following proof
can be easily adapted to prove the lemma also for DL-LiteF KBs.

“⇒” If can(K) is a model for K, then K is obviously satisfiable.
“⇐” We prove this direction by showing that if can(K) is not a

model of K, then K is unsatisfiable. By Lemma 12 (“if” direction), it
follows that db(A) is not a model of 〈cln(T ),A〉, and therefore db(A) 6|=
cln(T ). This means that there exists a NI α such that db(A) 6|= α and
cln(T ) |= α, and hence by Lemma 10 T 6|= α. Let us assume that α is
of the form B1 ⊑ ¬B2, where B1 and B2 are basic concepts (resp., α is
of the form R1 ⊑ ¬R2, where R1 and R2 are atomic roles). Then, there

exists a ∈ ∆db(A) such that a ∈ B
db(A)
1 and a ∈ B

db(A)
2 (resp., there

exist a, b ∈ ∆db(A) such that (a, b) ∈ R
db(A)
1 and (a, b) ∈ R

db(A)
2 ). Let us

now assume by contradiction that a modelM = 〈∆M, ·M〉 of K exists.
For each modelM, we can construct a homomorphism ψ from ∆db(A)

to ∆M such that ψ(c) = cM for each constant c occurring in A (notice
thatM assigns a distinct object to each such constant c, sinceM |= A).
From the fact that M satisfies membership assertions in A, it easily
follows that ψ(a) ∈ BM

1 and ψ(a) ∈ BM
2 (resp., (ψ(a), ψ(b)) ∈ RM

1

and (ψ(a), ψ(b)) ∈ RM
2 ), but this makes the NI B1 ⊑ ¬B2 (resp.,

R1 ⊑ ¬R2) be violated also in M, thus contradicting the fact that M
is a model, since a model cannot violate a NI that is logically implied
by T .

Notice that, the construction of can(K) is in general neither conve-
nient nor possible, since can(K) may be infinite. However, by simply
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combining Lemma 12 and Lemma 14, we obtain the notable result
that to check satisfiability of a knowledge base, it is sufficient (and
necessary) to look at db(A) (provided we have computed cln(T )). More
precisely, the next theorem shows that a contradiction on a DL-LiteR or
a DL-LiteF KB may hold only if a membership assertion in the ABox
contradicts a functionality assertion or a NI implied by the closure
cln(T ).

THEOREM 15. Let K = 〈T ,A〉 be a DL-LiteR or a DL-LiteF KB.
Then, K is satisfiable if and only if db(A) is a model of 〈cln(T ),A〉.

Proof. “⇒” If K is satisfiable, from Lemma 14 (“only-if” direction),
it follows that can(K) is a model of K, and therefore, from Lemma 12
(“only-if” direction), it follows that db(A) is a model of 〈cln(T ),A〉.

“⇐” If db(A) is a model of 〈cln(T ),A〉, from Lemma 12 (“if” di-
rection), it follows that can(K) is a model of K, and therefore K is
satisfiable.

At this point, it is not difficult to show that verifying if db(A)
is a model of 〈cln(T ),A〉 can be done by simply evaluating a suit-
able boolean FOL query over db(A) itself. In particular we define a
translation function δ from assertions in cln(T ) to FOL formulas, as
follows:

δ((funct P )) = ∃x, y, z.P (x, y) ∧ P (x, z) ∧ y 6= z
δ((funct P−)) = ∃x, y, z.P (x, y) ∧ P (z, y) ∧ x 6= z
δ(B1 ⊑ ¬B2) = ∃x.γ1(x) ∧ γ2(x)
δ(R1 ⊑ ¬R2) = ∃x, y.ρ1(x, y) ∧ ρ2(x, y)

where in the last equations γi(x) = Ai(x) if Bi = Ai, γi(x) =
∃yi.Pi(x, yi) if Bi = ∃Pi, and γi(x) = ∃yi.Pi(yi, x) if Bi = ∃P−

i ; and
ρi(x, y) = Pi(x, y) if Ri = Pi, and ρi(x, y) = Pi(y, x) if Ri = P−

i .
The algorithm Consistent, described in Figure 1, takes as input a DL-

LiteR or a DL-LiteF KB, computes db(A) and cln(T ), and evaluates
over db(A) the boolean FOL query obtained by taking the union of all
FOL formulas returned by the application of the above function δ to
every assertion in cln(T ). In the algorithm, the symbol ⊥ indicates a
predicate whose evaluation is false in every interpretation. Therefore, in
the case in which neither functionality assertions nor negative inclusion

assertions occur in K, q
db(A)
unsat = ⊥db(A), and therefore Consistent(K)

returns true.

LEMMA 16. Let K = 〈T ,A〉 be a DL-LiteR or a DL-LiteF KB. Then,
the algorithm Consistent(K) terminates, and K is satisfiable if and only
if Consistent(K) = true.
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Algorithm Consistent(K)
Input: DL-Lite knowledge base K = 〈T ,A〉
Output: true if K is satisfiable, false otherwise
begin
qunsat = ⊥;
for each α ∈ cln(T ) do
qunsat = qunsat ∨ δ(α);

if q
db(A)
unsat = ∅ return true;

else return false;
end

Figure 1. The algorithm Consistent

Proof. Since cln(T ) is a finite set of membership and functionality
assertions, the algorithm terminates. By Theorem 15, we have that
db(A) is a model of all assertions in cln(T ) if and only if K is satisfiable.
The query qunsat verifies whether there exists an assertion α that is
violated in db(A), by expressing its negation as a FOL formula δ(α)
and evaluating it in db(A).

As a direct consequence of Lemma 16, we get:

THEOREM 17. Knowledge base satisfiability in DL-LiteR and DL-
LiteF is FOL-reducible.

EXAMPLE 18. We now check satisfiability of the DL-Litecore KB
K = 〈T ,A〉 in Example 1. To this aim, we first compute cln(T ), which
is as follows:

Professor ⊑ ¬Student
∃TeachesTo− ⊑ ¬Professor
∃HasTutor− ⊑ ¬Student .

Next, we apply the translation function δ to each NI above, getting:

δ(Professor ⊑ ¬Student) = ∃x.Professor(x) ∧ Student(x)
δ(∃TeachesTo− ⊑ ¬Professor) = ∃x.(∃y.TeachesTo(y, x)) ∧ Professor(x)
δ(∃HasTutor− ⊑ ¬Student) = ∃x.(∃y.HasTutor(y, x)) ∧ Student(x).

The union of such queries is qunsat , which evaluated over db(A) returns
false, thus showing satisfiability of K.

As a further example, consider now the DL-LiteR TBox T ′ obtained
from T by adding the inclusion assertion HasTutor− ⊑ TeachesTo. In
this case cln(T ′) includes cln(T ) plus the following NIs:

∃HasTutor ⊑ ¬Professor
∃TeachesTo ⊑ ¬Student .
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So q′unsat includes the disjuncts of qunsat plus the following:

δ(∃HasTutor ⊑ ¬Professor) = ∃x.(∃y.HasTutor(x, y)) ∧ Professor(x)
δ(∃TeachesTo ⊑ ¬Student) = ∃x.(∃y.TeachesTo(x, y)) ∧ Student(x).

Since (q′unsat)
db(A) is false, we conclude that K′ = 〈T ′,A〉 is satisfiable.

Finally, if we instead add the functionality assertion
(funct HasTutor) to T , we obtain a DL-LiteF TBox T ′′, whose
NI-closure cln(T ′′) includes cln(T ) plus (funct HasTutor).

In this case, q′′unsat includes the disjuncts of qunsat plus:

δ((funct HasTutor)) = ∃x, y, z.HasTutor(x, y) ∧HasTutor(x, z) ∧ y 6= z.

Again, (q′′unsat)
db(A) is false, and hence also K′′ = 〈T ′′,A〉 is satisfiable.

3.2. Logical implication

We start by showing that both instance checking and subsumption
can be reduced to knowledge base satisfiability. We first consider the
problem of instance checking for concept expressions, and provide a
suitable reduction from this problem to knowledge base satisfiability.

THEOREM 19. Let K be either a DL-LiteR or a DL-LiteF KB, C a
general concept, d a constant appearing in K, and Â an atomic concept
not appearing in K. Then K |= C(d) if and only if the KB

KC(d) = 〈K ∪ {Â ⊑ ¬C}, {Â(d)}〉

is unsatisfiable.

Proof. “⇒” Suppose that K |= C(d), but there exists a model M′ of

KC(d). Then M′ |= Â(d) and M′ |= Â ⊑ ¬C. But then M′ |= ¬C(d).
Observe thatM′ is a model of K, hence we get a contradiction.

“⇐” Suppose that KC(d) is unsatisfiable, but there exists a model
M of K such that M |= ¬C(d). Then we can define an interpretation
M′ of KC(d) that interprets all constants, concept and roles in K as

before, and assigns to Â (which does not appear in K) the extension

ÂM′

= {dM}. Now, M′ is still a model of K, and moreover we have

that M′ |= Â(d) and M′ |= Â ⊑ ¬C, hence M′ is a model of KC(d).
Thus we get a contradiction.

The analogous of the above theorem holds for the problem of
instance checking for role expressions. We first consider DL-LiteR KBs.
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THEOREM 20. Let K be a DL-LiteR KB, E a general role, a and b
two constants appearing in K, and P̂ an atomic role not appearing in
K. Then K |= E(a, b) if and only if the KB

KE(a,b) = 〈K ∪ {P̂ ⊑ ¬E}, {P̂ (a, b)}〉

is unsatisfiable.

Proof. Similar to the proof of Theorem 19.

Also, for DL-LiteF KBs we provide the following theorem.

THEOREM 21. Let K = 〈T ,A〉 be a DL-LiteF KB, R a basic role,
and a and b two constants appearing in K. Then

− K |= R(a, b) if and only if either K is unsatisfiable, or
ga(R, a, b) ∈ A.

− K |= ¬R(a, b) if and only if 〈T ,A∪{ga(R, a, b)}〉 is unsatisfiable.

Proof. The second item is obvious. As for the first item, the “if”
direction is trivial, while for the “only-if” direction, assume that K
is satisfiable and ga(R, a, b) 6∈ A. From the fact that K is satisfiable,
it follows (see Lemma 14) that can(K) |= K. From the construction of
can(K) for a DL-LiteF KB it easily follows that can(K) |= R(a, b) if and
only if ga(R, a, b) ∈ A, and therefore can(K) 6|= R(a, b). Now, the fact
that can(K) |= K and can(K) 6|= R(a, b) contradicts the assumption
that K |= R(a, b).

We now address the subsumption problem and provide different
reductions of this problem to the problem of knowledge base satisfi-
ability. The case of subsumption between concepts is dealt with by
the following theorem, and the case of subsumption between roles, is
considered in the two subsequent theorems.

THEOREM 22. Let T be either a DL-LiteR or a DL-LiteF TBox, C1

and C2 two general concepts, Â an atomic concept not appearing in T ,
and d a constant. Then, T |= C1 ⊑ C2 if and only if the KB

KC1⊑C2
= 〈T ∪ {Â ⊑ C1, Â ⊑ ¬C2}, {Â(d)}〉,

is unsatisfiable.

Proof. “⇒” Suppose that T |= C1 ⊑ C2, but there exists a model M′

of KC1⊑C2
. ThenM′ |= Â(d),M′ |= Â ⊑ C1, andM′ |= Â ⊑ ¬C2. But

then M′ |= C1(d) and M′ |= ¬C2(d). Observe that M′ is a model of
T , hence we get a contradiction.
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“⇐” Suppose that KC1⊑C2
is unsatisfiable, but there exists a model

M of T such that o ∈ CM
1 and o /∈ CM

2 for some object o in the
domain ofM. Then we can define an interpretationM′ of KC1⊑C2

that
interprets all concepts and roles in T as before, and assigns to d and
Â (which does not appear in T ) the extensions dM

′

= o, ÂM′

= {o}.

Now,M′ is still a model of T , and moreover we have thatM′ |= Â(d),

M′ |= Â ⊑ C1, and M′ |= Â ⊑ ¬C2. Hence M′ is a model of KC1⊑C2
,

and we get a contradiction.

THEOREM 23. Let T be a DL-LiteR TBox, E1 and E2 two general
roles, P̂ an atomic role not appearing in T , and a, b two constants.
Then, T |= E1 ⊑ E2 if and only if the KB

KE1⊑E2
= 〈T ∪ {P̂ ⊑ E1, P̂ ⊑ ¬E2}, {P̂ (a, b)}〉

is unsatisfiable.

Proof. “⇒” Suppose that T |= E1 ⊑ E2, but there exists a modelM′

of KE1⊑E2
. Then M′ |= P̂ (a, b), M′ |= P̂ ⊑ E1, and M′ |= P̂ ⊑ ¬E2.

But then M′ |= E1(a, b) and M′ |= ¬E2(a, b). Observe that M′ is a
model of T , hence we get a contradiction.

“⇐” Suppose that KE1⊑E2
is unsatisfiable, but there exists a model

M of T such that (oa, ob) ∈ E
M
1 and (oa, ob) 6∈ E

M
2 for some pair of ob-

jects in the domain ofM. We first show that we can assume w.l.o.g. that
oa and ob are distinct objects. Indeed, if oa = ob, we can construct a new
model Md of T as follows: ∆Md = ∆M × {1, 2}, AMd = AM × {1, 2}
for each atomic concept A, and PMd = ({((o, 1), (o′, 1)), ((o, 2), (o′, 2)) |
(o, o′) ∈ PM} ∪ U) \ V , where

U =

{

∅, if (oa, oa) 6∈ P
M

{((oa, 1), (oa, 2)), ((oa, 2), (oa, 1))}, if (oa, oa) ∈ P
M

V =

{

∅, if (oa, oa) 6∈ P
M

{((oa, 1), (oa, 1)), ((oa, 2), (oa, 2))}, if (oa, oa) ∈ P
M

for each atomic role P . It is immediate to see thatMd is still a model
of T containing a pair of distinct objects in EMd

1 and not in EMd
2 .

Now, given that we can assume that oa 6= ob, we can define an
interpretation M′ of KE1⊑E2

that interprets all concepts and roles in

T as before, and assigns to a, b, and P̂ (which does not appear in T )

respectively the extensions aM
′

= oa, b
M′

= ob, and P̂M′

= {(oa, ob)}.

We have that M′ is still a model of T , and moreover M′ |= P̂ (a, b),

M′ |= P̂ ⊑ E1, and M′ |= P̂ ⊑ ¬E2. Hence M′ is a model of KE1⊑E2
,

and we get a contradiction.
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THEOREM 24. Let T be a DL-LiteF TBox, R1 and R2 two basic roles,
Â an atomic concept not appearing in T , and d a constant. Then,

1. T |= R1 ⊑ R2 or T |= ¬R1 ⊑ ¬R2 if and only if (a) R1 = R2, or
(b) the KB

K∃R1⊑¬∃R1
= 〈T ∪ {Â ⊑ ∃R1}, {Â(d)}〉

is unsatisfiable, or (c) the KB

K∃R−

1
⊑¬∃R−

1

= 〈T ∪ {Â ⊑ ∃R−
1 }, {Â(d)}〉

is unsatisfiable;

2. T |= ¬R1 ⊑ R2 if and only if T is unsatisfiable.

3. T |= R1 ⊑ ¬R2 if and only if either (a) the KB

K∃R1⊑¬∃R2
= 〈T ∪ {Â ⊑ ∃R1, Â ⊑ ∃R2}, {Â(d)}〉

is unsatisfiable, or (b) the KB

K−
∃R1⊑¬∃R2

= 〈T ∪ {Â ⊑ ∃R−
1 , Â ⊑ ∃R

−
2 }, {Â(d)}〉,

is unsatisfiable.

Proof. As for the first item, notice that ¬R1 ⊑ ¬R2 is equivalent to
R2 ⊑ R1, and therefore we will prove the claim only for subsumption
of the latter form. The “if” direction is obvious in the case in which
R1 = R2 or T is unsatisfiable. As for the case in which T is satisfiable,
R1 6= R2, and either K∃R1⊑¬∃R1

or K∃R−

1
⊑¬∃R−

1

is unsatisfiable, by

Theorem 22 (“if” direction), it follows that either T |= ∃R1 ⊑ ¬∃R1

or T |= ∃R−
1 ⊑ ¬∃R

−
1 , and therefore T |= R1 ⊑ R2 (notice that

RI
1 = ∅ in every interpretation I). As for the “only-if” direction, we

assume that T |= R1 ⊑ R2, and then construct a model of T that is
not a model of R1 ⊑ R2, thus obtaining a contradiction. Consider the
ABox A = {R1(a, b)}, where a and b are different constants, and the
DL-LiteF KB K = 〈T ,A〉. According to Theorem 15, K is satisfiable
if and only if db(A) is a model of 〈cln(T ),A〉. Since R1(a, b) is the
only membership assertion in A, the only NIs that db(A) can violate
are ∃R1 ⊑ ¬∃R1 and ∃R−

1 ⊑ ¬∃R
−
1 , but, by assumption, T does not

imply any of such NIs, and therefore db(A) satisfies cln(T ) (indeed, by
Lemma 11, for any NI α, if T 6|= α, then cln(T ) 6|= α). In particular,
by Lemma 14, it follows that can(K) is a model of K, and therefore a
model of T . According to the chase rules used in the construction of
chase(K), it is easy to see that R2(a, b) is never added to chase(K), i.e.,
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R2(a, b) 6∈ chase(K), and therefore, can(K) 6|= R1 ⊑ R2, thus leading
to a contradiction.

As for the second item, the “if” direction is obvious. As for the
“only-if” direction, we consider the KB K = 〈T ,A〉, where A = ∅,
i.e., is an empty ABox. Since T is satisfiable, then K is satisfiable, and
by Lemma 14, it follows that can(K) is a model of K and therefore
a model of T . Since A = ∅, then also chase(K) = ∅, and therefore
can(K) 6|= ¬R1 ⊑ R2.

The third item can be proved analogously to the first item. In
particular, for the “only-if” direction, in the case in which T is sat-
isfiable, the proof proceeds in a similar way, by considering an ABox
A = {R1(a, b), R2(a, b)}, where a and b are different constants (it is
very easy to see that can(〈T ,A〉) 6|= R1 ⊑ ¬R2).

The following theorem characterizes logical implication of a func-
tionality assertion in DL-LiteR and DL-LiteF , in terms of subsumption
between roles.

THEOREM 25. Let T be a DL-LiteR or a DL-LiteF TBox and R a
basic role. Then, T |= (funct R) if and only if either (funct R) ∈ T (in
the case where T is a DL-LiteF KB), or T |= R ⊑ ¬R.

Proof. “⇐” The case in which (funct R) ∈ T is trivial. Instead, if
T |= R ⊑ ¬R, then RI = ∅ and hence I |= (funct R), for every model
I of T .

“⇒” We assume that neither (funct R) ∈ T nor T |= R ⊑ ¬R,
and we construct a model of T that is not a model of (funct R). First
of all, notice that, since T does not imply R ⊑ ¬R, it also does not
imply ∃R ⊑ ¬∃R and ∃R− ⊑ ¬∃R−. Now, consider the ABox A =
{R(a, b), R(a, c)}, where a, b, and c are pairwise distinct objects, and
the KB K = 〈T ,A〉. According to Theorem 15, K is satisfiable if and
only if db(A) is a model of 〈cln(T ),A〉. Since R(a, b) and R(a, c) are
the only membership assertions in A, the only assertions that db(A)
can violate are (i) the NIs R ⊑ ¬R, ∃R ⊑ ¬∃R, and ∃R− ⊑ ¬∃R−, and
(ii) the functionality assertion (funct R). But, by assumption, T does
not imply any of such assertions, and therefore db(A) satisfies cln(T ).
In particular, by Lemma 14, it follows that can(K) is a model of K,
and therefore a model of T . However, by construction of A, (funct R)
is not satisfied in db(A), and hence also not in can(K), which means
that can(K) is not a model of (funct R).

Notice that the role inclusion assertion we are using in Theorem 25
is of the form T |= R ⊑ ¬R, and thus expresses the fact that role R has
an empty extension in every model of T . Also, by Theorems 23 and 24,
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logical implication of role inclusion assertions can in turn be reduced
to knowledge base satisfiability.

Hence, with the above theorems in place, in the following we can
concentrate on knowledge base satisfiability only.

3.3. Computational complexity

From the results in the previous subsections we can establish the com-
putational complexity characterization for the classical DL reasoning
problems for DL-LiteR and DL-LiteF .

THEOREM 26. In DL-LiteR and DL-LiteF , knowledge base satisfi-
ability is LogSpace in the size of the ABox (data complexity) and
PTime in the size of the whole knowledge base (combined complexity).

Proof. First, LogSpace data complexity follows directly from FOL-
reducibility, since evaluating FOL queries/formulas over a model is
LogSpace in the size of the model [30]. As for the combined complex-
ity, we have that cln(T ) is polynomially related to the size of the TBox
T and hence qunsat defined above is formed by a number of disjuncts
that is polynomial in T . Each disjunct can be evaluated separately and
contains either 2 or 3 variables. Now, each disjunct can be evaluated by
checking the formula under each of the n3 possible assignments, where
n is the size of the domain of db(A) [30]. Finally, once an assignment
is fixed the evaluation of the formula can be done in LogSpace [30].
As a result, we get the PTime bound.

Taking into account the reductions in Theorems 19, 20, 21,
22, 23, 24, and 25, as a consequence of Lemma 16, we get the following
results.

THEOREM 27. In DL-LiteR and DL-LiteF , (concept/role) subsump-
tion and logical implication of functionality assertions are both PTime

in the size of the TBox, while (concept/role) instance checking is
LogSpace in the size of the ABox and PTime in the size of the whole
knowledge base.

4. Query answering: preliminary properties

In this section we start studying query answering in DL-LiteR and DL-
LiteF , and establish some preliminary properties which will be used in
the next section.
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First, we recall that, in the case where K is an unsatisfiable KB, the
answer to a union of conjunctive queries Q is defined as the finite set of
tuples AllTup(Q,K). Therefore, in the following we focus on the case
where K is satisfiable.

We start by showing a central property of the canonical interpreta-
tion can(K). In particular, the following lemma shows that, for every
modelM of K = 〈T ,A〉, there is a homomorphism from can(K) toM
that maps the objects in the extension of concepts and roles in can(K)
to objects in the extension of concepts and roles inM.

LEMMA 28. Let K = 〈T ,A〉 be a satisfiable DL-LiteR or DL-LiteF
KB, and letM = (∆M, ·M) be a model for K. Then, there is a function
ψ from ∆can(K) to ∆M such that:

(i) for each atomic concept A in K and each object o ∈ ∆can(K), if
o ∈ Acan(K) then ψ(o) ∈ AM, and

(ii) for each atomic role P in K and each pair of objects o, o′ ∈ ∆can(K),
if (o, o′) ∈ P can(K) then (ψ(o), ψ(o′)) ∈ PM.

Proof. We define the function ψ from ∆can(K) to ∆M by induction on
the construction of chase(K), and simultaneously show that properties
(i) and (ii) hold.

Base Step. For each constant d occurring in A, we set ψ(dcan(K)) =
dM (notice that each model M interprets each such constant with
an element in ∆M). We remember that chase0(K) = A, ∆can0(K) =
∆can(K) = ΓC , and that, for each constant d occurring in A, dcan0(K) =
d. Then, it is easy to see that for each object oc ∈ ∆can0(K) (resp., each
pair of objects o1c , o

2
c ∈ ∆can0(K)) such that oc ∈ A

can0(K), where A is an
atomic concept in K (resp., (o1c , o

2
c) ∈ P

can(K), where P is an atomic role
in K), we have that A(oc) ∈ chase0(K) (resp., P (o1c , o

2
c) ∈ chase0(K)).

Since M satisfies all membership assertions in A, we also have that
ψ(oc) ∈ A

M (resp., (ψ(o1c), ψ(o2c)) ∈ P
M)).

Inductive Step. Let us assume that chasei+1(K) is obtained from
chasei(K) by applying rule cr2. This means that a PI of the form
A ⊑ ∃R, where A is an atomic concept in T , and R is a basic role in
T , is applied in chasei(K) to a membership assertion of the form A(d),
such that there does not exist a constant f ∈ ΓC such that ga(R, d, f) ∈
chasei(K). Therefore chasei+1(K) = chasei(K)∪ {ga(R, d, e)}, where e
follows lexicographically all constants appearing in chasei(K) (notice
that this means that (d, e) ∈ Rcani+1(K)). By induction hypothesis,
there exists om ∈ ∆M such that that ψ(d) = om and om ∈ A

M. Because
of the presence of the PI A ⊑ ∃R in T , and because M is a model of
K, there is at least one object o′m ∈ ∆M such that (om, o

′
m) ∈ RM.

Then, we set ψ(e) = o′m, and we can conclude that (ψ(d), ψ(e)) ∈ RM.
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With a similar argument we can prove the inductive step also in
those cases in which cani+1(K) is obtained from cani(K) by applying
one of the rules cr1, cr3, cr4, or cr5, the last one only for DL-LiteR
KBs.

Based on the above property, we now prove that the canonical model
can(K) of a satisfiable KB K is able to represent all models of K with
respect to unions of conjunctive queries.

THEOREM 29. Let K be a satisfiable DL-LiteF or DL-LiteR KB, and
let Q be a union of conjunctive queries over K. Then, ans(Q,K) =
Qcan(K).

Proof. We first recall that ∆can(K) = ΓC and that, for each constant
d occurring in K, we have that dcan(K) = d. Therefore, given a tuple
~t of constants occurring in K, we have that ~tcan(K) = ~t. We can hence
rephrase the claim as ~t ∈ ans(Q,K) iff ~t ∈ Qcan(K).

“⇒” Suppose ~t ∈ ans(Q,K). Then, since can(K) is a model of K,
we have that ~tcan(K) ∈ Qcan(K).

“⇐” Suppose ~tcan(K) ∈ Qcan(K). Let Q be the union of conjunctive
queries Q = {q1, . . . , qk} with qi defined as qi(~xi) ← conj i(~xi, ~yi)
for each i ∈ {1, . . . , k}. Then, there exists i ∈ {1, . . . , k} such that
there is a homomorphism from conj i(~t, ~yi) to can(K), i.e., there exists
an assignment µ : V → ∆can(K) that maps the variables V occurring
in conj i(~t, ~yi) to objects of ∆can(K), such that all atoms in conj i(~t, ~yi)
under the assignment µ evaluate to true in can(K).

Now let M be a model for K. By Lemma 28, there is a homomor-
phism ψ from ∆can(K) to ∆M. Consequently, the function obtained by
composing ψ and µ is a function that maps the variables V occurring
in conj i(~t, ~yi) to objects of the domain of M, such that all atoms in
conj i(~t, ~yi) under the assignment µ evaluate to true in M. Therefore,
~tM ∈ QM, which implies that ~t ∈ ans(Q,K).

The above property shows that the canonical model can(K) is a
correct representative of all the models of a DL-LiteR (or DL-LiteF )
KB with respect to the problem of answering unions of conjunctive
queries. In other words, for every union of conjunctive queries Q, the
answers to Q over K correspond to the evaluation of Q in can(K).

In fact, this property holds for all positive FOL queries, but not in
general. Consider for example the DL-Litecore KB K = 〈∅, {A1(d)}〉,
and the FOL boolean query q = { | ∃x.A1(x)∧¬A2(x)}. We have that
chase(K) = {A1(d)}, and therefore q is true in can(K), but the answer
to q over K is false, since there exists a model M for K such that q is
false in M. Assume, for instance, that M has the same interpretation
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domain as can(K), and that aM = a, AM
1 = {a}, and AM

2 = {a}. It is
easy to see that M is a model for K and q is false inM.

We point out that the canonical interpretation is in general infinite,
consequently it cannot be effectively computed in order to solve the
query answering problem in DL-LiteF or DL-LiteR.

Now, given the limited expressive power of DL-LiteR and DL-LiteF
TBoxes, it might seem that, in order to answer a query over a KB
K, we could simply build a finite interpretation IK that allows for
reducing answering every union of conjunctive queries (or even every
single conjunctive query) over K to evaluating the query in IK. The
following theorem shows that this is not the case.

THEOREM 30. There exists a DL-Litecore KB K for which no finite
interpretation IK exists such that, for every conjunctive query q over
K, ans(q,K) = qIK.

Proof. Let K be the DL-Litecore KB whose TBox consists of the cyclic
concept inclusion ∃P− ⊑ ∃P and whose ABox consists of the assertion
P (a, b).

Let IK be a finite interpretation. There are two possible cases:

1. There is no cycle on the relation P in IK, i.e., the maximum path
on the relation P IK has a finite length n. In this case, consider
the boolean conjunctive query q ← P (x1, x2), . . . , P (xn, xn+1)
that represents the existence of a path of length n + 1 in P . It is
immediate to verify that the query q is false in IK, i.e., qIK = ∅,
while the answer to q over K is true, i.e., ans(q,K) 6= ∅ (indeed
ans(q,K) consists of the empty tuple). This last property can be
easily seen by noticing that qcan(K) is true.

2. IK satisfies the TBox cycle, so it has a finite cycle. More pre-
cisely, let us assume that IK is such that (o1, o2) ∈ P

IK , (o2, o3) ∈
P IK , . . . , (on, o1) ∈ P IK . In this case, consider the boolean con-
junctive query q ← P (x1, x2), . . . , P (xn, x1). It is immediate
to verify that such a query is true in IK, while the answer to q
over K is false. This last property can be easily seen by notic-
ing that qcan(K) is false, since chase(K) does not contain a set of
facts P (a1, a2), P (a2, a3), . . . , P (an, a1), for any n, and therefore in
can(K) there does not exist any cycle on the relation P .

Consequently, in both cases ans(q,K) 6= qIK .

The above property demonstrates that answering queries in
DL-Litecore , and hence both in DL-LiteR and in DL-LiteF , goes beyond
both propositional logic and relational databases.
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Finally, we prove a property that relates answering unions of
conjunctive queries to answering conjunctive queries.

THEOREM 31. Let K be either a DL-LiteR or a DL-LiteF KB, and
let Q be a union of conjunctive queries over K. Then, ans(Q,K) =
⋃

qi∈Q

ans(qi,K).

Proof. The proof that
⋃

qi∈Q ans(qi,K) ⊆ ans(Q,K) is immediate. To
prove that ans(Q,K) ⊆

⋃

qi∈Q ans(qi,K), we distinguish two possible
cases:

1. K is unsatisfiable. Then, it immediately follows that
⋃

qi∈Q ans(qi,K) and ans(Q,K) are equal and coincide with
the set AllTup(Q,K);

2. K is satisfiable. In this case, suppose ~t ∈ ans(Q,K) and suppose
that every qi is of the form qi(~xi) ← conj i(~xi, ~yi) for each qi ∈ Q.
Then, by Theorem 29, ~tcan(K) ∈ Qcan(K), which implies that there
exists i ∈ {1, . . . , k} such that ~tcan(K) ∈ conj i(~t, ~yi)

can(K). Hence,
from Theorem 29, it follows that ~t ∈ ans(qi,K).

Informally, the above property states that the set of answers to a
union of conjunctive queries Q in DL-LiteR and DL-LiteF corresponds
to the union of the answers to the various conjunctive queries in Q.

5. Query answering in DL-LiteR

In this section we discuss query answering in DL-LiteR. More precisely,
based on the properties shown in the previous section, we define an
algorithm for answering unions of conjunctive queries in DL-LiteR, and
analyze its computational complexity.

In a nutshell, our query answering method strongly separates the
intensional and the extensional level of the DL-LiteR KB: the query
is first processed and reformulated based on the TBox axioms; then,
the TBox is discarded and the reformulated query is evaluated over
the ABox, as if the ABox were a simple relational database (cf. Sec-
tion 2.5). More precisely, given a query q over K = 〈T ,A〉, we compile
the assertions of T (in fact, the PIs in T ) into the query itself, thus
obtaining a new query q′. Such a new query q′ is then evaluated over
db(A), thus essentially reducing query answering to query evaluation
over a database instance. Since the size of q′ does not depend on the
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ABox, the data complexity of the whole query answering algorithm
is the same as the data complexity of evaluating q′. We show that,
in the case where q is a conjunctive query, the query q′ is a union of
conjunctive queries. Hence, the data complexity of the whole query
answering algorithm is polynomial.

In the following, we first define an algorithm for the reformulation
of conjunctive queries. Then, we describe a technique for answering
unions of conjunctive queries in DL-LiteR and we prove correctness of
such a technique. Finally, we analyze the computational complexity of
query answering over DL-LiteR KBs.

5.1. Query reformulation

We start our presentation by giving some preliminary definitions.
We say that an argument of an atom in a query is bound if it

corresponds to either a distinguished variable or a shared variable, i.e.,
a variable occurring at least twice in the query body, or a constant.
Instead, an argument of an atom in a query is unbound if it corresponds
to a non-distinguished non-shared variable. As usual, we use the symbol
‘ ’ to represent non-distinguished non-shared variables.

A PI I is applicable to an atom A(x), if I has A in its right-hand
side.

A PI I is applicable to an atom P (x1, x2), if: (i) x2 = and the
right-hand side of I is ∃P ; or (ii) x1 = and the right-hand side of I
is ∃P−; or (iii) I is a role inclusion assertion and its right-hand side
is either P or P−. Roughly speaking, an inclusion I is applicable to
an atom g if the predicate of g is equal to the predicate in the right-
hand side of I and, in the case when I is an inclusion assertion between
concepts, if g has at most one bound argument and corresponds to the
object that is implicitly referred to by the inclusion I.

We indicate with gr(g, I) the atom obtained from the atom g by
applying the applicable inclusion I. Formally:

DEFINITION 32. Let I be an inclusion assertion that is applicable to
the atom g. Then, gr(g, I) is the atom defined as follows:

− if g = A(x) and I = A1 ⊑ A, then gr(g, I) = A1(x);
− if g = A(x) and I = ∃P ⊑ A, then gr(g, I) = P (x, );
− if g = A(x) and I = ∃P− ⊑ A, then gr(g, I) = P ( , x);
− if g = P (x, ) and I = A ⊑ ∃P , then gr(g, I) = A(x);
− if g = P (x, ) and I = ∃P1 ⊑ ∃P , then gr(g, I) = P1(x, );
− if g = P (x, ) and I = ∃P−

1 ⊑ ∃P , then gr(g, I) = P1( , x);
− if g = P ( , x) and I = A ⊑ ∃P−, then gr(g, I) = A(x);
− if g = P ( , x) and I = ∃P1 ⊑ ∃P−, then gr(g, I) = P1(x, );
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Algorithm PerfectRef (q, T )
Input: conjunctive query q, TBox T
Output: union of conjunctive queries PR
PR := {q};
repeat

PR′ := PR;
for each q ∈ PR′ do
(a) for each g in q do

for each PI I in T do
if I is applicable to g
then PR := PR ∪ { q[g/gr(g, I)] }

(b) for each g1, g2 in q do
if g1 and g2 unify
then PR := PR ∪ {τ(reduce(q, g1, g2))};

until PR′ = PR;
return PR

Figure 2. The algorithm PerfectRef

− if g = P ( , x) and I = ∃P−
1 ⊑ ∃P

−, then gr(g, I) = P1( , x);
− if g = P (x1, x2) and either I = P1 ⊑ P or I = P−

1 ⊑ P−, then
gr(g, I) = P1(x1, x2);
− if g = P (x1, x2) and either I = P1 ⊑ P− or P−

1 ⊑ P , then
gr(g, I) = P1(x2, x1).

In Figure 2, we provide the algorithm PerfectRef, which reformulates
a conjunctive query taking into account the PIs of a TBox T .

In the algorithm, q[g/g′] denotes the conjunctive query obtained
from q by replacing the atom g with a new atom g′. Furthermore, τ
is a function that takes as input a conjunctive query q and returns
a new conjunctive query obtained by replacing each occurrence of an
unbound variable in q with the symbol . Finally, reduce is a function
that takes as input a conjunctive query q and two atoms g1 and g2
occurring in the body of q, and returns a conjunctive query q′ obtained
by applying to q the most general unifier between g1 and g2. We point
out that, in unifying g1 and g2, each occurrence of the symbol has to
be considered a different unbound variable. The most general unifier
substitutes each symbol in g1 with the corresponding argument in
g2, and vice-versa (obviously, if both arguments are , the resulting
argument is ).

Informally, the algorithm first reformulates the atoms of each con-
junctive query q ∈ PR′, and produces a new query for each atom
reformulation (step (a)). Roughly speaking, PIs are used as rewriting
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rules, applied from right to left, which allow one to compile away in
the reformulation the intensional knowledge (represented by T ) that is
relevant for answering q. At step (b), for each pair of atoms g1, g2 that
unify and occur in the body of a query q, the algorithm computes the
conjunctive query q′ = reduce(q, g1, g2). Thanks to the unification per-
formed by reduce, variables that are bound in q may become unbound
in q′. Hence, PIs that were not applicable to atoms of q, may become
applicable to atoms of q′ (in the next executions of step (a)). Notice
that the use of τ is necessary in order to guarantee that each unbound
variable is represented by the symbol .

EXAMPLE 33. Consider the query

q(x) ← TeachesTo(x, y),TeachesTo( , y)

over the TBox of Example 1. In such a query, the atoms
TeachesTo(x, y) and TeachesTo( , y) unify, and by executing
reduce(q,TeachesTo(x, y),TeachesTo( , y)), we obtain the atom
TeachesTo(x, y). The variable y is unbound, and therefore the function
τ replaces it with . Now, the PI Professor ⊑ ∃TeachesTo can be
applied to TeachesTo(x, ), whereas, before the reduction process, it
could not be applied to any atom of the query.

The following lemma shows that the algorithm PerfectRef termi-
nates, when applied to a conjunctive query and a DL-LiteR TBox.

LEMMA 34. Let T be a DL-LiteR TBox, and let q be a conjunctive
query over T . Then, the algorithm PerfectRef (q, T ) terminates.

Proof. Termination of PerfectRef, for each q and T in input,
immediately follows from the following facts:

1. The maximum number of atoms in the body of a conjunctive query
generated by the algorithm is equal to the length of the initial
query q. Indeed, in each iteration, a query atom is either replaced
with another one, or the number of atoms in the query is reduced;
hence, the number of atoms is bounded by the number of atoms in
the query. The length of the query is less than or equal to n, where
n is the query size, i.e., n is proportional to the number of atoms
and the number of terms occurring in the query.

2. The set of terms that occur in the conjunctive queries generated by
the algorithm is equal to the set of variables and constants occurring
in q plus the symbol , hence such a set has cardinality less than
or equal to n+ 1, where n is the query size.
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3. As a consequence of the above point, the number of different atoms
that may occur in a conjunctive query generated by the algorithm
is less than or equal to m · (n + 1)2, where m is the number of
predicate symbols (concept or role names) that occur either in the
TBox or in the query.

4. The algorithm does not drop queries that it has generated.

The above points 1 and 3 imply that the number of distinct conjunctive
queries generated by the algorithm is finite, whereas point 4 implies
that the algorithm does not generate a query more than once, and
therefore PerfectRef terminates. Precisely, the number of distinct con-
junctive queries generated by the algorithm is less than or equal to
(m·(n+1)2)n, which corresponds to the maximum number of executions
of the repeat–until cycle of the algorithm.

EXAMPLE 35. Referring to the DL-Litecore TBox T in Example 1,
consider the conjunctive query q:

q(x) ← TeachesTo(x, y),HasTutor(y, )

asking for professors that teach to students that have a tutor.
Let us analyze the execution of the algorithm PerfectRef(q, T ). At

the first execution of step (a), the algorithm inserts in PR the new
query

q(x) ← TeachesTo(x, y),Student(y)

by applying to the atom HasTutor(y, ) the PI Student ⊑ ∃HasTutor .
Then, at a second execution of step (a), the query

q(x) ← TeachesTo(x, y),TeachesTo( , y)

is added to PR, according to application of the PI ∃TeachesTo− ⊑
Student to the atom Student(y). Since the two atoms of the second
query unify, step (b) of the algorithm inserts the query

q(x) ← TeachesTo(x, )

into PR. Notice that the variable y is unbound in the new query, hence
it has been replaced by the symbol . At a next iteration, step (a)
produces the query

q(x) ← Professor(x)

by applying Professor ⊑ ∃TeachesTo to TeachesTo(x, ), and then, at
a further execution of step (a), it generates the query

q(x) ← HasTutor( , x)
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by applying ∃HasTutor− ⊑ Professor to Professor(x). The set consti-
tuted by the above five queries and the original query q is then returned
by the algorithm.

EXAMPLE 36. As a further example, consider now the DL-
LiteR TBox T ′ obtained from T by adding the inclusion assertion
HasTutor− ⊑ TeachesTo, and the conjunctive query q′ defined as
follows:

q′(x) ← Student(x)

Then, the result of PerfectRef(q′, T ′) is the union of:

q′(x) ← Student(x)
q′(x) ← TeachesTo( , x)
q′(x) ← HasTutor(x, )

Notice that, without considering the new inclusion assertion between
roles, we would have obtained only the union of the first two conjunctive
queries as result of the algorithm PerfectRef(q′, T ).

We note that the union of conjunctive queries produced by Perfec-

tRef is not necessarily minimal, i.e., it may contain pairs of conjunctive
queries that are one contained into the other. Though this does not
affect the worst-case computational complexity, for practical purposes
this set of queries can be simplified, using well-known minimization
techniques for relational queries.

5.2. Query evaluation

In order to compute the answers to q over the KB K = 〈T ,A〉, we need
to evaluate the set of conjunctive queries PR produced by the algorithm
PerfectRef over the ABox A considered as a relational database.

In Figure 3, we define the algorithm Answer that, given a KB K and
a union of conjunctive queries Q of arity n, computes ans(Q,K). The
following theorem shows that the algorithm Answer terminates, when
applied to a union of conjunctive queries and a DL-LiteR TBox.

THEOREM 37. Let K = 〈T ,A〉 be a DL-LiteR KB, let Q be a union
of conjunctive queries. Then, the algorithm Answer(Q,K) terminates.

Proof. Termination of Answer(Q,K) follows straightforwardly from
Lemma 16 and Lemma 34, which respectively establish termination
of algorithms Consistent(K) and PerfectRef (q, T ), for each conjunctive
query q ∈ Q.
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Algorithm Answer(Q,K)
Input: UCQ Q, KB K = 〈T ,A〉
Output: ans(Q,K)
if not Consistent(K)
then return AllTup(Q,K)

else return (
⋃

qi∈Q

PerfectRef(qi, T ))db(A);

Figure 3. The algorithm Answer

EXAMPLE 38. Let us consider again the query of Example 35

q(x) ← TeachesTo(x, y),HasTutor(y, )

expressed over the KB K = 〈T ,A〉, where A contains the assertions:

Student(John), HasTutor(John,Mary), TeachesTo(Mary,Bill).

By executing Answer(q,K), since K is satisfiable (see Section 3), it ex-
ecutes PerfectRef(q, T ), which returns the union of conjunctive queries
described in Example 35. Let Q be such a query, then it is easy to see
that Qdb(A) is the set {Mary}.

Let us now consider the query

q′(x) ← Student(x),

expressed over the KB K′ = 〈T ′,A′〉, where T ′ is as in Example 36,
and A′ contains the assertions

HasTutor(John,Mary), TeachesTo(Mary,Bill).

Obviously, K′ is satisfiable, and by executing Answer(q′,K′) we obtain
the answer set {John,Bill} by the evaluation of the union of conjunctive
queries returned by PerfectRef(q′, T ′), and which we have described in
Example 36. Notice that, without considering the new inclusion asser-
tion between roles, we would have obtained only {Bill} as answer to the
query.

5.3. Correctness

We now prove correctness of the above described query answering tech-
nique. As discussed in the previous section, from Theorem 29 it follows
that query answering can in principle be done by evaluating the query
over the model can(K). However, since can(K) is in general infinite, we
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obviously avoid the construction of can(K). Rather, as we said before,
we are able to compile the TBox into the query, thus simulating the
evaluation of the query over can(K) by evaluating a finite reformulation
of the query over the ABox considered as a database.

LEMMA 39. Let T be a DL-LiteR TBox, q a conjunctive query
over T , and PR the union of conjunctive queries returned by
PerfectRef(q, T ). For every DL-LiteR ABox A such that 〈T ,A〉 is

satisfiable, ans(q, 〈T ,A〉) = PRdb(A).

Proof. We first introduce the preliminary notion of witness of a tuple
of constants with respect to a conjunctive query. Given a DL-LiteR
knowledge base K = 〈T ,A〉, a conjunctive query q(~x) ← conj (~x, ~y)
over K, and a tuple ~t of constants occurring in K, a set of membership
assertions G is a witness of ~t w.r.t. q if there exists a substitution σ
from the variables ~y in conj (~t, ~y) to constants in G such that the set of
atoms in σ(conj (~t, ~y)) is equal to G. In particular, we are interested in
witnesses of a tuple ~t w.r.t. a query q that are contained in chase(K).
Intuitively, each such witness corresponds to a subset of chase(K) that
is sufficient in order to have that the formula ∃~y.conj (~t, ~y) evaluates
to true in the canonical intepretation can(K), and therefore the tuple
~t = ~tcan(K) belongs to qcan(K). More precisely, we have that ~t ∈ qcan(K)

iff there exists a witness G of ~t w.r.t. q such that G ⊆ chase(K). The
cardinality of a witness G, denoted by |G|, is the number of membership
assertions in G.

Since 〈T ,A〉 is satisfiable, by Theorem 29, ans(q, 〈T ,A〉) = qcan(K),

and, by Theorem 31, PRdb(A) =
⋃

q̂∈PR q̂
db(A), where PR is the union

of conjunctive queries returned by PerfectRef(q, T ). Consequently, to
prove the claim it is sufficient to show that

⋃

q̂∈PR q̂
db(A) = qcan(K).

“⇐” We have to prove that q̂db(A) ⊆ qcan(K), for each q̂ ∈ PR. We
initially consider the conjunctive queries qi and qi+1, such that qi+1 is
obtained from qi by means of step (a) of the algorithm PerfectRef, and

show that q
can(K)
i+1 ⊆ q

can(K)
i . Let ~t be a tuple of constants occurring

in K such that ~tcan(K) ∈ q
can(K)
i+1 . Then, it follows that there exists

G ⊆ can(K) such that G is a witness of ~t w.r.t. qi+1. Let us assume that
qi+1 is obtained from qi by applying step (a) when the positive inclusion
assertion I of T is of the form A1 ⊑ A, i.e., qi+1 = qi[A(x)/A1(x)] (the
proof when I is of the other forms listed in Definition 32 is analogous).
Then, there exists a membership assertion in G to which the PI A1 ⊑ A
is applicable, which implies that there exists a witness of ~t w.r.t. qi con-

tained in chase(K). Therefore, ~tcan(K) ∈ q
can(K)
i . Consider now the case

in which qi+1 is obtained from qi by applying step (b) of the algorithm,
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i.e., qi+1 = τ(reduce(qi, g1, g2)), where g1, g2 are two atoms belonging
to qi such that g1 and g2 unify. It is easy to see that in such a case

G is also a witness of ~t w.r.t. qi, and therefore ~tcan(K) ∈ q
can(K)
i . Since

each query of PR is either q or a query obtained from q by repeatedly
applying steps (a) and (b) of the algorithm PerfectRef, it follows that
for each q̂ ∈ PR, q̂can(K) ⊆ qcan(K), by repeatedly applying the property
(qi+1)

can(K) ⊆ (qi)
can(K). Thus, we have shown that q̂db(A) ⊆ q̂can(K) for

each conjunctive query q̂ ∈ PR.

“⇒” We have to show that for each tuple ~t ∈ qcan(K), there exists
q̂ ∈ PR such that ~t ∈ q̂db(A). First, since ~t ∈ qcan(K), it follows that
there exists a finite number k such that there is a witness Gk of ~t
w.r.t. q contained in chasek(K). Moreover, without loss of generality,
we can assume that every rule cr1, cr2, cr3, cr4, and cr5 used in
the construction of chase(K) is necessary in order to generate such a
witness Gk: i.e., chasek(K) can be seen as a forest (set of trees) where:
(i) the roots correspond to the membership assertions of A; (ii) there
are exactly k edges, where each edge corresponds to an application of a
rule; (iii) each leaf is either also a root or a membership assertion in Gk.
In the following, we say that a membership assertion f is an ancestor of
a membership assertion f ′ in a set of membership assertions S, if there
exist f1, . . . , fn in S, where f1 = f and fn = f ′, such that, for each
2 ≤ i ≤ n, fi can be generated by applying a chase rule to fi−1. We
also say that f ′ is a successor of f . Furthermore, for each i ∈ {0, . . . , k},
we denote with Gi the pre-witness of ~t w.r.t. q in chasek(K), defined as
follows:

Gi = { f ∈ chasei(K) | there exists f ′ ∈ Gk s.t. f is an ancestor of f ′

in chasek(K) and there exists no successor of f in chasei(K)
that is an ancestor of f ′ in chasek(K) }

Now we prove by induction on i that, starting from Gk, we can “go
back” through the rule applications and find a query q̂ in PR such that
the pre-witness Gk−i of ~t w.r.t. q in chasek−i(K) is also a witness of ~t
w.r.t. q̂. To this aim, we prove that there exists q̂ ∈ PR such that Gk−i

is a witness of ~t w.r.t. q̂ and |q̂| = |Gk−i|, where |q̂| indicates the number
of atoms in the conjunctive query q̂. The claim then follows for i = k,
since chase0(K) = A.

Base step: There exists q̂ ∈ PR such that Gk is a witness of ~t w.r.t.
q̂ and |q̂| = |Gk|. This is an immediate consequence of the membership
assertions that: (i) q ∈ PR; (ii) PR is closed with respect to step (b)
of the algorithm PerfectRef. Indeed, if |Gk| < |q| then there exist two
atoms g1, g2 in q and a membership assertion f in Gk such that f and g1
unify and f and g2 unify, which implies that g1 and g2 unify. Therefore,
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by step (b) of the algorithm, it follows that there exists a query q1 ∈ PR
(with q1 = reduce(q, g1, g2)) such that Gk is a witness of ~t w.r.t. q1 and
|q1| = |q| − 1. Now, if |Gk| < |q1|, we can iterate the above argument,
thus we conclude that there exists q̂ ∈ PR such that Gk is a witness of
~t w.r.t. q̂ and |q̂| = |Gk|.

Inductive step: suppose that there exists q̂ ∈ PR such that Gk−i+1

is a witness of ~t w.r.t. q̂ and |q̂| = |Gk−i+1|. Let us assume that
chasek−i+1(K) is obtained by applying cr2 to chasek−i(K) (the proof is
analogous for rules cr1, cr3, cr4, and cr5). This means that a PI of the
form A ⊑ ∃P 8, where A is an atomic concept and P is an atomic role,
is applied in chasek−i(K) to a membership assertion of the form A(a),
such that there does not exists d ∈ ΓC such that P (a, d) ∈ chasek−i(K).
Therefore, chasek−i+1(K) = chasek−i(K) ∪ P (a, an), where an ∈ ΓC

follows lexicographically all constants occurring in chasei(K).
Since an is a new constant of ΓC , i.e., a constant not occurring

elsewhere in Gk−i+1, and since |q̂| = |Gk−i+1|, it follows that the atom
P (x, ) occurs in q̂. Therefore, by step (a) of the algorithm, it follows
that there exists a query q1 ∈ PR (with q1 = q̂[P (x, )/A(x)]) such
that Gk−i is a witness of ~t w.r.t. q1.

Now, there are two possible cases: either |q1| = |Gk−i|, and in this
case the claim is immediate; or |q1| = |Gk−i| + 1. This last case arises
if and only if the membership assertion A(a) to which the rule cr2 is
applied is both in Gk−i and in Gk−i+1. This implies that there exist two
atoms g1 and g2 in q1 such that A(a) and g1 unify and A(a) and g2 unify,
hence g1 and g2 unify. Therefore, by step (b) of the algorithm (applied
to q1), it follows that there exists q2 ∈ PR (with q2 = reduce(q1, g1, g2))
such that Gk−i is a witness of ~t w.r.t. q2 and |q2| = |Gk−i+1|, which
proves the claim.

Based on the above property, we are finally able to establish
correctness of the algorithm Answer.

THEOREM 40. Let K = 〈T ,A〉 be a DL-LiteR KB, Q a union of con-
junctive queries, and ~t a tuple of constants in K. Then, ~t ∈ ans(Q,K)
if and only if ~t ∈ Answer(Q,K).

Proof. In the case where K is satisfiable, the proof follows immediately
from Lemma 39 and Theorem 31. In the case where K is not satisfi-
able, it is immediate to verify that the set AllTup(Q,K) returned by
Answer(Q,K) corresponds to ans(Q,K), according to the semantics of
queries given in Section 2.

8 The other execution of cr2 is the case when I = A ⊑ ∃P−, which is analogous.
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As an immediate corollary of the above properties, it follows that
the problem of answering unions of conjunctive queries over satisfiable
DL-LiteR KBs is FOL-reducible. Moreover, it is easy to see that such a
FOL-reducibility also extends to the case of arbitrary (both satisfiable
and unsatisfiable) DL-LiteR KBs. Indeed, the whole query answering
task can be encoded into a single union of conjunctive queries, ob-
tained by adding to the query

⋃

qi∈Q PerfectRef(qi, T )) a finite number
of conjunctions encoding the fact that every tuple in AllTup(Q,K) is
in the answer set of the query if K is unsatisfiable. (For details on the
construction of such a query see e.g. [10], which defines an analogous
encoding in the context of relational database integrity constraints.)
We therefore get the following theorem.

THEOREM 41. Answering unions of conjunctive queries in DL-LiteR
is FOL-reducible.

5.4. Computational complexity

We first establish complexity of the algorithm PerfectRef.

LEMMA 42. Let T be a DL-LiteR TBox, and q a conjunctive query
over T . The algorithm PerfectRef (q, T ) runs in time polynomial in the
size of T .

Proof. Let n be the query size, and let m be the number of predicate
symbols (concept or role names) that occur either in the TBox or in
the query. As shown in Lemma 34, the number of distinct conjunctive
queries generated by the algorithm is less than or equal to (m·(n+1)2)n,
which corresponds to the maximum number of executions of the repeat–
until cycle of the algorithm. Since m is linearly bound by the size of the
TBox T , while n does not depend on the size of T , from the above point
it follows that the algorithm PerfectRef (q, T ) runs in time polynomial
in the size of T .

Based on the above property, we are able to establish the complexity
of answering unions of conjunctive queries in DL-LiteR.

THEOREM 43. Answering unions of conjunctive queries in DL-LiteR
is PTime in the size of the TBox, and LogSpace in the size of the
ABox (data complexity).

Proof. The proof is an immediate consequence of the correctness
of the algorithm Answer for DL-LiteR, established in Theorem 40,
and the following facts: (i) Lemma 42, which implies that the query
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⋃

qi∈Q PerfectRef(qi, T ) can be computed in time polynomial in the size
of the TBox and constant in the size of the ABox (data complexity);
(ii) Theorem 26, which states the computational complexity of checking
satisfiability of DL-LiteR KBs; (iii) the fact that the evaluation of
a union of conjunctive queries over a database can be computed in
LogSpace with respect to the size of the database (since unions of
conjunctive queries are a subclass of FOL queries).

We are also able to characterize the combined complexity (i.e.,
the complexity w.r.t. the size of K and Q) of answering unions of
conjunctive queries in DL-LiteR.

THEOREM 44. Answering unions of conjunctive queries in DL-LiteR
is NP-complete in combined complexity.

Proof. To prove membership in NP, observe that a version of the
algorithm PerfectRef that nondeterministically returns only one of the
conjunctive queries belonging to the reformulation of the input query,
runs in nondeterministic polynomial time in combined complexity, since
every query returned by PerfectRef can be generated after a polynomial
number of transformations of the initial conjunctive query (i.e., after a
polynomial number of executions of steps (a) and (b) of the algorithm).
This allows the corresponding nondeterministic version of the algorithm
Answer to run in nondeterministic polynomial time when the input is
a boolean query. NP-hardness follows from NP-hardness of conjunctive
query evaluation over relational databases.

Summarizing, the above results show a very nice computational
behavior of queries in DL-LiteR: reasoning in DL-LiteR is compu-
tationally no worse than standard conjunctive query answering (and
containment) in relational databases.

6. Query answering in DL-LiteF

In this section, we discuss query answering in DL-LiteF , and analyze
its computational complexity. In a nutshell, the technique for query
answering closely resembles that for DL-LiteR, hence, it is also based on
reformulating the query based on the TBox assertions. The differences
with respect to the case of DL-LiteR are the following. (i) On the
one hand, the PIs that can appear in a DL-LiteF TBox are just a
subset of those allowed for a DL-LiteR TBox, namely inclusions of a
basic concept in a concept, but no role inclusions. As a consequence,
the reformulation rules that can be applied to the atoms of the query
are just a subset of those for DL-LiteR in Definition 32. (ii) On the
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other hand, a DL-LiteF TBox may contain functionality assertions,
which may interact with the inclusion assertions in the TBox. However,
this interaction is only of a limited form. Indeed, as already shown
in Lemma 8, if a functionality assertion (funct R) is satisfied in the
interpretation db(A) corresponding to the ABox A of a KB K, then
(funct R) is also satisfied in the canonical interpretation can(K). Hence,
(the simplified form of) the reformulation technique of DL-LiteR can
also be applied to DL-LiteF query answering, provided that we take
into account also functionality assertions when we check satisfiability
of the knowledge base. We now show this formally.

Given a DL-LiteF KB K = 〈T ,A〉 and a conjunctive query q, the
reformulation PR of q is computed, just as for DL-LiteR, by the al-
gorithm PerfectRef, considering that inclusion assertions between roles
are not present in T , and hence the rules in Definition 32 for such
inclusions assertions will never be applied.

Similarly, in order to compute the answer ans(Q,K) to the union
of conjunctive queries Q over a DL-LiteF KB K, we can simply invoke
Answer on Q and K, noticing that now the satisfiability check takes
into account also functionality assertions in K. It is easy to see that
also in the case when K is a DL-LiteF KB the algorithm Answer(Q,K)
terminates (cf. Theorem 37).

The following theorem, which follows easily from the already proved
results, establishes that this way of proceeding is indeed correct.

THEOREM 45. Let K = 〈T ,A〉 be a DL-LiteF KB, Q a union of con-
junctive queries, and ~t a tuple of constants in K. Then, ~t ∈ ans(Q,K)
if and only if ~t ∈ Answer(Q,K).

Proof. In the case where K is not satisfiable, as for Theorem 40, it is
immediate to verify that the set AllTup(Q,K) returned by Answer(Q,K)
corresponds to ans(Q,K), according to the semantics of queries given
in Section 2.

So, let us consider the case where K is satisfiable. Let TI be the set of
inclusion assertions in T , and let KI = 〈TI ,A〉. Note that KI is the DL-
LiteR KB obtained from K by removing all functionality assertions in
T . Let q be any conjunctive query. Since, by Definition 5, functionality
assertions do not play any role in the construction of chase(K), we
have that can(K) = can(KI), and hence qcan(K) = qcan(KI). Since K
is satisfiable also KI is satisfiable. Hence, by applying Theorem 29
to both K and KI , we get that ans(q,K) = qcan(K) = qcan(KI) =
ans(q,KI). Let PR be the union of the conjunctive queries returned by
PerfectRef(q, TI). Since KI = 〈TI ,A〉 is a DL-LiteR KB, by Lemma 39,
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we have that ans(q, 〈TI ,A〉) = PRdb(A), and hence also ans(q,K) =

PRdb(A).
By Theorem 31, and since Answer(Q,K) computes precisely the

union over all qi ∈ Q of the evaluations of PerfectRef(qi, TI) on db(A),
we get the claim.

As an immediate consequence of the theorem above, we get the
following property, which is the analogous of Theorem 41, given for
DL-LiteR.

THEOREM 46. Answering unions of conjunctive queries in DL-LiteF
is FOL-reducible.

As for computational complexity we get the same bounds as those
shown in Section 5.

THEOREM 47. Answering unions of conjunctive queries in DL-LiteF
is PTime in the size of the TBox, LogSpace in the size of the ABox
(data complexity), and NP-complete in combined complexity.

7. Related work

The DLs of the DL-Lite family are fragments of expressive DLs with
assertions and inverses studied in the 90’s (see [5] for an overview),
which are at the base of current ontology languages such as OWL,
and for which optimized automated reasoning systems such as Fact
and Racer have been developed. Indeed, one could use, off-the-shelf,
a system like Racer to perform KB satisfiability, instance checking,
and subsumption in the DLs of the DL-Lite family. Also, reasoning
with conjunctive queries in these DLs has been studied (see e.g., [16]),
although not yet implemented in systems. Unfortunately, the reasoning
procedures for these DLs are all ExpTime-hard, and more importantly
they are not tailored towards obtaining tight complexity bounds with
respect to data complexity. Conjunctive queries combined with DLs
were also considered in [20], but again data complexity was not the
main concern.

Alternative reasoning procedures that allow for clearly isolating data
complexity have recently been proposed, but how they will work in
practice still needs to be understood: in [24], a coNP upper bound for
data complexity of instance checking in an expressive DL has been
shown, and a polynomial fragment has been isolated, though it is
open whether the technique can be extended to deal efficiently with
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conjunctive queries; building on the technique proposed in [26], coNP-
completeness of answering conjunctive queries for an expressive DL
with assertions, inverse roles, and number restrictions (that generalize
functionality) has been shown in [27].

We observe that DL-LiteR can also capture (the DL-subset of)
RDFS9. In fact, the query answering technique for DL-LiteR works also
for full RDFS extended with participation constraints (i.e., inclusion
assertions with ∃R on the right-hand side), and one can show that in
this case query answering is indeed LogSpace. However, if we further
extend RDFS with functionality assertions, it can be shown that query
answering becomes NLogSpace-hard [14]. Finally, if we move from
RDFS to DLP [23], query answering becomes PTime-hard, as shown
in [14].

There has been a lot of work in DLs on the boundary between
polynomial and exponential reasoning. Such a work first concentrated
on DLs without the TBox component of the knowledge base, and led
to the development of simple DLs, such as ALN , that admit polyno-
mial instance checking. However, for minor variants of ALN , such as
ALE (where qualified existential is introduced and number restrictions
are dropped), FLE− (where additionally negated atomic concepts are
dropped), and ALU (where union is introduced and number restric-
tions are dropped), instance checking, and therefore conjunctive query
answering, is coNP-complete in data complexity [19]. Indeed, the ar-
gument used in the proof of coNP-hardness of ALE , FLE−, and ALU
in [19], immediately implies the following theorem.

THEOREM 48. Answering conjunctive queries is coNP-hard in data
complexity, if we extend DL-Litecore with one of the following features:
(1) either ∀R.A or ¬A can appear in the left-hand side of inclusion
assertions; (2) either ∀R.A or ¬A can appear as atoms in the query;
(3) union of concepts can appear in the right-hand side of inclusion
assertions.

If we allow for cyclic inclusion assertions in the TBox, then even sub-
sumption in CLASSIC and ALN becomes intractable [11]10. Observe
that the DLs of the DL-Lite family do allow for cyclic assertions without
falling into intractability. Indeed, we can enforce the cyclic propagation
of the existence of an R-successor using the two inclusion assertions
A ⊑ ∃R and ∃R− ⊑ A. The constraint imposed on a model by such
assertions is similar to the one imposed by the ALN cyclic assertion
A ⊑ ∃R ⊓ ∀R.A, though stronger, since it additionally enforces the

9 http://www.w3.org/TR/rdf-schema/
10 Note that a TBox with only acyclic inclusion assertions can always be

transformed into an empty TBox.
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second component of R to be typed by A. In order to keep tractability
even in the presence of cycles, the DL-Lite family imposes restrictions
on the use of the ∀R.C construct, which, if used together with inclusion
assertions, immediately would lead to intractability [11].

More recently languages equipped with qualified existential restric-
tions but no universal restrictions (even expressed in a disguised way,
as in DL-Lite, through inverse roles) have been studied. In particular,
in [4] it has been shown that for the basic language EL instance checking
is polynomial even in the presence of general (i.e., cyclic) inclusion
assertions, while extensions of the language lead easily to intractability.
Conjunctive query answering in EL has not been studied yet, how-
ever the results in [14] show us that such a service is PTime-hard in
data complexity and hence cannot be delegated to a relational DBMS
(actually such a lower bound holds already for instance checking).

Our work is also tightly related to work in databases on impli-
cation of integrity constraints (ICs) (see, e.g., [1, 22]) and on query
answering in the presence of ICs under an open world semantics (see,
e.g., [9, 3, 21, 8]). Rephrased as ICs, TBoxes in the DL-Lite family allow
for expressing special forms of inclusion dependencies (i.e., ISA, role
typing, and participation constraints), multiple keys on relations (i.e.,
functionality restrictions), and exclusion dependencies (i.e., disjointness
and non-participation constraints)11. The results that we report here
show that inclusion assertions allowed in the DL-Lite family form one of
the largest class of ICs for which query answering remains polynomial.

One might ask whether significant new extensions to the DLs of the
DL-Lite family are worth investigating. As shown in [14], one could
add intersection to the left-hand side of concept inclusion assertions,
without increasing the computational complexity of query answering.
Also other extensions are interesting. The most relevant are discussed
at the end of the next section. However, despite these cases, as also
shown in [14], the DLs of the DL-Lite family are essentially the maximal
DLs for which conjunctive query answering can be done in LogSpace,
and that allow one to delegate query evaluation to a relational en-
gine. In particular, the results reported in [14] imply that for the DL
that includes all the constructs of the two logics studied in the paper,
specifically, both inclusion assertions between roles and functionality
assertions, query answering is PTime-hard, thus ruling out the possi-
bility of using off-the-shelf relational technology for query processing.
In this sense, the DL-Lite family includes the first DLs specifically
tailored for effective query answering over large amounts of data.

11 This combination of ICs has only been studied in [8], but under a different
semantics with respect to the one adopted in DLs.
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8. Conclusions

We have presented the DL-Lite family, a new family of Description
Logics specifically tailored to capture conceptual data models and basic
ontology languages, while keeping the worst-case complexity of sound
and complete reasoning tractable. We have concentrated our attention
on two members of the family, namely, DL-LiteR and DL-LiteF . A
notable feature of both logics is to allow for a separation between TBox
and ABox reasoning. This separation enables an interesting modular-
ization of query answering: the part of the process requiring TBox
reasoning is independent of the ABox, and the part of the process
requiring access to the ABox can be carried out by an SQL engine.

Based on this idea, we have developed a reasoning system for DL-
LiteF , called QuOnto [2], whose main component is the query answering
algorithm. In QuOnto, the information regarding the instances of a
knowledge base are stored in a relational database. More precisely, given
a KB K = (T ,A), we represent the interpretation db(A) defined in
Section 2 by means of the relational database tabdb(A), that, for each

atomic concept A, stores Adb(A) in a unary relation tabA, and for each
atomic role P , stores P db(A) in a binary relation tabP . In this way,
by eploiting the well-known correspondence between FOL queries and
SQL queries, given a query q posed to K = (T ,A), the query computed
by PerfectRef(q, T ) is transformed into an equivalent SQL query to be
executed over tabdb(A). This allows us to take advantage of the query
optimizer that we find inside current DBMSs. Indeed, QuOnto has been
tested within a research project carried out jointly by the University
of Rome “La Sapienza” and the IBM Tivoli Laboratory, and the first
experiments show that our approach is extremely effective: not only
can we model complex domains in DL-LiteF , but it takes no more than
a few minutes to answer complex conjunctive queries over knowledge
bases with millions of instances.

As we have already said, the DLs of the DL-Lite family are essen-
tially the maximal DLs for which conjunctive query answering can be
done in LogSpace. Nevertheless, relatively interesting extensions to
both DL-LiteR and DL-LiteF exist that do not hamper the nice com-
putational properties of the two logics. The most significant extensions
are listed below.

1. The possibility of using conjunction in the concepts appearing in
the left-hand side of inclusion assertions (we indicate the presence
of such an extension by a subscript ⊓ in the name of the logic).

2. The possibility of using n-ary relations, together with suitable con-
structs to deal with them, in addition to the binary roles dealt
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Figure 4. The DL-Lite family of description logics

with in this paper (we indicate the presence of such an extension
by naming the logic DLR-LiteX instead of DL-LiteX).

3. The possibility of using negative assertions and soft constants in
unary predicates in the ABox. Note that these extensions pose new
requirements on the method for storing the ABox using a DBMS;
in particular, specific relations associated to negated concepts are
needed in order to correctly represent negative assertions.

4. The possibility of using together role inclusion assertions and func-
tionality assertions, with the limitation that functional roles are not
specialized, i.e., do not occur in the right-hand side of role inclusion
assertions.

5. The possibility of modeling attributes of concepts.

6. The possibility of modeling attributes of roles, as well as identifi-
cation constraints.

The logics resulting from extension 1 and also the combination of ex-
tensions 1 and 2 are studied in [14], while extension 3 is considered
in [18]. The logic combining extensions 4 and 5, called DL-LiteA, is
studied in [28], while the logic combining, in addition to extensions 4
and 5, also extension 6, here called DL-Lite+

A, is studied in [12, 15].
The above extensions, and the corresponding logics provide a com-

plete picture of the DL-Lite family. The logics of this family and their
mutual relationships are depicted in Figure 4. A picture analogous to
this figure can be obtained by replacing each logic DL-LiteX with its
variant DLR-LiteX equipped with n-ary relations.
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We point out that the technical development on DL-LiteR and DL-
LiteF presented in this paper constitutes the theoretical foundation for
all the logics in this family, as well as for the QuOnto system. We are
currently working on QuOnto in order to adapt it to the extensions
mentioned above. Fortunately, the query answering algorithms illus-
trated in this paper, which are the critical components of the reasoning
system, are not affected by the new features, and therefore remain valid.
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