
  1/14 

 
 

C3Part/Isofun User's guide 
 
 

Version v2.0 - Jan. 2011 
 

This documentation is still unfinished and needs polishing - feedback is welcome - 
 

1 Presentation .................................................................................................... 2 
1.1 Presentation ............................................................................................... 2 
1.2 System requirements ..................................................................................... 2 
1.3 Distribution ................................................................................................. 2 

2 Basic concepts ................................................................................................. 3 
2.1 Layered datagraph ........................................................................................ 3 
2.2 Spines and aggregators ................................................................................... 3 
2.3 Common connected components ....................................................................... 4 

3 Input file format ............................................................................................... 4 
3.1 Extended DIMACS format ................................................................................. 4 

3.1.1 the 'p' line ............................................................................................. 4 
3.1.2 the 'n' lines ............................................................................................ 4 
3.1.3 the 'e' lines ............................................................................................ 4 
3.1.4 the 'c' lines ............................................................................................ 5 

3.2 keywords for 'n' and 'e' lines ............................................................................. 5 
3.2.1 the 'color' keyword ................................................................................... 5 
3.2.2 the 'label' keyword ................................................................................... 7 
3.2.3 the 'comment' keyword .............................................................................. 7 
3.2.4 genome-oriented keywords ......................................................................... 7 
3.2.5 user defined keywords .............................................................................. 7 

4 Main program ................................................................................................... 8 
4.1 Running the main program manually ................................................................... 8 
4.2 program options ........................................................................................... 8 
4.3 Program output ........................................................................................... 10 

4.3.1 example 1: ........................................................................................... 10 
4.3.2 example 2: ........................................................................................... 11 

5 Shell scripts ................................................................................................... 13 

 
 
 
Contacts : 
 
Alain.Viari@inrialpes.fr 



  2/14 

 

1 Presentation 
 
1.1 Presentation 
 
The C3Part/Isofun package implements a generic approach to merge information from two 
or more graphs representing biological data, such as genomes, metabolic pathways or 
protein-protein interactions, in order to infer functional coupling between them. The 
theory is described in refs [1, 2] and will not be detailed here. This documentation is 
targeted to end users. It provides information about practical usage of the C3Part/Isofun 
program. A separate documentation (developer's guide) is (actually will-be) provided for 
developers, in order  to access the C3Part library directly from their own programs. 
 
References 
[1] Syntons, Metabolons and Interactons: an exact graph-theoretical approach for exploring 
neighbourhood between genomic and functional data. 
F. Boyer, A. Morgat, L. Labarre, J. Pothier and A. Viari 

Bioinformatics 21:4209-4215 (2005) 
 
[2] Multiple alignment of biological networks: A flexible approach.  
Y.-P. Deniélou, F. Boyer, M.-F. Sagot, and A. Viari.  
In CPM’09, volume 5542 of Lecture Notes in Computer Science, pages 173–185. 
Springer-Verlag, 2009. 
 
[3] Bacterial syntenies an exact approach with quorum.  
Y.-P. Deniélou, F. Boyer, M.-F. Sagot, and A. Viari.  
BMC Bioinformatics - submitted. 
 
[4]  Y.-P. Deniélou – PhD Thesis (in French, add reference and link). 
 
 
Notes 
• ref [1] corresponds to the (older) C3Part/C package, implemented in C and available at :  
http://www.inrialpes.fr/helix/people/viari/cccpart/index.html. This version is no longer 
supported and has been superseded by the current C3Part/Isofun package. 
• ref [2,3] corresponds to the current C3Part/Isofun package, implemented in Java.  This 
version provides several improvements over the C version. 
 
1.2 System requirements 
 
The C3Part/Isofun package is implemented in Java and therefore can be run on any system 
providing a Java machine (Unix, Windows). By default the package has been compiled 
using JDK 6 and need the Java 6 standard environment to run properly. However sources 
are also compatible with JDK 5. In this case you need to recompile the classes before using 
the program, see the README file at the distribution root for instructions. 
 
In addition the package also contains few shells scripts to help launching the main program 
and formatting its output. These scripts are only useful for Unix users (MacOSX, Linux, 
etc...). They require GNU gawk (> 3.1) and standard unix tools.  
 
1.3 Distribution 
 
README : readme file 



  3/14 

LICENSE : CeCILL (aka GPL) license file 
build.xml : ant configuration file for recompiling and unit testing 
doc/ : documentation (User's guide and Java API) 
lib/ : java libraries (Isofun.jar) 
samples/ : sample input graphs 
scripts/ : optional unix scripts (unix only) 
src/ : java sources 
tests/ : for program testing (unix only) 
 
Note: 
the 'tests' directory contain some global tests (for unix users only). 
To run these tests issue : 
  
cd tests 
./dotest 

 
this will run a couple of tests (about 10 to 15 minutes). 
Each output line should end with "ok". In case of error don't worry too much (the test script 
is not polished), but please drop me an email with a cut and paste of the output. 
 

2 Basic concepts 
 
We briefly recall here some basics concept needed to understand this documentation. 
more details can be found in ref [2]. 
 
2.1 Layered datagraph 
 
The biological networks to be studied are represented by a single graph, called a 'layered 
datagraph'. 
 

 
Figure 1  
 
In this a graph, each layer represents a biological network (genome, ppi, metabolic 
network) and interlayer edges (dotted lines in Figure 1) represent a  correspondence 
relation  between vertices of each network (note that this relation is not necessarily one-
to-one). 
 
2.2 Spines and aggregators 
 
$$to be finished$$ 
 



  4/14 

2.3 Common connected components 
 
$$to be finished$$ 
 
 

3 Input file format 
 
 
3.1 Extended DIMACS format 
 
The input file, describing the layered datagraph, is composed of 3 parts (that should 
appear in this order) :  
 
a single 'p' line // optional  - graph title 
a series of 'n' lines // mandatory - list of vertices 
a series of 'e' lines // mandatory - list of edges 
 
Each line is composed of a signel character key ('p', 'n' or 'e' respectively), followed by 
fields separated by any number of blanks or tab characters. 
 

3.1.1 the 'p' line 
 
the 'p' line is optional, it has been kept for backward compatibility with previous versions 
but is currently unused.  
 
p <title> 
 

3.1.2  the 'n' lines 
 
the 'n' lines are mandatory. They describe the layered-datagraph vertices. 
 
each 'n' line has the form :  
 
n [<keyword>=<value>]* 
 
<keyword> and <value> are described hereafter. 
 
Note: the vertices are (1-based) numbered in the same order as they appear in the input 
file. Hence the first vertex receives index 1, the second receives index 2 and so on. 
 

3.1.3  the 'e' lines 
 
the 'e' lines are mandatory. They describe the layered-datagraph (undirected) edges. 
 
each 'e' line has the form :  
 
e <index1> <index2> [<keyword>=<value>]* 
 
<index1> : the 1-based index for the first vertex 



  5/14 

<index2> : the 1-based index for the second vertex 
 
note: since the graph is undirected, there is no need to duplicate edges. Doing so will 
generate a warning. 
 

3.1.4   the 'c' lines 
 
In addition to 'p', 'n' and 'e' line, you may add any number of lines starting with 'c' to be 
used as comment lines. These lines are simply ignored by the reader. 
 
 
 

3.2  keywords for 'n' and 'e' lines 
 
There are two types of keywords :  builtin (i.e. predefined) keywords and user's keywords. 
 
builtin keywords are listed in the following table : 
 
Keyword For vertex For edges Description 
color mandatory optional color of vertex or edge (see below) 
label optional unused vertex label 
comment optional optional comment 
    
rank optional unused gene rank 
orientation optional unused gene orientation 
 

3.2.1  the 'color' keyword 
This keyword is mandatory for vertices ('n' lines). It denotes the layer to which the vertex 
(or edge) belongs. This is indicated as: 
 
color=<number> 
 
where <number> is a 1-based index of the layer (arbitrarily chosen) or '0' to indicate inter-
layer edges. 
 
 
example: 
The following 2-layers-datagraph  
 

 



  6/14 

may write as : 
 
n label=a1 color=1 
n label=a2 color=1 
n label=a3 color=1 
n label=b1 color=2 
n label=b2 color=2 
n label=b3 color=2 
e 1 2 color=1 
e 2 3 color=1 
e 4 6 color=2 
e 5 6 color=2 
e 1 4 color=0 
e 2 4 color=0  
e 2 5 color=0 
e 3 6 color=0 
 
Notes: 
 
- color=0 is reserved to edges (to denote the interlayer correspondence relation). Assigning 
color=0 to a vertex will raise an error. 
 
- you probably have noticed that specifying color for edges is somehow redundant. Indeed 
the color of an edge can be easily deduced from its connected vertices (i.e. the vertices 
color if vertices are of the same color or 0 if they are of different colors). Therefore 
specifying a color for edge is optional and the previous example may write as well as : 
 
n label=a1 color=1 
n label=a2 color=1 
n label=a3 color=1 
n label=b1 color=2 
n label=b2 color=2 
n label=b3 color=2 
e 1 2 
e 2 3 
e 4 6 
e 5 6 
e 1 4 
e 2 4 
e 2 5 
e 3 6 
 
 
- an alternate way  for specifying color is to use the 'colors' keyword instead of 'color', in 
the following way : 
 
colors=<binary> 
 
where <binary> is a string composed of 0's and at most one '1'. The position of the '1' 
(reading from right to left) indicates the color. The righmost position corresponds to color 
0. For instance  
 
colors=100 is equivalent to color=2 
colors=1     is equivalent to color=0 
 
This (ugly) form is provided only for backward compatibility with previous versions of 
C3Part but its usage is strongly discouraged. 
 



  7/14 

 
All other builtin keywords are optional  
 

3.2.2  the 'label' keyword 
 
This keyword is only useful for vertices. It allows to assign a label to a vertex. This label is 
further used by some scripts to produce more readable output. The syntax is : 
 
label=<alphanum>+  
 
where alphanum = [a-z] | [A-Z] | [0-9] | '_' 
 
Note: it is also possible to use blanks (or non alphanumeric characters) in label. To do so, 
the label value should be enclosed within double quotes 
 
label="<character>+" 
 
examples: 
 
n label=dnaA 
n label="my beautiful gene" 
 

3.2.3  the 'comment' keyword 
 
This keyword (that can be used both for vertices and edges) is mostly used to make the 
input file more friendly. The value is currently unused by the program. The syntax is : 
 
comment="<character>*"  
 

3.2.4  genome-oriented keywords 
 
In addition, for some genome-oriented applications, the following keywords can be 
assigned to vertices : 
 
rank=<number> 
orientation=+|- 
 
rank is the (1-based) rank of the gene on the chromosome 
orientation indicates the chromosome strand : '+' for direct strand and '-' for reverse 
'strand' 
 
These keywords are used by some options of the Isofun program (see below) 
 

3.2.5  user defined keywords 
 
Finaly, you may define your own keywords by : 
 
<key>=<value> 
 



  8/14 

key : <alphanum>+ 
value : <alphanum>+ | "<character>+" 
 
This is only useful if you are writing our own program (using the C3Part Java library). 
 
 
 

4 Main program 
 
4.1 Running the main program manually 
 
Once you have defined the input layered datagraph, you can run the main program by : 
 
java [jvm_options] -cp <dist_root>/lib/IsoFun.jar 
helix.graph.program.isofun.Main <input_file> [isofun_options] 

 
jvm_options : Java options. The most useful are : 

-Xms<size>        set initial Java heap size 
     -Xmx<size>        set maximum Java heap size 
 
dist_root : root of package distribution 
 
input_file : layered datagraph input file 
 
isofun_options : Isofun options. each option as the form : 
 
--option_name value 
 
options names and values are described in the following table 
 
4.2 program options 
 
 
Option_name Value Default Description 
algo    otf 

| otfql 
| otfqg 
 

otf various algos 
otf  : regular algo  
         without jokers, described in ref [2] 
otfql, otfqg : otf with quorum 
         still unpublished 
 
note: other values are still experimental 

    
minsize integer 2 ccc min size 

i.e. the minimum number of multinodes in 
the ccc 

mineltsize integer 2 ccc min element size 
i.e the minimum number of different 
datanodes in the ccc  

aggregator clique  
| star 
| cc 
| dense 
integer 

clique node aggregator - tell how datanodes are 
aggregated to form a spine. 
clique: spine is a clique 
star: spine is a star centered on the first 
color (see also --optimizer) 



  9/14 

cc: spine is a connected component 
dense: spine is a cc with edge density 'nn' % 
(nn is an integer in range 0, 100) 
 

maxstar integer 0 set the maximum number of jokers (for 
otfqg and otfql algos only) 

mincore integer 0 set the minimum number of core spines (for 
otfqg and otfql algos only) 

colors Integer+ keep all 
datagraph 
colors 

keep only specified colors for processing 
example: --colors 2 3 

    
optimizer off 

| local  
| global 
| user 
integer+ 

local select colors permutation optimization 
off: no optimizer (use colors in the same 
order as given in input) 
local: optimize colors locally (during split) 
global: optimize colors globally 
user: specify color order 
example: --colors user 1 3 2 
 

deltagap Integer+ 0 Perform delta closure(s) of datagraph before 
processing. you may provide a list of delta's, 
one foreach color. 
Example: --deltagap 0 5  

    
debug on | off off turn on/off debugger 
verbose on | off off turn on/off verbosity 
memdog on | off off try to report the actual memory used 

(slow down process) 
check on | off on check datagraph colors integrity before 

processing 
cleanup on | off on cleanup datagraph before processing 
reportgaps on | off off report on gene contiguity and gaps in 

syntons. This options requires the 'rank' and 
'orientation" keyword on vertices (genes). 

 
In addition the following options are still experimental and should be used with caution 
(please contact me before using them) 
 
deltaeps Integer+ -1 Subnetworks topology conservation 

default value (-1) means no conservation 
(default CCC behavior). A value of 0 means 
strict topology conservation (this may be 
used with genomes for instance to keep 
strict gene order). Other values should not 
(yet) be used. 

tandem on | off off Gene tandem pre-filtering. 
lookahead    allofcolor 

| allpath 
| oneway 
| twoways 

twoways Lookahead control (for otfql algo only) 

compressor   off 
| inset 

off Graph compression mode 

 



  10/14 

 
4.3 Program output 
 
By default the program produces output on <stdout> (console) in the following format : 
 
each connecton is introduced by a 'q' line followed by 'v' lines. the 'q' line describes the size 
and number of elements in the connecton. the 'v' lines describe the spines. 
 
q size n1 ... nk 
v label1 ... labelk rank1 ... rankk '|  |' 
 
k : number of colors (i.e. layers) 
size : number of multinodes in the connecton 
ni : number of different datanodes in the connecton 
labeli : label of datanode 
ranki: rank of datanode (if provided with the 'rank' keyword, else 0) 
 
note: the rank and '| |' fields are provided for backward compatibility with previous 
versions. 
 

4.3.1 example 1: 
 
the following 2-colors datagraph 
 

 
 
is described by the samples/simple1.poly input file  
 
c 
c datagraph 
c 
p simple_example 
n label=a1 color=1 
n label=a2 color=1 
n label=a3 color=1 
n label=a4 color=1 
n label=b1 color=2 
n label=b2 color=2 
n label=b3 color=2 
n label=b4 color=2 
e 1 2 color=1 
e 2 3 color=1 
e 3 4 color=1 
e 5 6 color=2 
e 6 7 color=2 
e 7 8 color=2 
e 1 5 color=0 



  11/14 

e 2 7 color=0 
e 3 6 color=0 
e 4 7 color=0 
e 4 8 color=0 
 
running : 
 
java -cp lib/IsoFun.jar helix.graph.program.isofun.Main 
samples/simple1.poly 

 
should produce the following output on console : 
 
q 5 4 4 
v a3 b2 0 0 |   |   
v a4 b3 0 0 |   |   
v a4 b4 0 0 |   |   
v a2 b3 0 0 |   |   
v a1 b1 0 0 |   | 
 
 
there is therefore one connecton, composed of 5 spines : (a1,b1), (a2,b3), (a3, b2), 
(a4,b3) and (a4,b4). 
 

4.3.2 example 2: 
 
the following 2-colors datagraph 
 

 
 
is described by the samples/simple2.poly input file  
 
c 
c datagraph 
c 
p simple_example 
n label=a1 color=1 
n label=a2 color=1 
n label=a3 color=1 
n label=a4 color=1 
n label=a5 color=1 



  12/14 

n label=b1 color=2 
n label=b2 color=2 
n label=b3 color=2 
n label=b4 color=2 
n label=b5 color=2 
e 1 2 color=1 
e 2 3 color=1 
e 3 4 color=1 
e 4 5 color=1 
e 6 7 color=2 
e 6 8 color=2 
e 7 10 color=2 
e 1 6 color=0 
e 2 7 color=0 
e 3 8 color=0 
e 4 9 color=0 
e 5 10 color=0 
 
and corresponds to the following multigraph : 
 

 
 
where each multinode 'i' correspond to the pair (ai, bi) 
 
running : 
 
java -cp lib/IsoFun.jar helix.graph.program.isofun.Main 
samples/simple2.poly 

 
should produce the following output on console : 
 
q 3 3 3 
v a2 b2 0 0 |   |   
v a1 b1 0 0 |   |   
v a3 b3 0 0 |   | 
 
there is therefore one connecton, composed of 3 spines : (a1,b1), (a2,b2) and (a3, b3). 
 
note that small connectons (size 1) are not printed out because of the --minsize and --
mineltsize options (default is 2). to print them change these options to 1 : 
 
java -cp lib/IsoFun.jar helix.graph.program.isofun.Main 
samples/simple2.poly --minsize 1 --mineltsize 1 

 
 
that should produce : 
 
q 3 3 3 
v a1 b1 0 0 |   |   



  13/14 

v a3 b3 0 0 |   |   
v a2 b2 0 0 |   |   
q 1 1 1 
v a4 b4 0 0 |   |   
q 1 1 1 
v a5 b5 0 0 |   | 
 
i.e. three connectons (two of them are of size 1) 
 
 

5 Shell scripts 
 
the 'scripts' directory contains a shell script called  'Y3P_Partition' 
 
it is intended for Unix users as an helper to run the java program. 
the call syntax is : 
 
scripts/Y3P_Partition input_file [isofun_options] 

 
This scripts basically do the same thing as running the program manually. The two main 
differences are : 
 
- the options are specified as '-option value' (instead of --option value) 
- the output is redirected to a new file called input_name.part containing the connectons 
in a more human readable format. 
 
Hence the previous examples can also be run as : 
 
scripts/Y3P_Partition samples/simple1.poly 

 
producing the 'simple1.part' file : 
 
XX 
XX CCC statistics : 
XX N = 1 
XX min = 5 
XX max = 5 
XX histogram: 
XX t 5 1 
XX 
XX Elements statistics : 
XX N = 1 
XX min = 4 
XX max = 4 
XX histogram: 
XX e 4 1 
XX 
XX Classes sorted by nodeSize : 
XX 
CL score=5 nodeSize=5 min[eltSize]=4 eltSize : 4 4  
VE a1 b1 0 0 |   |   
VE a4 b4 0 0 |   |   
VE a3 b2 0 0 |   |   
VE a2 b3 0 0 |   |   
VE a4 b3 0 0 |   |   
XX 
 



  14/14 

and  
 
scripts/Y3P_Partition samples/simple2.poly -minsize 1 -mineltsize 1 

 
priducing the 'simple2.part' file : 
 
XX 
XX CCC statistics : 
XX N = 3 
XX min = 1 
XX max = 3 
XX histogram: 
XX t 1 2 
XX t 3 1 
XX 
XX Elements statistics : 
XX N = 3 
XX min = 1 
XX max = 3 
XX histogram: 
XX e 1 2 
XX e 3 1 
XX 
XX Classes sorted by nodeSize : 
XX 
CL score=3 nodeSize=3 min[eltSize]=3 eltSize : 3 3  
VE a3 b3 0 0 |   |   
VE a1 b1 0 0 |   |   
VE a2 b2 0 0 |   |   
XX 
CL score=1 nodeSize=1 min[eltSize]=1 eltSize : 1 1  
VE a4 b4 0 0 |   |   
XX 
CL score=1 nodeSize=1 min[eltSize]=1 eltSize : 1 1  
VE a5 b5 0 0 |   |   
XX 
 


