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A (VERY) SIMPLE EXAMPLE

Data : x = (x1,...,2n), a Set of male birth-
weights.

Model : Underlying distribution is N(w,o3),
where o3 is known.

Objective : Estimate w.

Key quantity : the Likelihood function
Lik(w; x) = p(x|w) ox exp{—=—5(ZF — w)?},
20-0

where z is the sample mean.

Point estimate : wj;7, to max Lik(w; x);
here ’LDML = .

Interval estimate : 95% Confidence Interval
given by

7+ 1.9600/v/n.



Interpretation : the long-run (over many datasets)
chance that such a C.I. contains the true w is
0.95.

Popular misinterpretation : a probability of 0.95
can be attributed to the true w being covered
by the interval given this particular dataset.

The Bayesian approach provides interval es-
timates that do allow this interpretation, by
creating a density p(w|x).

The model and likelihood provide a p(x|w).
How to turn this around? Use Bayes’ Theo-
rem:

p(x|w)p(w)

p(x)
o p(x|w)p(w)

p(w|x)



What is p(w)? Called the prior density for w -
‘before’ the data - whereas p(w|x) is called the
posterior for w - ‘after’ the data.

Advantages

1. quantifiable prior knowledge can be incor-
porated;

2. different analysts provide different inferences.

Problematic issues :

1. we are combining two sorts of densities;

2. different analysts provide different inferences;

3. (possible computational problems).



BIRTHWEIGHTS EXAMPLE

Suppose, for prior, w ~ N(a,b?). Then

Pl o x5 5@ ~w) — (0 —a)?)

(o)
exp{ ! A)?}
OC Y — b}
2B2
where
n=_ a
A = 08x+fz
Bt
1 n 1
B~ 2@

Therefore, w|x ~ N(A, B?).
Point estimate : w = A.
95% Interval Est. : A+ 1.96B.

(If b - 0 then w — z, LE. — C.I)



MALE AND FEMALE BIRTHWEIGHTS

Suppose n birthweights x are recorded from
a mixture of males and females but nobody
notes which babies were males and which were
females; i.e. for each baby the sex-indicator is
missing.

Assume that the male and female birthweight
distributions are Gaussian, with the same known
variance o3 but with unknown and possibly dif-
ferent means wy; and wg. Also, assume that
the proportions of males and females in the
population are equal Then

p(x|w) o H[ eXD{——Q(:vz wyr)?}
90

T3 exp{— (xz wF)Q}]-
Uo
We might assume that, for priors,
p(w) = py(wpr)pr(wr),

where each of the factors on the RHS is a
Gaussian pdf.



In this case p(w|x) is not simple, and calcula-
tion of point and interval estimates is harder,
a common feature of contexts with incomplete
data.

(Note: the same is true for non-Bayesian infer-
ence - explicit formulae for ML estimates are
not available.)

What to do?

Maximum likelihood : use an iterative algo-
rithm.

Bayesian approach . for point estimates, e.d.
posterior modes, do as for ML; for other pur-
poses ‘approximate’ p(w|x) either through some
deterministic approximation or by simulating a
large number of realisations from p(w|x).



MORE ON THE BAYESIAN APPROACH:

Introduce missing data indicators

Z = (21,...,2n),

where z; = 1 if male and z; = 0O if female. Then

p(x,z|w) o H[eXD{—2—12(:ci—wM)2}]zi
0 %0

1 .
x [exp _ﬁ(g}z . ’LUF)Q}](]'_ZZ)'

%0
If the sex-indicators are known and indepen-
dent Gaussian priors are assumed for wj,; and
wr then the posterior densities are also inde-
pendent and Gaussian, with (hyper)parameters
that can be determined exactly.



Simulation approach:. choose an initial z and
iteratively simulate w and z from their full con-
ditional densities. The resulting equilibrium
distribution is the joint posterior for w and z
(Gibbs sampling).

Deterministic approach: propose a simple form
for the joint posterior for w and z and optimise
within that form, providing a so-called varia-
tional approximation for the joint posterior of
w and z, from which the marginal posterior for
w IS usually easily obtained.
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MORE ON THE VARIATIONAL APPROXI-
MATION

Suppose Q(w,z) defines an approximation to
p(w,z|x) and suppose we propose that @ takes
the factorised form

Q(w,z) = QwM(wM)QwF(wF) HQzZ(zz)a
i
where the factors are chosen to optimise

KL(Q.p) = [ Y Q log (Q/p),

the Kullback-Leibler Directed Divergence. If
independent Gaussian priors are chosen for wj,
and wp then Qw,, and Qw, are Gaussian, with
hyperparameters obtained from nonlinear equa-
tions.

This is a standard pattern for these variational
approximations.
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TOWARDS THE SUPPORT VECTOR MA-
CHINE

A REGRESSION MODEL

y; = f(z;) + s,

for . = 1,...,n, where y is the response, f is
the regression function, x are covariates and n
IS noise. Propose a formulation in which

f(@) = h(z)"w + wo,

where h(x) is a vector of basis functions.

How to choose/estimate (w,wg)? Define a
regularised risk function

R(w, wo) = 3" Afyi — b w — wo} + 2uTw,

where A is a loss function and A\ is a regulari-
sation parameter or tuning constant.

Point estimation: choose (w,wg) to min R(w, wg).
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Examples include linear regression (A(u) =
u?,\ = 0), ridge regression (A(u) = u?,\ > 0),
robust estimation, spline smoothing and ...

SUPPORT VECTOR MACHINES (SVM)

Here

A(u)

0 for |u| <e
lu| —e  for |u|l > ¢

Minimisation of R(w,wq) is explicit if A(u) =

u? and requires quadratic programming in the

SVM. The SVM solution takes the form
w = Zazh’('xz)a
i

for certain {«;}, many of which turn out to be
zero. The data points with nonzero «; are the
support vectors. Also

f(z) = Z a;h(z;) h(z) + wo,

with wg obtained from any SV.
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BAYESIAN APPROACH

Interpret R(w,wq) as -log p(w,wg|D), where D
denotes the data, {(y;,x;),t = ...,n}. Thus, we
interpret —%wTw as -log p(w,wg) and >, A{y;—

h(z;))Tw — wg} as -log p(D|w,wg).

Clearly, the (w, wg) that minimise R(w,wg) can
be interpreted as the posterior mode.

BAYESIAN INTERVAL ESTIMATES

If R(w,wq) IS quadratic then the equivalent
p(w,wg|D) is Gaussian and interval estimation
IS quite easy.

If R(w,wqg) is not quadratic, use simulation
or Laplace approximation, a Gaussian approx
based on quadratic Taylor expansion of R(w, wq)
about (w,wg).
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WHAT ABOUT )7

A IS a hyperparameter. A full Bayesian ap-
proach puts a hyperprior on A, but in many
contexts a value is ‘plugged in’, e.g. as fol-
lows.

Write the prior for (w,wqg) as p(w,wg|A) and
consider

p(DIN) = [ p(Dlw, wo)p(w, wolA) dw duwo,

called the marginal likelihood or the Type II
likelihood or the evidence. Choose for A the
maximiser X of p(D|\).

Calculation of the integral: easy if the inte-
grand corresponds to a Gaussian density for
(w,wp), but even then maximisation wrt X is
non-explicit; otherwise, use Laplace approxi-
mation to create a Gaussian integrand or use
a variational approximation.
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THE RELEVANCE VECTOR MACHINE (RVM)
(Tipping, 2000)

Write the model as

y =Y a;h(z)Th(z) + ag+n.

Choose A quadratic, corresponding to Gaus-
sian noise, and let 7 be the inverse of the vari-
ance of the noise. Consequence: p(a|D) is
Gaussian.

Crucial modification: in the prior, assume

a ~ N{0,diag(Mg, A1, -+, An)},

so that there is a hyperparameter for each
data-point.
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The marginal likelihood p(D|{\;},T) can be cal-
culated explicitly, but it involves inverting an
n X n matrix, not to mention numerical opti-
misation. However empirical work by Tipping
shows that many of the \;’s get very large, so
that the resulting data-point will not be a sup-
port vector; typically, the number of support
vectors with the RVM is much less than with
SVM, without degradation in performance.

Bishop and Tipping (2000) use variational ap-
proximation for ‘calculating’ the marginal like-
lihood.
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SOME EMPIRICAL RESULTS (Tipping)
REGRESSION

Support points for SVM/RVM

Dataset n SVM RVM

1 240 116 59
2 240 110 4
3 240 106 12
4 481 143 39
CLASSIFICATION

Support points for SVM/RVM

Dataset n SVM RVM
Pima Indians 200 109 4
USPS Digits 7291 2540 316
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COMMENTS COMPARING THE MCMC AND
DETERMINISTIC APPROACHES

In principle the MCMC is ‘exact’ given enough
computing power.

In principle the deterministic approaches are
not exact.

However the MCMC approach may be pro-
hibitive in very large-scale problems, and the
deterministic approximations may be adequate
In practice.

Also, if there are large amounts of data, the
deterministic approaches may provide ‘asymp-
totically respectable’ approximations - research
on this is in progress!

19



REFERENCES

BISHOP, C.M. and TIPPING, M.E. (2000).
Variational relevance vector machines. In 16th
Conf. Uncertainty in Artificial Intelligence (C.
Boutilier and M. Goldszmidt, eds.) 46—53.
Morgan Kaufmann, San Mateo, CA.

BURGES, C.J.C. (1998). A tutorial on sup-
port vector machines for pattern recognition.
Data Mining & Knowledge Discovery 2, 121—
167.

CHU, W., KEERTHI, S.S. and ONG, C.J. (2001).
Bayesian inference in support vector regres-
sion. Technical Report CD-01-15, Nat. Univ.
Singapore.

HASTIE, T., TIBSHIRANI, R. and FRIED-
MAN, J. (2001). Elements of Statistical Learn-
ing: Data Mining, Inference and Prediction.
Springer, New York.

20



KWOK, J. T.-Y. (2000). The evidence frame-
work applied to support vector machines. IEEE
Trans. Neural Networks 11 1162—-1173.

ROBERT, C.P. (19927). L’Analyse Statis-
tique Bayesienne. Economica, Paris.

SEEGER, M. (2000). Bayesian model selec-
tion for support vector machines, Gaussian pro-
cesses, and other kernel classifiers. In Ad-
vances in Neural Information Processing, Vol.12
(S.A. Solla, T.K. Leen and K.-R. Miiller, eds.).
MIT Press, Cambridge, MA.

TIPPING, M.E. (2000). The relevance vector
machine. In Advances in Neural Information
Processing, Vol.12 (S.A. Solla, T.K. Leen and
K.-R. Miiller, eds.). MIT Press, Cambridge,
MA.

TITTERINGTON, D.M. (2003). Bayesian meth-
ods for neural networks and related models.
Submitted for publication.



