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Abstract—This paper presents the design, implementation
and deployment of a simulation platform based on
distributed workflows. It supports the smooth integation of
existing software, e.g., Matlab, Scilab, Python, GmFOAM,
ParaView and user-defined programs. Additional featres
include the support for application-level fault-tolerance and
exception-handling, i.e., resilience, and the orcke&ated
execution of distributed codes on remote high-perfomance
clusters.
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l. INTRODUCTION

Large-scale simulation applications are becoming
standard in research laboratories and in the ind{{2].
Because they involve a large variety of existinf§veare
and terabytes of data, moving around calculatiomsdata
files is not a simple avenue. Further, software dath
often reside in proprietary locations and cannoinoved.
Distributed computing infrastructures are therefore
necessary [6, 8].

This paper details the design, implementation as@l u
of a distributed simulation platform. It is based a
workflow system and a wide-area distributed network
This infrastructure includes heterogeneous hardvaaic
software components. Further, the application codest
interact in a timely, secure and effective manner.
Additionally, because the coupling of remote handwand
software components are prone to run-time errors,
sophisticated mechanisms are necessary to handle
unexpected failures at the infrastructure and sydéwels.
This is also true for the coupled software thatticbuate to
large simulation applications. Consequently, sjpecif
management software is required to handle unexpecte
application and software behavior.

This paper addresses these issues. Section Il gives
detailed overview of the implementation using th&WL
workflow management system [4]. Section Ill is a
conclusion.
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Il.  WORKFLOW PLATFORM

A. The YAWL workflow management system

Workflows systems are the support of many e-Science
applications [1][6][8]. Among the most popular SIS
are Taverna, Kepler, Pegasus, Bonita and many ther
[11][15]. They complement scientific software ssitéke
Dakota, Scilab and Matlab in their ability to proei
complex application factories that can be sharedsed
and evolved. Further, they support the incremental
composition of hierarchic composite applications.
Providing a control flow approach, they also compdat
the usual dataflow approach used in programming
toolboxes. Another bonus is that they provide seaml
user interfaces, masking technicalities of distelol
programming and administrative layers, thus allgntine
users and experts to concentrate on their arciaseoést.

The OPALE project at INRIA Http://www-
opale.inrialpes.jris investigating the use of the workflow
management system for distributed multidiscipline
optimization [3]. The goal is to develop a resitien
workflow system for large-scale optimization apgations
[26]. It is based on extensions to the YAWL system
add resilience and remote computing facilities for
deployment on high-performance distributed
infrastructures [4]. This includes large-PC cluster
connected to broadband networks. It also includes
interfaces with the Scilab scientific computing Ibmx
[16] and the ProActive middleware [17].

Provided as an open-source software, YAWL is
implemented in Java. It is based on an Apache serve
using Tomcat and Apache's Derby relational database
system for persistence. YAWL is developed by the
University of Eindhoven (NL) and the University of
Brisbane (Australia). It runs on Linux, Windows and
MacOS platforms [25]. It allows complex workflows t
be defined and supports high-level constructs,(XQR-
and OR-splits and joins, loops, conditional confitolv
based on application variables values, composi&sta
parallel execution of multiple instances of tasksc)
through high-level user interfaces.



Formally, it is based on a sound and proven opmrali
semantics extending thevorkflow patterns of the
Workflow Management Coalition [21, 32], implemented
and proved by colored Petri nets. In contrast, rothe
workflow management systems which are based on the
Business Process Management Notation (BPMN) [27]
and the Business Process Execution Language (BPEL)
[28] are usually not supported by a proven formal
semantics. Further, they usually implement onlycijze
and /or proprietary versions of the BPMN and theeBP
specifications. There are indeed over 73 (suppgsedl
compliant) implementations of the BPMN, as of Jagua
2011, with several others currently being impleradnt
[27], in addition to more than 20 BPEL engine pdars.
However, BPEL supports the execution of long rugnin
processes required by simulation applications, with
compensation and undo actions for exception hagdlin
and fault-tolerance, as well as concurrent flowsl an
advance synchronization [28].
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Figure 1. Exception handler associated with a Wowkfask

Designed as an open platform, YAWL supports
natively interactions with external and existingtaare
and application codes written in any programming
languages, through shell scripts invocations, al as
distributed computing through Web Services.

It includes a native Web Services interface, custom
services invocations througtodelets as well as rules,
powerful exception handling facilities, and moniitgy of
workflow executions [13].

Further, it supports dynamic evolution of the
applications by extensions to the existing work#ow
throughworklets i.e., on-line inclusion of new workflow
components during execution [14].

It supports automatic and step-by-step executiothef
workflows, as well as persistence of (possibly ip8rt
executions of the workflows for later resuming,ngsits
internal database system. It also features exteresient
logging for later analysis, simulation, configuoati and
tuning of the application workflows.

Additionally, YAWL supports extensive organizations
modeling, allowing complex collaborative projectsda

teams to be defined with sophisticated privilege
management: access rights and granting capabiiititee
various projects members (organized as networkaghge
of roles and capabilities owners) on the project
workflows, down to individual components, e.g., tedi
launch, pause, restart and abort workitems, as aell
processing tools and facilities [25].

Current experiments include industrial testcases fo
automobile aerodynamics optimization, involving the
connection of the Matlab, Scilab, Python, ParaVeavd
OpenFOAM software to the YAWL platform [3]. The
YAWL workflow system is used to define the
optimization processes, include the testcases anttat
their execution: this includes reading the inputada
(StarCCM+ files), the automatic invocation of the
external software and automatic control passingvéet
the various application components, e.g., Matlafipts;
OpenFOAM, ParaView.

B. Exception handling

The exception handlers are automatically testethdy
YAWL workflow engine when the corresponding tasks a
invoked. This is standard in YAWL and constraint
checking can be activated and deactivated by thes (i4].

For example, if a particular workflow task WT
invokes an external EXEC code through a shell 8k
(Figure 1) using a standard YAWtodelet an exception
handler EX can be implemented to prevent from
undesirable situations, e.g., infinite loops, upoesive
programs, long network delays, etc. Applicationiatales
can be tested, allowing for very close monitorirfgtiee
applications  behavior, e.g., unexpected values,
convergence rates for optimization programs, tholesh
transgressions, etc.

A set of rules (RDR) is defined in a standard YAWL
exlet attached to the task WT and defines the exception
handler EX. It is composed here of a constraintckbe
CK, which is automatically tested when executing tifisk
WT. A compensation action CP triggered when a
constraint is violated and a notifier RE warning tiser of
the exception. This is used to implement resili26¢.

The constraint violations are defined by the userd
are part of the standard exception handling meshani
provided by YAWL. They can attach sophisticated
exception handlers in the form of speciégletsthat are
automatically triggered at runtime when particuleser-
defined constraints are violated. These constrairggart
of the RDR attached to the workflow tasks.

Resilience is the ability for applications to handl
unexpected behavior, e.g., erratic computationspiabal
result values, etc. It is inherent to the applaadi logic
and programming. It is therefore different fromteyss or
hardware errors and failures. The usual fault-tolee
mechanisms are therefore inappropriate here. Tindy o
cope with late symptoms, at best.



C. Resilience

Resilience is the ability for applications to handl
unexpected behavior, e.g., erratic computationspabal
result values, etc. It lies at the level of applma logic
and programming, not at systems or hardware |&vet.
usual fault-tolerance  mechanisms are therefore
inappropriate here. They only cope with very late
symptoms, at best.

New mechanisms are therefore required to handle log
discrepancies in the applications, most of whiah @mly
discovered at run-time [26].

It is therefore important to provide the users with
powerful monitoring features and complement therth wi
dynamic tools to evolve the applications accordimghe
erratic behavior observed.

This is supported here using the YAWL workflow
system so called “dynamic selection and exception
handling mechanism”. It supports:

e Application update using dynamically added rules
specifying new codes to be executed, based on
application data values, constraints and
exceptions.

e The persistence of these new rules to allow
applications to handle correctly future occurrences
of the new case.

*  The dynamic extension of these sets of rules.

¢ The definition of the new codes to be executed
using the framework provided by the YAWL
application specification tool: the new codes are
just new workflows included in the global
composite application specification.

e« Component workflows invoke external programs
written in any programming language through
shell scripts, custom service invocations and Web
Services.

In order to implement resilience, two particular

YAWL features are used:

* Ripple-down-rules (RDR) which are handlers for
exception management,

*  Worklets, which are actions to be taken when
exceptions or specific events occur.

The RDR define the decision process which is run to

decide which worklet to use in specific circumsksic

D. Distributed workflows

The distributed workflow is based on an interface
between the YAWL engine and the ProActive middleawvar
(Figure 2). At the application level, users provide
specification of the simulation applications usitige
YAWL Editor. It supports a high-level abstract déstion
of the simulation processes.
decomposed into components which can be other
workflows or basic workitems. The basic workitems
invoke executable tasks, e.g., shell scripts ortotos
services. These custom services are specific d@recut
units that call user-defined YAWL services. Thepsort
interactions with external and remote codes. Irs thi

These processes are

particular platform, the external services are ke
through the middleware interface.

This interface delegates the distributed execuiahe
remote tasks to the ProActive middleware [17]. The
middleware is in charge of the distributed resosirce
allocation to the individual jobs, their scheduliragnd the
coordinated execution and result gathering of the
individual tasks composing the jobs. It also takesharge
the fault-tolerance related to hardware, commuitinat
and system failures. The resilience, i.e., the iagfbn-
level fault-tolerance is handled using the rulescdbed in
the previous Sections.
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Figure 2. The OMD?2 distributed simulation platform

The remote executions invoke the middleware
functionalities through a Java API. The various oled
invoked are the ProActive Scheduler, the Jobs iiefin
module and the tasks which compose the jobs (Figure
The jobs are allocated to the distributed computing
resources based upon the scheduler policy. The task
dispatched based on the job scheduling and invaka J
executables, possibly wrapping code written in othe
programming languages, e.g., Matlab, Scilab, Pytloon
calling other programs, e.g., CATIA, STAR-CCM+,
ParaView, etc.
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Figure 3. The YAWL workflow and ProActive middlevesinterface.
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Optionally, the workflow can invoke local tasks ngi
shell scripts and remote tasks using Web Servitieese
options are standard in YAWL.



E. Secured access

In contrast with the use of middleware, there soa
need to preserve and comply with the reservatioth an
scheduling policies on the various HPC resourced an
clusters that are used. This is the case for ralfiang.,
IDRIS and CINES in France, and transnational HPC
centers, e.g., PRACE in Europe.

Because some of the software run on proprietary
resources and are not publicly accessible, sorvdeged
connections must also be implemented through secure
X11 tunnels to remote high-performance clustergufé
4). This also allows for fast access to softwaredimg
almost real-time answers, avoiding the constraints
associated with the middleware overhead. It altowal
running parallel optimization software on large HPC
clusters. In this perspective, a both-ways SSH dlinn
infrastructure has been implemented for the invonabf
remote optimization software running on high-
performance clusters and for fast result gathering.

Using the specific ports used by the communication
protocol (5000) and YAWL (8080), a fast communicati
infrastructure is implemented for remote invocatioh
testcase optimizers between several different ilmeston
a high-speed (40 GB/s) network at INRIA. This isaal
accessible through standard Internet connectioing tise
same secured tunnels.

Current tests have been implemented monitoring from
Grenoble in France a set of optimizers softwaraingion
HPC clusters in Sophia-Antipolis near Nice. The
optimizers are invoked as custom YAWL services from
the application workflow. The data and results are
transparently transferred through secured SSH tsinne

In addition t the previous interfaces, direct logetess
to numeric software, e.g., SciLab and OpenFOAM, is
available through the standard YAWL custom services
using the 8080 communication port and shell script
invocations. Therefore, truly heterogeneous antlibliged
environments can be built here in a unified wonkflo
framework.

F. Interfaces

To summarize, the simulation platform which is lshse
on the YAWL workflow management system for the
application specification, execution and monitoring
provides three complementary interfaces that silit a
potential  performance, security, portability and
interoperability requirements of the current soptéged
simulation environments.

These interfaces run concurrently and are used
transparently for the parallel execution of thefediént
parts of the workflows. These interfaces are:

e The direct access to numeric software through
YAWL custom services that invoke Java
executables and shell scripts that trigger numeric
software, e.g., OpenFOAM, and visualization tools,
e.g., ParaView

* The remote access to high-performance clusters
running parallel software, e.g., optimizers, throug

secured SSH tunnels, using remote invocations of
custom services

e The access to wide-area networks through a grid
middleware, e.g., ProActive, for distributed
resource reservation and job scheduling
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Figure 4. High-speed infrastructure for remote teluaccess.

G. Service orchestration

The YAWL system provides a native Web service
interface. Thisis a very powerful standard irded to
distributed service execution, although it mightpant
HPC concerns. This is the reason why a comprehessiy
of interfaces are provided by the platform (Sectien
above).

Combined altogether and offered to the users, rtbis
set of functionalities is intended to support most
application requirements, in terms of performance,
heterogeneity and standardization.

Basically, an application workflow specifies gerera
services orchestration. General services include het
only Web services, but also shell scripts, YAWL tous
services implemented by Java class executablebkighd
level operators, as defined in the workflow contitolw
patterns of the Workflow Management Coalition [3],2
e.g., AND-joins, XOR-joins, conditional branchirei¢.

The approach implemented here therefore not only
fulfills sound and semantically proved operators tiask
specification, deployment, invocation, executiond.an
synchronization. It also fulfills the requiremenfsr
heterogeneous distributed and HPC codes to be ydplo
and executed in a unified framework. This provides
users with high-level GUIs and hides the techriiesliof
distributed, and HPC software combination,
synchronization and orchestration.

Further, because resilience mechanisms are imptechen
at the application level (Section C), on top of the
middleware, network and OS fault-tolerance featuses
secured and fault resilient HPC environment is jgled,
based on high-level constructs for complex andelacale
simulations.

The interface between the workflow tasks and theahc
simulation codes can therefore be implemented ab We
Services, YAWL custom services, and shell scripts



through secured communication channels. This isigue
set of possibilities offered by our approach (Feyby.
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Figure 5. External services interfaces.

H. Dataflow and control flow

The dual requirements for the dataflow and corftoa/
properties are preserved. Both aspects are impoatah
address different requirements [6]. The contralvflzspect
addresses the need for user control over the vewvkfl
tasks execution. The dataflow aspect addressesedbé
for high-performance and parallel algorithms to be
implemented effectively.

The control flow aspect is necessary to provideuters
with global control over the synchronization ané@xion
of the various heterogeneous and remote softwaterdin
in parallel to contribute to the application resulthis is
natively supported by YAWL.

The dataflow aspect is also preserved here in two
complementary ways:

 the workflow data is transparently managed by the
YAWL engine to ensure the proper
synchronization, triggering and stopping of the
tasks and complex operators among the different
parallel branches of the workflows, e.g., AND jqins
OR and XOR forks, conditional branching. This
includes a unique YAWL feature called
“cancellation set” that refers to a subset of a
workflow that is frozen when another designated
task is triggered [3]

» the data synchronization and dataflow scheme
implemented by the specific numeric software
invoked remain unchanged using a separation of
concerns policy, as explained below

The various software with data dependencies that
execute based on dataflow control are wrappedexzate
YAWL workflow tasks, so that the workflow engineeto
not interfere with the dataflow policies they impient.

This allows high-performance concerns to be taken
into consideration along with the users concernd an
expectations concerning the sophisticated algogthm
associated with these programs.

Also, this preserves the global control flow appitoa
over the applications which is necessary for hgemeous
software to cooperate in the workflow.

As a bonus, it allows user interactions during the
workflow execution in order to cope with unexpected
situations. This would otherwise be very difficud
implement because when unexpected situations occur
while using a pure dataflow approach, it requitep@ing
the running processes or threads in the midst s§ipty
parallel and remote running calculations, whilesgbly
remote) running processes are also waiting forring
data produced by (possibly parallel and remoteatierr
predecessors in the workflow. This might causeatiable
situations even if the errors are due to rathepkravents,
e.g., hetwork data transfers or execution time-outs

Note that so far, because basic tasks cannot ldediv
into remote components in the workflow, the dataflo
control is not supported between remotely located
software. This also avoids large uncontrolled datasfers
on the underlying network. Thus, only collocatettsare,
i.e., using the same computing resources or runointhe
same cluster, can use dataflow control on the quifatf
They are wrapped by workflow tasks which are cdledo
by the YAWL engine as standard workflow tasks.

For example, the dataflow controlled codes CO ahd C
depicted Figure 5 are wrapped by the composite task
which is a genuine YAWL task that invokes a shetip
to trigger them.

Specific performance improvements can therefore be
expected from dataflow controlled sets of programs
running on large HPC clusters. This is fully conilgat
with the control flow approach implemented at the
application  (i.e., workflow) specification level.
Incidentally, this also avoids the streaming ofj&adata
collections of intermediate results through network
connections. It therefore alleviates bandwidth ewtign.

The platform interfaces are illustrated by Figure 5
Once the orchestration of local and distributedesots
specified at the application (workflow) level, thei
invocation is transparent to the user, whateverr the
localization.

I.  Experiments

The current testcases include vehicle aerodynamics
simulation (Figure 6) and air-conditioner pipes
optimization (Figure 7). The distributed and hegenmeous
platform is also tested with the Gmsh mesh generato
(http://geuz.org/gmsh) and the FAMOSA optimization
suite developed at INRIA by project OPALE [34].i#t
deployed on HPC clusters and invoked from remote
workflows running on Linux workstations.

FAMOSA is an acronym for Fully Adaptive
Multilevel Optimization Shape Algorithinand includes
C++ components for:

» CAD generation,

e mesh generation,

e domain patrtitioning,

e parallel CFD solvers using MPI, and
*  post-processors




The input is a design vector and the output istaoke
simulation results. The various components arekagdy
shell scripts. FAMOSA is currently tested by theAPS
Automotive Company and ONERA (the French National
Aerospace Research Office) for aerodynamics problem
solving.
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Figure 6. Vehicle mesh for aerodynamics simulaf®msh screenshot).

The various errors that are taken into accounthay t
resilience algorithm include run-time errors in g@vers,
inconsistent CAD and mesh generation files,
execution time-outs.

The FAMOSA components are here triggered by
remote shell scripts including PBS invocations éaich
one on the HPC cluster. The shell scripts are daablg
YAWL custom service invocations from the user
workflow running on the workstation.

Additionally, another experiment uses the distiéolut
simulation platform for testing the heterogeneity tioe
application codes running on various hardware and
software environments. It includes four remote cotimg
resources that are connected by a high-speed riet@oe
site is a HPC cluster. Another site is a standardnt
server. The two other sites are remote virtualized
computing resources running Windows and Linux
operating systems on different VirtualBox virtual
machines that interface the ProActive middleware.

and

I1l.  CONCLUSION

This paper presents an experiment for deploying a
distributed simulation platform on grids. It useaeawork
of high-performance computers connected by a
middleware layer. Users interact dynamically witie t
applications using a workflow management system. It
allows them to define, deploy and control the aggion
execution interactively.

In contrast with choreography of services, where
autonomous software interact in a controlled manber
where resilience and fault-tolerance are difficut
implement, the approach used here is an orchestrafi
heterogeneous and distributed software componéats t
interact in a dynamic way under the user contr8].[Zhis

allows the dynamic interaction in case of errord arratic
application behavior. This approach is also fully
compatible with both the dataflow and control flow
approaches which are often described as poorly atbig
[30, 31, 32] and are extensively used in numerforswe
platforms.

Because of the heterogeneity of the software and
resources, the platform also combines secured sdoes
remote HPC clusters and local software in a unified
workflow framework.

This approach is also proved to combine in an elega
way the dataflow control used by many HPC softvaare
the control flow approach required by complex and
distributed application execution and monitoring.

A significant bonus of this approach is that theras
can define and handle application failures at toekflow
specification level. This means that a new abstradayer
is introduced to cope with application-level erratsrun-
time. Indeed, these errors do not necessarily trésarh
programming and design errors. They may also résutt
unforeseen situations, data values and boundaitgmms
that were not envisaged at first. This is often ¢hse for
simulations, due to their experimental nature, ,e.g.
discovering the behavior of the system being sitedla

This provides support for resiliency using an
asymmetric checkpoint mechanism. This feature allfox
efficient handling mechanisms to restart only thoases of
the applications that are characterized by the suser
necessary for overcoming erratic behavior.

Further, this approach can be evolved dynamiciady;,
when the applications are running. This uses thmauchjc
selection and exception handling mechanism in tA@/Y
workflow system. It allows for new rules and new
exception handling to be added on-line if unexmkcte
situations occur.
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