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Abstract—This paper presents the design, implementation 
and deployment of a simulation platform based on 
distributed workflows. It supports the smooth integration of 
existing software, e.g., Matlab, Scilab, Python, OpenFOAM, 
ParaView and user-defined programs. Additional features 
include the support for application-level fault-tolerance and 
exception-handling, i.e., resilience, and the orchestrated 
execution of distributed codes on remote high-performance 
clusters. 
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I.  INTRODUCTION 

Large-scale simulation applications are becoming 
standard in research laboratories and in the industry [1][2]. 
Because they involve a large variety of existing software 
and terabytes of data, moving around calculations and data 
files is not a simple avenue. Further, software and data 
often reside in proprietary locations and cannot be moved.  
Distributed computing infrastructures are therefore 
necessary [6, 8]. 

This paper details the design, implementation and use 
of a distributed simulation platform. It is based on a 
workflow system and a wide-area distributed network. 
This infrastructure includes heterogeneous hardware and 
software components. Further, the application codes must 
interact in a timely, secure and effective manner. 
Additionally, because the coupling of remote hardware and 
software components are prone to run-time errors, 
sophisticated mechanisms are necessary to handle 
unexpected failures at the infrastructure and system levels. 
This is also true for the coupled software that contribute to 
large simulation applications. Consequently, specific 
management software is required to handle unexpected 
application and software behavior. 

This paper addresses these issues. Section II gives a 
detailed overview of the implementation using the YAWL 
workflow management system [4].  Section III is a 
conclusion. 

II. WORKFLOW PLATFORM 

A. The YAWL workflow management system 

Workflows systems are the support of many e-Science 
applications [1][6][8]. Among the most popular systems 
are Taverna, Kepler, Pegasus, Bonita and many others 
[11][15]. They complement scientific software suites like 
Dakota, Scilab and Matlab in their ability to provide 
complex application factories that can be shared, reused 
and evolved. Further, they support the incremental 
composition of hierarchic composite applications. 
Providing a control flow approach, they also complement 
the usual dataflow approach used in programming 
toolboxes. Another bonus is that they provide seamless 
user interfaces, masking technicalities of distributed, 
programming and administrative layers, thus allowing the 
users and experts to concentrate on their areas of interest. 

The OPALE project at INRIA (http://www-
opale.inrialpes.fr) is investigating the use of the workflow 
management system for distributed multidiscipline 
optimization [3]. The goal is to develop a resilient 
workflow system for large-scale optimization applications 
[26]. It is based on extensions to the YAWL system to 
add resilience and remote computing facilities for 
deployment on high-performance distributed 
infrastructures [4]. This includes large-PC clusters 
connected to broadband networks. It also includes 
interfaces with the Scilab scientific computing toolbox 
[16] and the ProActive middleware [17].  

Provided as an open-source software, YAWL is 
implemented in Java. It is based on an Apache server 
using Tomcat and Apache's Derby relational database 
system for persistence. YAWL is developed by the 
University of Eindhoven (NL) and the University of 
Brisbane (Australia). It runs on Linux, Windows and 
MacOS platforms [25]. It allows complex workflows to 
be defined and supports high-level constructs (e.g., XOR- 
and OR-splits and joins, loops, conditional control flow 
based on application variables values, composite tasks, 
parallel execution of multiple instances of tasks, etc) 
through high-level user interfaces.  



Formally, it is based on a sound and proven operational 
semantics extending the workflow patterns of the  
Workflow Management Coalition [21, 32], implemented 
and proved by colored Petri nets. In contrast, other 
workflow management systems which are based on the 
Business Process Management Notation (BPMN) [27] 
and the Business Process Execution Language (BPEL) 
[28] are usually not supported by a proven formal 
semantics. Further, they usually implement only specific 
and /or proprietary versions of the BPMN and the BPEL 
specifications. There are indeed over 73 (supposedly 
compliant) implementations of the BPMN, as of January 
2011, with several others currently being implemented 
[27], in addition to more than 20 BPEL engine providers. 
However, BPEL supports the execution of long running 
processes required by simulation applications, with 
compensation and undo actions for exception handling 
and fault-tolerance, as well as concurrent flows and 
advance synchronization [28].  

 

 
Figure 1. Exception handler associated with a workflow task 

 
Designed as an open platform, YAWL supports 

natively interactions with external and existing software 
and application codes written in any programming 
languages, through shell scripts invocations, as well as 
distributed computing through Web Services. 

It includes a native Web Services interface, custom 
services invocations through codelets, as well as rules, 
powerful exception handling facilities, and monitoring of 
workflow executions [13]. 

Further, it supports dynamic evolution of the 
applications by extensions to the existing workflows 
through worklets, i.e., on-line inclusion of new workflow 
components during execution [14]. 

It supports automatic and step-by-step execution of the 
workflows, as well as persistence of (possibly partial) 
executions of the workflows for later resuming, using its 
internal database system. It also features extensive event 
logging for later analysis, simulation, configuration and 
tuning of the application workflows.  

Additionally, YAWL supports extensive organizations 
modeling, allowing complex collaborative projects and 

teams to be defined with sophisticated privilege 
management: access rights and granting capabilities to the 
various projects members (organized as networked teams 
of roles and capabilities owners) on the project 
workflows, down to individual components, e.g., edit, 
launch, pause, restart and abort workitems, as well as 
processing tools and facilities [25].  

Current experiments include industrial testcases for 
automobile aerodynamics optimization, involving the 
connection of the Matlab, Scilab, Python, ParaView and 
OpenFOAM software to the YAWL platform [3]. The 
YAWL workflow system is used to define the 
optimization processes, include the testcases and control 
their execution: this includes reading the input data 
(StarCCM+ files), the automatic invocation of the 
external software and automatic control passing between 
the various application components, e.g., Matlab scripts, 
OpenFOAM, ParaView. 

B. Exception handling 

The exception handlers are automatically tested by the 
YAWL workflow engine when the corresponding tasks are 
invoked. This is standard in YAWL and constraint 
checking can be activated and deactivated by the users [4]. 

For example, if a particular workflow task WT 
invokes an external EXEC code through a shell script SH 
(Figure 1) using a standard YAWL codelet, an exception 
handler EX can be implemented to prevent from 
undesirable situations, e.g., infinite loops, unresponsive 
programs, long network delays, etc. Application variables 
can be tested, allowing for very close monitoring of the 
applications behavior, e.g., unexpected values, 
convergence rates for optimization programs, threshold 
transgressions, etc.    

A set of rules (RDR) is defined in a standard YAWL 
exlet attached to the task WT and defines the exception 
handler EX. It is composed here of a constraint checker 
CK, which is automatically tested when executing the task 
WT. A compensation action CP triggered when a 
constraint is violated and a notifier RE warning the user of 
the exception. This is used to implement resilience [26]. 

The constraint violations are defined by the users and 
are part of the standard exception handling mechanism 
provided by YAWL. They can attach sophisticated 
exception handlers in the form of specific exlets that are 
automatically triggered at runtime when particular user-
defined constraints are violated. These constraints are part 
of the RDR attached to the workflow tasks.  

Resilience is the ability for applications to handle 
unexpected behavior, e.g., erratic computations, abnormal 
result values, etc. It is inherent to the applications logic 
and programming. It is therefore different from systems or 
hardware errors and failures. The usual fault-tolerance 
mechanisms are therefore inappropriate here. They only 
cope with late symptoms, at best. 



C. Resilience 

Resilience is the ability for applications to handle 
unexpected behavior, e.g., erratic computations, abnormal 
result values, etc. It lies at the level of application logic 
and programming, not at systems or hardware level. The 
usual fault-tolerance mechanisms are therefore 
inappropriate here. They only cope with very late 
symptoms, at best. 

New mechanisms are therefore required to handle logic 
discrepancies in the applications, most of which are only 
discovered at run-time [26]. 

It is therefore important to provide the users with 
powerful monitoring features and complement them with 
dynamic tools to evolve the applications according to the 
erratic behavior observed. 

This is supported here using the YAWL workflow 
system so called “dynamic selection and exception 
handling mechanism”. It supports: 

• Application update using dynamically added rules 
specifying new codes to be executed, based on 
application data values, constraints and 
exceptions. 

• The persistence of these new rules to allow 
applications to handle correctly future occurrences 
of the new case. 

• The dynamic extension of these sets of rules. 
• The definition of the new codes to be executed 

using the framework provided by the YAWL 
application specification tool: the new codes are 
just new workflows included in the global 
composite application specification. 

• Component workflows invoke external programs 
written in any programming language through 
shell scripts, custom service invocations and Web 
Services. 

In order to implement resilience, two particular 
YAWL features are used: 

• Ripple-down-rules (RDR) which are handlers for 
exception management,  

• Worklets, which are actions to be taken when 
exceptions or specific events occur.  

The RDR define the decision process which is run to 
decide which worklet to use in specific circumstances. 

D. Distributed workflows 

The distributed workflow is based on an interface 
between the YAWL engine and the ProActive middleware 
(Figure 2). At the application level, users provide a 
specification of the simulation applications using the 
YAWL Editor. It supports a high-level abstract description 
of the simulation processes. These processes are 
decomposed into components which can be other 
workflows or basic workitems.  The basic workitems 
invoke executable tasks, e.g., shell scripts or custom 
services. These custom services are specific execution 
units that call user-defined YAWL services. They support 
interactions with external and remote codes. In this 

particular platform, the external services are invoked 
through the middleware interface. 

This interface delegates the distributed execution of the 
remote tasks to the ProActive middleware [17]. The 
middleware is in charge of the distributed resources 
allocation to the individual jobs, their scheduling, and the 
coordinated execution and result gathering of the 
individual tasks composing the jobs. It also takes in charge 
the fault-tolerance related to hardware, communications 
and system failures. The resilience, i.e., the application-
level fault-tolerance is handled using the rules described in 
the previous Sections. 

 

 
Figure 2. The OMD2 distributed simulation platform 

 
The remote executions invoke the middleware 

functionalities through a Java API. The various modules 
invoked are the ProActive Scheduler, the Jobs definition 
module and the tasks which compose the jobs (Figure 3). 
The jobs are allocated to the distributed computing 
resources based upon the scheduler policy. The tasks are 
dispatched based on the job scheduling and invoke Java 
executables, possibly wrapping code written in other 
programming languages, e.g., Matlab, Scilab, Python, or 
calling other programs, e.g., CATIA, STAR-CCM+, 
ParaView, etc. 

 

 
Figure 3. The YAWL workflow and ProActive middleware interface. 

 
Optionally, the workflow can invoke local tasks using 

shell scripts and remote tasks using Web Services. These 
options are standard in YAWL. 



E. Secured access 

In contrast with the use of middleware, there is also a 
need to preserve and comply with the reservation and 
scheduling policies on the various HPC resources and 
clusters that are used. This is the case for national, e.g., 
IDRIS and CINES in France, and transnational HPC 
centers, e.g., PRACE in Europe.  

Because some of the software run on proprietary 
resources and are not publicly accessible, some privileged 
connections must also be implemented through secured 
X11 tunnels to remote high-performance clusters (Figure 
4). This also allows for fast access to software needing 
almost real-time answers, avoiding the constraints 
associated with the middleware overhead. It also allows 
running parallel optimization software on large HPC 
clusters. In this perspective, a both-ways SSH tunnel 
infrastructure has been implemented for the invocation of 
remote optimization software running on high-
performance clusters and for fast result gathering. 

Using the specific ports used by the communication 
protocol (5000) and YAWL (8080), a fast communication 
infrastructure is implemented for remote invocation of 
testcase optimizers between several different locations on 
a high-speed (40 GB/s) network at INRIA. This is also 
accessible through standard Internet connections using the 
same secured tunnels.  

Current tests have been implemented monitoring from 
Grenoble in France a set of optimizers software running on 
HPC clusters in Sophia-Antipolis near Nice. The 
optimizers are invoked as custom YAWL services from 
the application workflow. The data and results are 
transparently transferred through secured SSH tunnels. 

In addition t the previous interfaces, direct local access 
to numeric software, e.g., SciLab and OpenFOAM, is 
available through the standard YAWL custom services 
using the 8080 communication port and shell script 
invocations. Therefore, truly heterogeneous and distributed 
environments can be built here in a unified workflow 
framework. 

F. Interfaces 

To summarize, the simulation platform which is based 
on the YAWL workflow management system for the 
application specification, execution and monitoring, 
provides three complementary interfaces that suit all 
potential performance, security, portability and 
interoperability requirements of the current sophisticated 
simulation environments.  

These interfaces run concurrently and are used 
transparently for the parallel execution of the different 
parts of the workflows. These interfaces are: 

• The direct access to numeric software through 
YAWL custom services that invoke Java 
executables and shell scripts that trigger numeric 
software, e.g., OpenFOAM, and visualization tools, 
e.g., ParaView  

• The remote access to high-performance clusters 
running parallel software, e.g., optimizers, through 

secured SSH tunnels, using remote invocations of 
custom services  

• The access to wide-area networks through a grid 
middleware, e.g., ProActive, for distributed 
resource reservation and job scheduling  

 

 
Figure 4. High-speed infrastructure for remote cluster access. 

G. Service orchestration 

The YAWL system provides a native Web service 
interface. This is a  very powerful standard interface to 
distributed service execution, although it might impact 
HPC concerns. This is the reason why a comprehensive set 
of interfaces are provided by the platform (Section F, 
above). 

Combined altogether and offered to the users, this rich 
set of functionalities is intended to support most 
application requirements, in terms of performance, 
heterogeneity and standardization. 

Basically, an application workflow specifies general 
services orchestration. General services include here not 
only Web services, but also shell scripts, YAWL custom 
services  implemented by Java class executables and high-
level operators, as defined in the workflow control flow 
patterns of the Workflow Management Coalition [5, 21], 
e.g., AND-joins, XOR-joins, conditional branching, etc. 

The approach implemented here therefore not only 
fulfills sound and semantically proved operators for task 
specification, deployment, invocation, execution and. 
synchronization. It also fulfills the requirements for 
heterogeneous distributed and HPC codes to be deployed 
and executed in a unified framework. This provides the 
users with high-level GUIs and hides the technicalities of 
distributed, and HPC software combination, 
synchronization and orchestration. 

Further, because resilience mechanisms are implemented 
at the application level (Section C), on top of the 
middleware, network and OS fault-tolerance features, a 
secured and fault resilient HPC environment is provided, 
based on high-level constructs for complex and large-scale 
simulations. 

The interface between the workflow tasks and the actual 
simulation codes can therefore be implemented as Web 
Services, YAWL custom services, and shell scripts 



through secured communication channels. This is a unique 
set of possibilities offered by our approach (Figure 5). 

 

 
Figure 5. External services interfaces. 

H. Dataflow and control flow 

The dual requirements for the dataflow and control flow 
properties are preserved. Both aspects are important and 
address different requirements [6]. The control flow aspect 
addresses the need for user control over the workflow 
tasks execution. The dataflow aspect addresses the need 
for high-performance and parallel algorithms to be 
implemented effectively. 

The control flow aspect is necessary to provide the users 
with global control over the synchronization and execution 
of the various heterogeneous and remote software that run 
in parallel to contribute to the application results. This is 
natively supported by YAWL. 

The dataflow aspect is also preserved here in two 
complementary ways:  

• the workflow data is transparently managed by the 
YAWL engine to ensure the proper 
synchronization, triggering and stopping of the 
tasks and complex operators among the different 
parallel branches of the workflows, e.g., AND joins, 
OR and XOR forks, conditional branching. This 
includes a unique YAWL feature called 
“cancellation set” that refers to a subset of a 
workflow that is frozen when another designated 
task is triggered [3] 

• the data synchronization and dataflow scheme 
implemented by the specific numeric software 
invoked remain unchanged using a separation of 
concerns policy, as explained below 

The various software with data dependencies that 
execute based on dataflow control are wrapped in adequate 
YAWL workflow tasks, so that the workflow engine does 
not interfere with the dataflow policies they implement.  

This allows high-performance concerns to be taken 
into consideration along with the users concerns and 
expectations concerning the sophisticated algorithms 
associated with these programs.  

Also, this preserves the global control flow approach 
over the applications which is necessary for heterogeneous 
software to cooperate in the workflow.  

As a bonus, it allows user interactions during the 
workflow execution in order to cope with unexpected 
situations. This would otherwise be very difficult to 
implement because when unexpected situations occur 
while using a pure dataflow approach, it requires stopping 
the running processes or threads in the midst of possibly 
parallel and remote running calculations, while (possibly 
remote) running processes are also waiting for incoming 
data produced by (possibly parallel and remote) erratic 
predecessors in the workflow. This might cause intractable 
situations even if the errors are due to rather simple events, 
e.g., network data transfers or execution time-outs. 

Note that so far, because basic tasks cannot be divided 
into remote components in the workflow, the dataflow 
control is not supported between remotely located 
software. This also avoids large uncontrolled data transfers 
on the underlying network. Thus, only collocated software, 
i.e., using the same computing resources or running on the 
same cluster, can use dataflow control on the platform. 
They are wrapped by workflow tasks which are controlled 
by the YAWL engine as standard workflow tasks.  

For example, the dataflow controlled codes C0 and C1 
depicted Figure 5 are wrapped by the composite task 
which is a genuine YAWL task that invokes a shell script 
to trigger them.  

Specific performance improvements can therefore be 
expected from dataflow controlled sets of programs 
running on large HPC clusters. This is fully compatible 
with the control flow approach implemented at the 
application (i.e., workflow) specification level. 
Incidentally, this also avoids the streaming of large data 
collections of intermediate results through network 
connections. It therefore alleviates bandwidth congestion. 

The platform interfaces are illustrated by Figure 5. 
Once the orchestration of local and distributed codes is 
specified at the application (workflow) level, their 
invocation is transparent to the user, whatever their 
localization. 

I. Experiments 

The current testcases include vehicle aerodynamics 
simulation (Figure 6) and air-conditioner pipes 
optimization (Figure 7). The distributed and heterogeneous 
platform is also tested with the Gmsh mesh generator 
(http://geuz.org/gmsh/ ) and the FAMOSA optimization 
suite developed at INRIA by project OPALE [34]. It is 
deployed on HPC clusters and invoked from remote 
workflows running on Linux workstations. 

FAMOSA is an acronym for “Fully Adaptive 
Multilevel Optimization Shape Algorithms” and includes 
C++ components for:  

• CAD generation,  
• mesh generation,  
• domain partitioning,  
• parallel CFD solvers using MPI, and  
• post-processors 



The input is a design vector and the output is a set of 
simulation results. The various components are invoked by 
shell scripts. FAMOSA is currently tested by the PSA 
Automotive Company and ONERA (the French National 
Aerospace Research Office) for aerodynamics problem 
solving. 

 

 
Figure 6. Vehicle mesh for aerodynamics simulation (Gmsh screenshot). 

The various errors that are taken into account by the 
resilience algorithm include run-time errors in the solvers, 
inconsistent CAD and mesh generation files, and 
execution time-outs.  

The FAMOSA components are here triggered by 
remote shell scripts including PBS invocations for each 
one on the HPC cluster. The shell scripts are called by 
YAWL custom service invocations from the user 
workflow running on the workstation. 

Additionally, another experiment uses the distributed 
simulation platform for testing the heterogeneity of the 
application codes running on various hardware and 
software environments. It includes four remote computing 
resources that are connected by a high-speed network. One 
site is a HPC cluster. Another site is a standard Linux 
server. The two other sites are remote virtualized 
computing resources running Windows and Linux 
operating systems on different VirtualBox virtual 
machines that interface the ProActive middleware.  

III.  CONCLUSION 

This paper presents an experiment for deploying a 
distributed simulation platform on grids. It uses a network 
of high-performance computers connected by a 
middleware layer. Users interact dynamically with the 
applications using a workflow management system. It 
allows them to define, deploy and control the application 
execution interactively. 

In contrast with choreography of services, where 
autonomous software interact in a controlled manner, but 
where resilience and fault-tolerance are difficult to 
implement, the approach used here is an orchestration of 
heterogeneous and distributed software components that 
interact in a dynamic way under the user control [29]. This 

allows the dynamic interaction in case of errors and erratic 
application behavior. This approach is also fully 
compatible with both the dataflow and control flow 
approaches which are often described as poorly compatible 
[30, 31, 32] and are extensively used in numeric software 
platforms. 

Because of the heterogeneity of the software and 
resources, the platform also combines secured access to 
remote HPC clusters and local software in a unified 
workflow framework. 

This approach is also proved to combine in an elegant 
way the dataflow control used by many HPC software and 
the control flow approach required by complex and 
distributed application execution and monitoring. 

A significant bonus of this approach is that the users 
can define and handle application failures at the workflow 
specification level. This means that a new abstraction layer 
is introduced to cope with application-level errors at run-
time. Indeed, these errors do not necessarily result from 
programming and design errors. They may also result from 
unforeseen situations, data values and boundary conditions 
that were not envisaged at first. This is often the case for 
simulations, due to their experimental nature, e.g., 
discovering the behavior of the system being simulated. 

This provides support for resiliency using an 
asymmetric checkpoint mechanism. This feature allows for 
efficient handling mechanisms to restart only those parts of 
the applications that are characterized by the users as 
necessary for overcoming erratic behavior. 

Further, this approach can be evolved dynamically, i.e., 
when the applications are running. This uses the dynamic 
selection and exception handling mechanism in the YAWL 
workflow system. It allows for new rules and new 
exception handling to be added on-line if unexpected 
situations occur. 
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