
A Workflow Platform for Simulation on Grids

Toàn Nguyên, Laurentiu Trifan
Project OPALE

INRIA Grenoble Rhône-Alpes
Grenoble, France

 tnguyen@inrialpes.fr, trifan@inrialpes.fr

Jean-Antoine-Désidéri
Project OPALE

INRIA Sophia-Antipolis Méditerranée
Sophia-Antipolis, France

Jean-Antoine.Desideri@sophia.inria.fr

Abstract—This paper presents the design, implementation
and deployment of a simulation platform based on
distributed workflows. It supports the smooth integration of
existing software, e.g., Matlab, Scilab, Python, OpenFOAM,
ParaView and user-defined programs. Additional features
include the support for application-level fault-tolerance and
exception-handling, i.e., resilience, and the orchestrated
execution of distributed codes on remote high-performance
clusters.

Keywords-workflows; fault-tolerance; resilience;
simulation; distributed systems; high-performance computing

I. INTRODUCTION

Large-scale simulation applications are becoming
standard in research laboratories and in the industry [1][2].
Because they involve a large variety of existing software
and terabytes of data, moving around calculations and data
files is not a simple avenue. Further, software and data
often reside in proprietary locations and cannot be moved.
Distributed computing infrastructures are therefore
necessary [6, 8].

This paper details the design, implementation and use
of a distributed simulation platform. It is based on a
workflow system and a wide-area distributed network.
This infrastructure includes heterogeneous hardware and
software components. Further, the application codes must
interact in a timely, secure and effective manner.
Additionally, because the coupling of remote hardware and
software components are prone to run-time errors,
sophisticated mechanisms are necessary to handle
unexpected failures at the infrastructure and system levels.
This is also true for the coupled software that contribute to
large simulation applications. Consequently, specific
management software is required to handle unexpected
application and software behavior.

This paper addresses these issues. Section II gives a
detailed overview of the implementation using the YAWL
workflow management system [4]. Section III is a
conclusion.

II. WORKFLOW PLATFORM

A. The YAWL workflow management system

Workflows systems are the support of many e-Science
applications [1][6][8]. Among the most popular systems
are Taverna, Kepler, Pegasus, Bonita and many others
[11][15]. They complement scientific software suites like
Dakota, Scilab and Matlab in their ability to provide
complex application factories that can be shared, reused
and evolved. Further, they support the incremental
composition of hierarchic composite applications.
Providing a control flow approach, they also complement
the usual dataflow approach used in programming
toolboxes. Another bonus is that they provide seamless
user interfaces, masking technicalities of distributed,
programming and administrative layers, thus allowing the
users and experts to concentrate on their areas of interest.

The OPALE project at INRIA (http://www-
opale.inrialpes.fr) is investigating the use of the workflow
management system for distributed multidiscipline
optimization [3]. The goal is to develop a resilient
workflow system for large-scale optimization applications
[26]. It is based on extensions to the YAWL system to
add resilience and remote computing facilities for
deployment on high-performance distributed
infrastructures [4]. This includes large-PC clusters
connected to broadband networks. It also includes
interfaces with the Scilab scientific computing toolbox
[16] and the ProActive middleware [17].

Provided as an open-source software, YAWL is
implemented in Java. It is based on an Apache server
using Tomcat and Apache's Derby relational database
system for persistence. YAWL is developed by the
University of Eindhoven (NL) and the University of
Brisbane (Australia). It runs on Linux, Windows and
MacOS platforms [25]. It allows complex workflows to
be defined and supports high-level constructs (e.g., XOR-
and OR-splits and joins, loops, conditional control flow
based on application variables values, composite tasks,
parallel execution of multiple instances of tasks, etc)
through high-level user interfaces.

Formally, it is based on a sound and proven operational
semantics extending the workflow patterns of the
Workflow Management Coalition [21, 32], implemented
and proved by colored Petri nets. In contrast, other
workflow management systems which are based on the
Business Process Management Notation (BPMN) [27]
and the Business Process Execution Language (BPEL)
[28] are usually not supported by a proven formal
semantics. Further, they usually implement only specific
and /or proprietary versions of the BPMN and the BPEL
specifications. There are indeed over 73 (supposedly
compliant) implementations of the BPMN, as of January
2011, with several others currently being implemented
[27], in addition to more than 20 BPEL engine providers.
However, BPEL supports the execution of long running
processes required by simulation applications, with
compensation and undo actions for exception handling
and fault-tolerance, as well as concurrent flows and
advance synchronization [28].

Figure 1. Exception handler associated with a workflow task

Designed as an open platform, YAWL supports

natively interactions with external and existing software
and application codes written in any programming
languages, through shell scripts invocations, as well as
distributed computing through Web Services.

It includes a native Web Services interface, custom
services invocations through codelets, as well as rules,
powerful exception handling facilities, and monitoring of
workflow executions [13].

Further, it supports dynamic evolution of the
applications by extensions to the existing workflows
through worklets, i.e., on-line inclusion of new workflow
components during execution [14].

It supports automatic and step-by-step execution of the
workflows, as well as persistence of (possibly partial)
executions of the workflows for later resuming, using its
internal database system. It also features extensive event
logging for later analysis, simulation, configuration and
tuning of the application workflows.

Additionally, YAWL supports extensive organizations
modeling, allowing complex collaborative projects and

teams to be defined with sophisticated privilege
management: access rights and granting capabilities to the
various projects members (organized as networked teams
of roles and capabilities owners) on the project
workflows, down to individual components, e.g., edit,
launch, pause, restart and abort workitems, as well as
processing tools and facilities [25].

Current experiments include industrial testcases for
automobile aerodynamics optimization, involving the
connection of the Matlab, Scilab, Python, ParaView and
OpenFOAM software to the YAWL platform [3]. The
YAWL workflow system is used to define the
optimization processes, include the testcases and control
their execution: this includes reading the input data
(StarCCM+ files), the automatic invocation of the
external software and automatic control passing between
the various application components, e.g., Matlab scripts,
OpenFOAM, ParaView.

B. Exception handling

The exception handlers are automatically tested by the
YAWL workflow engine when the corresponding tasks are
invoked. This is standard in YAWL and constraint
checking can be activated and deactivated by the users [4].

For example, if a particular workflow task WT
invokes an external EXEC code through a shell script SH
(Figure 1) using a standard YAWL codelet, an exception
handler EX can be implemented to prevent from
undesirable situations, e.g., infinite loops, unresponsive
programs, long network delays, etc. Application variables
can be tested, allowing for very close monitoring of the
applications behavior, e.g., unexpected values,
convergence rates for optimization programs, threshold
transgressions, etc.

A set of rules (RDR) is defined in a standard YAWL
exlet attached to the task WT and defines the exception
handler EX. It is composed here of a constraint checker
CK, which is automatically tested when executing the task
WT. A compensation action CP triggered when a
constraint is violated and a notifier RE warning the user of
the exception. This is used to implement resilience [26].

The constraint violations are defined by the users and
are part of the standard exception handling mechanism
provided by YAWL. They can attach sophisticated
exception handlers in the form of specific exlets that are
automatically triggered at runtime when particular user-
defined constraints are violated. These constraints are part
of the RDR attached to the workflow tasks.

Resilience is the ability for applications to handle
unexpected behavior, e.g., erratic computations, abnormal
result values, etc. It is inherent to the applications logic
and programming. It is therefore different from systems or
hardware errors and failures. The usual fault-tolerance
mechanisms are therefore inappropriate here. They only
cope with late symptoms, at best.

C. Resilience

Resilience is the ability for applications to handle
unexpected behavior, e.g., erratic computations, abnormal
result values, etc. It lies at the level of application logic
and programming, not at systems or hardware level. The
usual fault-tolerance mechanisms are therefore
inappropriate here. They only cope with very late
symptoms, at best.

New mechanisms are therefore required to handle logic
discrepancies in the applications, most of which are only
discovered at run-time [26].

It is therefore important to provide the users with
powerful monitoring features and complement them with
dynamic tools to evolve the applications according to the
erratic behavior observed.

This is supported here using the YAWL workflow
system so called “dynamic selection and exception
handling mechanism”. It supports:

• Application update using dynamically added rules
specifying new codes to be executed, based on
application data values, constraints and
exceptions.

• The persistence of these new rules to allow
applications to handle correctly future occurrences
of the new case.

• The dynamic extension of these sets of rules.
• The definition of the new codes to be executed

using the framework provided by the YAWL
application specification tool: the new codes are
just new workflows included in the global
composite application specification.

• Component workflows invoke external programs
written in any programming language through
shell scripts, custom service invocations and Web
Services.

In order to implement resilience, two particular
YAWL features are used:

• Ripple-down-rules (RDR) which are handlers for
exception management,

• Worklets, which are actions to be taken when
exceptions or specific events occur.

The RDR define the decision process which is run to
decide which worklet to use in specific circumstances.

D. Distributed workflows

The distributed workflow is based on an interface
between the YAWL engine and the ProActive middleware
(Figure 2). At the application level, users provide a
specification of the simulation applications using the
YAWL Editor. It supports a high-level abstract description
of the simulation processes. These processes are
decomposed into components which can be other
workflows or basic workitems. The basic workitems
invoke executable tasks, e.g., shell scripts or custom
services. These custom services are specific execution
units that call user-defined YAWL services. They support
interactions with external and remote codes. In this

particular platform, the external services are invoked
through the middleware interface.

This interface delegates the distributed execution of the
remote tasks to the ProActive middleware [17]. The
middleware is in charge of the distributed resources
allocation to the individual jobs, their scheduling, and the
coordinated execution and result gathering of the
individual tasks composing the jobs. It also takes in charge
the fault-tolerance related to hardware, communications
and system failures. The resilience, i.e., the application-
level fault-tolerance is handled using the rules described in
the previous Sections.

Figure 2. The OMD2 distributed simulation platform

The remote executions invoke the middleware

functionalities through a Java API. The various modules
invoked are the ProActive Scheduler, the Jobs definition
module and the tasks which compose the jobs (Figure 3).
The jobs are allocated to the distributed computing
resources based upon the scheduler policy. The tasks are
dispatched based on the job scheduling and invoke Java
executables, possibly wrapping code written in other
programming languages, e.g., Matlab, Scilab, Python, or
calling other programs, e.g., CATIA, STAR-CCM+,
ParaView, etc.

Figure 3. The YAWL workflow and ProActive middleware interface.

Optionally, the workflow can invoke local tasks using

shell scripts and remote tasks using Web Services. These
options are standard in YAWL.

E. Secured access

In contrast with the use of middleware, there is also a
need to preserve and comply with the reservation and
scheduling policies on the various HPC resources and
clusters that are used. This is the case for national, e.g.,
IDRIS and CINES in France, and transnational HPC
centers, e.g., PRACE in Europe.

Because some of the software run on proprietary
resources and are not publicly accessible, some privileged
connections must also be implemented through secured
X11 tunnels to remote high-performance clusters (Figure
4). This also allows for fast access to software needing
almost real-time answers, avoiding the constraints
associated with the middleware overhead. It also allows
running parallel optimization software on large HPC
clusters. In this perspective, a both-ways SSH tunnel
infrastructure has been implemented for the invocation of
remote optimization software running on high-
performance clusters and for fast result gathering.

Using the specific ports used by the communication
protocol (5000) and YAWL (8080), a fast communication
infrastructure is implemented for remote invocation of
testcase optimizers between several different locations on
a high-speed (40 GB/s) network at INRIA. This is also
accessible through standard Internet connections using the
same secured tunnels.

Current tests have been implemented monitoring from
Grenoble in France a set of optimizers software running on
HPC clusters in Sophia-Antipolis near Nice. The
optimizers are invoked as custom YAWL services from
the application workflow. The data and results are
transparently transferred through secured SSH tunnels.

In addition t the previous interfaces, direct local access
to numeric software, e.g., SciLab and OpenFOAM, is
available through the standard YAWL custom services
using the 8080 communication port and shell script
invocations. Therefore, truly heterogeneous and distributed
environments can be built here in a unified workflow
framework.

F. Interfaces

To summarize, the simulation platform which is based
on the YAWL workflow management system for the
application specification, execution and monitoring,
provides three complementary interfaces that suit all
potential performance, security, portability and
interoperability requirements of the current sophisticated
simulation environments.

These interfaces run concurrently and are used
transparently for the parallel execution of the different
parts of the workflows. These interfaces are:

• The direct access to numeric software through
YAWL custom services that invoke Java
executables and shell scripts that trigger numeric
software, e.g., OpenFOAM, and visualization tools,
e.g., ParaView

• The remote access to high-performance clusters
running parallel software, e.g., optimizers, through

secured SSH tunnels, using remote invocations of
custom services

• The access to wide-area networks through a grid
middleware, e.g., ProActive, for distributed
resource reservation and job scheduling

Figure 4. High-speed infrastructure for remote cluster access.

G. Service orchestration

The YAWL system provides a native Web service
interface. This is a very powerful standard interface to
distributed service execution, although it might impact
HPC concerns. This is the reason why a comprehensive set
of interfaces are provided by the platform (Section F,
above).

Combined altogether and offered to the users, this rich
set of functionalities is intended to support most
application requirements, in terms of performance,
heterogeneity and standardization.

Basically, an application workflow specifies general
services orchestration. General services include here not
only Web services, but also shell scripts, YAWL custom
services implemented by Java class executables and high-
level operators, as defined in the workflow control flow
patterns of the Workflow Management Coalition [5, 21],
e.g., AND-joins, XOR-joins, conditional branching, etc.

The approach implemented here therefore not only
fulfills sound and semantically proved operators for task
specification, deployment, invocation, execution and.
synchronization. It also fulfills the requirements for
heterogeneous distributed and HPC codes to be deployed
and executed in a unified framework. This provides the
users with high-level GUIs and hides the technicalities of
distributed, and HPC software combination,
synchronization and orchestration.

Further, because resilience mechanisms are implemented
at the application level (Section C), on top of the
middleware, network and OS fault-tolerance features, a
secured and fault resilient HPC environment is provided,
based on high-level constructs for complex and large-scale
simulations.

The interface between the workflow tasks and the actual
simulation codes can therefore be implemented as Web
Services, YAWL custom services, and shell scripts

through secured communication channels. This is a unique
set of possibilities offered by our approach (Figure 5).

Figure 5. External services interfaces.

H. Dataflow and control flow

The dual requirements for the dataflow and control flow
properties are preserved. Both aspects are important and
address different requirements [6]. The control flow aspect
addresses the need for user control over the workflow
tasks execution. The dataflow aspect addresses the need
for high-performance and parallel algorithms to be
implemented effectively.

The control flow aspect is necessary to provide the users
with global control over the synchronization and execution
of the various heterogeneous and remote software that run
in parallel to contribute to the application results. This is
natively supported by YAWL.

The dataflow aspect is also preserved here in two
complementary ways:

• the workflow data is transparently managed by the
YAWL engine to ensure the proper
synchronization, triggering and stopping of the
tasks and complex operators among the different
parallel branches of the workflows, e.g., AND joins,
OR and XOR forks, conditional branching. This
includes a unique YAWL feature called
“cancellation set” that refers to a subset of a
workflow that is frozen when another designated
task is triggered [3]

• the data synchronization and dataflow scheme
implemented by the specific numeric software
invoked remain unchanged using a separation of
concerns policy, as explained below

The various software with data dependencies that
execute based on dataflow control are wrapped in adequate
YAWL workflow tasks, so that the workflow engine does
not interfere with the dataflow policies they implement.

This allows high-performance concerns to be taken
into consideration along with the users concerns and
expectations concerning the sophisticated algorithms
associated with these programs.

Also, this preserves the global control flow approach
over the applications which is necessary for heterogeneous
software to cooperate in the workflow.

As a bonus, it allows user interactions during the
workflow execution in order to cope with unexpected
situations. This would otherwise be very difficult to
implement because when unexpected situations occur
while using a pure dataflow approach, it requires stopping
the running processes or threads in the midst of possibly
parallel and remote running calculations, while (possibly
remote) running processes are also waiting for incoming
data produced by (possibly parallel and remote) erratic
predecessors in the workflow. This might cause intractable
situations even if the errors are due to rather simple events,
e.g., network data transfers or execution time-outs.

Note that so far, because basic tasks cannot be divided
into remote components in the workflow, the dataflow
control is not supported between remotely located
software. This also avoids large uncontrolled data transfers
on the underlying network. Thus, only collocated software,
i.e., using the same computing resources or running on the
same cluster, can use dataflow control on the platform.
They are wrapped by workflow tasks which are controlled
by the YAWL engine as standard workflow tasks.

For example, the dataflow controlled codes C0 and C1
depicted Figure 5 are wrapped by the composite task
which is a genuine YAWL task that invokes a shell script
to trigger them.

Specific performance improvements can therefore be
expected from dataflow controlled sets of programs
running on large HPC clusters. This is fully compatible
with the control flow approach implemented at the
application (i.e., workflow) specification level.
Incidentally, this also avoids the streaming of large data
collections of intermediate results through network
connections. It therefore alleviates bandwidth congestion.

The platform interfaces are illustrated by Figure 5.
Once the orchestration of local and distributed codes is
specified at the application (workflow) level, their
invocation is transparent to the user, whatever their
localization.

I. Experiments

The current testcases include vehicle aerodynamics
simulation (Figure 6) and air-conditioner pipes
optimization (Figure 7). The distributed and heterogeneous
platform is also tested with the Gmsh mesh generator
(http://geuz.org/gmsh/) and the FAMOSA optimization
suite developed at INRIA by project OPALE [34]. It is
deployed on HPC clusters and invoked from remote
workflows running on Linux workstations.

FAMOSA is an acronym for “Fully Adaptive
Multilevel Optimization Shape Algorithms” and includes
C++ components for:

• CAD generation,
• mesh generation,
• domain partitioning,
• parallel CFD solvers using MPI, and
• post-processors

The input is a design vector and the output is a set of
simulation results. The various components are invoked by
shell scripts. FAMOSA is currently tested by the PSA
Automotive Company and ONERA (the French National
Aerospace Research Office) for aerodynamics problem
solving.

Figure 6. Vehicle mesh for aerodynamics simulation (Gmsh screenshot).

The various errors that are taken into account by the
resilience algorithm include run-time errors in the solvers,
inconsistent CAD and mesh generation files, and
execution time-outs.

The FAMOSA components are here triggered by
remote shell scripts including PBS invocations for each
one on the HPC cluster. The shell scripts are called by
YAWL custom service invocations from the user
workflow running on the workstation.

Additionally, another experiment uses the distributed
simulation platform for testing the heterogeneity of the
application codes running on various hardware and
software environments. It includes four remote computing
resources that are connected by a high-speed network. One
site is a HPC cluster. Another site is a standard Linux
server. The two other sites are remote virtualized
computing resources running Windows and Linux
operating systems on different VirtualBox virtual
machines that interface the ProActive middleware.

III. CONCLUSION

This paper presents an experiment for deploying a
distributed simulation platform on grids. It uses a network
of high-performance computers connected by a
middleware layer. Users interact dynamically with the
applications using a workflow management system. It
allows them to define, deploy and control the application
execution interactively.

In contrast with choreography of services, where
autonomous software interact in a controlled manner, but
where resilience and fault-tolerance are difficult to
implement, the approach used here is an orchestration of
heterogeneous and distributed software components that
interact in a dynamic way under the user control [29]. This

allows the dynamic interaction in case of errors and erratic
application behavior. This approach is also fully
compatible with both the dataflow and control flow
approaches which are often described as poorly compatible
[30, 31, 32] and are extensively used in numeric software
platforms.

Because of the heterogeneity of the software and
resources, the platform also combines secured access to
remote HPC clusters and local software in a unified
workflow framework.

This approach is also proved to combine in an elegant
way the dataflow control used by many HPC software and
the control flow approach required by complex and
distributed application execution and monitoring.

A significant bonus of this approach is that the users
can define and handle application failures at the workflow
specification level. This means that a new abstraction layer
is introduced to cope with application-level errors at run-
time. Indeed, these errors do not necessarily result from
programming and design errors. They may also result from
unforeseen situations, data values and boundary conditions
that were not envisaged at first. This is often the case for
simulations, due to their experimental nature, e.g.,
discovering the behavior of the system being simulated.

This provides support for resiliency using an
asymmetric checkpoint mechanism. This feature allows for
efficient handling mechanisms to restart only those parts of
the applications that are characterized by the users as
necessary for overcoming erratic behavior.

Further, this approach can be evolved dynamically, i.e.,
when the applications are running. This uses the dynamic
selection and exception handling mechanism in the YAWL
workflow system. It allows for new rules and new
exception handling to be added on-line if unexpected
situations occur.

ACKNOWLEDGMENT

This work is supported by the French National
Research Agency ANR (Agence Nationale de la
Recherche), grant ANR-08-COSI-007, OMD2 project
(Optimisation Multi-Discipline Distribuée).

REFERENCES
[1] Y. Simmhan, R. Barga, C. van Ingen, E. Lazowska and A. Szalay

“Building the Trident Scientific Workflow Workbench for Data
Management in the Cloud”. In proceedings of the 3rd Intl. Conf.
on Advanced Engineering Computing and Applications in Science.
ADVCOMP’2009. Sliema (Malta). October 2009. pp 41-50.

[2] A. Abbas, High Computing Power: A radical Change in Aircraft
Design Process, In proceedings of the 2nd China-EU Workshop on
Multi-Physics and RTD Collaboration in Aeronautics. Harbin
(China) April 2009.

[3] T. Nguyên and J-A Désidéri, Dynamic Resilient Workflows for
Collaborative Design, In proceedings of the 6th Intl. Conf. on
Cooperative Design, Visualization and Engineering. Luxemburg.
September 2009. Springer-Verlag. LNCS 5738, pp. 341–350
(2009)

[4] A.H.M ter Hofstede, W. Van der Aalst, M. Adams and N. Russell,
Modern Business Process Automation: YAWL and its support
environment, Springer (2010).

[5] N. Russel, A.H.M ter Hofstede and W. Van der Aalst. Workflow
Control Flow Patterns. A Revised View. Technical Report.
University of Eindhoven (NL). 2006.

[6] E. Deelman and Y. Gil., Managing Large-Scale Scientific
Workflows in Distributed Environments: Experiences and
Challenges, In proceedings of the 2nd IEEE Intl. Conf. on e-
Science and the Grid. Amsterdam (NL). December 2006. pp 131-
139.

[7] SUN VirtualBox, User Manual, 2010. http://www.virtualbox.org.

[8] M. Ghanem, N. Azam, M. Boniface and J. Ferris, Grid-enabled
workflows for industrial product design, In proceedings of the 2nd
Intl. Conf. on e-Science and Grid Computing. Amsterdam (NL).
December 2006. pp 88-92.

[9] G. Kandaswamy, A. Mandal and D.A. Reed, Fault-tolerant and
recovery of scientific workflows on computational grids, In
proceedings of the 8th Intl. Symp. On Cluster Computing and the
Grid. 2008. pp 777-782.

[10] H. Simon. “Future directions in High-Performance Computing
2009- 2018”. Lecture given at the ParCFD 2009 Conference.
Moffett Field (Ca). May 2009.

[11] J. Wang, I. Altintas, C. Berkley, L. Gilbert and M.B. Jones, A
high-level distributed execution framework for scientific
workflows, In proceedings of the 4th IEEE Intl. Conf. on eScience.
Indianapolis (In). December 2008. pp 156-164.

[12] D. Crawl and I. Altintas, A Provenance-Based Fault Tolerance
Mechanism for Scientific Workflows, In proceedings of the 2nd
Intl. Provenance and Annotation Workshop. IPAW 2008. Salt Lake
City (UT). June 2008. Springer. LNCS 5272. pp 152-159.

[13] M. Adams, A.H.M ter Hofstede, W. Van der Aalst and N. Russell,
Facilitating Flexibility and Dynamic Exception Handling in
Workflows through Worklets, Technical report, Faculty of
Information Technology, Queensland University of Technology,
Brisbane (Aus.), October 2006.

[14] M. Adams and L. Aldred, The worklet custom service for YAWL,
Installation and User Manual, Beta-8 Release, Technical Report,
Faculty of Information Technology, Queensland University of
Technology, Brisbane (Aus.), October 2006.

[15] L. Ramakrishnan et al., VGrADS: Enabling e-Science workflows
on grids and clouds with fault tolerance. Proc. ACM SC’09 Conf.
Portland (Or.), November 2009. pp 145-152.

[16] M. Baudin, Introduction to Scilab”, Consortium Scilab. January
2010. Also: http://wiki.scilab.org/

[17] F. Baude et al., Programming, composing, deploying for the grid.
in "GRID COMPUTING: Software Environments and Tools", Jose
C. Cunha and Omer F. Rana (Eds), Springer Verlag, January 2006.

[18] http://edition.cnn.com/2009/TRAVEL/01/20/mumbai.overview
last accessed: 07/07/2010.

[19] J. Dongarra et al. “The International Exascale Software Project
Roadmap”. University of Tennessee EECS Technical report UT-
CS-10-654. May 2010. Available at: http://www.exascale.org/

[20] R. Gupta, et al. “CIFTS: a Coordinated Infrastructure for Fault-
Tolerant Systems”. Proc. 38th Intl. Conf. Parallel Processing
Systems. Vienna (Au). September 2009.pp 145-154.

[21] The Workflow Management Coalition. http://www.wfmc.org

[22] D. Abramson, B. Bethwaite et al. “Embedding Optimization in
Computational Science Workflows”. Journal of Computational
Science 1 (2010). Pp 41-47. Elsevier.

[23] A.Bachmann, M. Kunde, D. Seider and A. Schreiber. “Advances in
Generalization and Decoupling of Software Parts in a Scientific
Simulation Workflow System”. Proc. 4th Intl. Conf. Advanced
Engineering Computing and Applications in Sciences. Florence (I).
October 2010. pp 133-139.

[24] R. Duan, R. Prodan and T. Fahringer. “DEE: a Distributed Fault
Tolerant Workflow Enactment Engine for Grid Computing”. Proc.
1st. Intl. Conf. on High-Performance Computing and
Communications. Sorrento (I). LNCS 3726. September 2005. pp
265-278.

[25] http://www.yawlfoundation.org/software/documentation.The
YAWL foundation. 2010.

[26] T. Nguyên, L. Trifan and J-A Désidéri. A Distributed Workflow
Platform for Simulation. Proc. 4th Intl. Conf on Advanced
Engineering Computing and Applications in Sciences. Florence (I).
October 2010. pp 321-329.

[27] Object Management Group / Business Process Management
Initiative. BPMN Specifications. http://www.bpmn.org, last
accessed: 12/01/2011.

[28] OASIS Web Services Business Process Execution Language.
http://www.oasisopen.org/committees/tc_home.php?=wg_abbrev=
wsbpel last accessed: 12/01/2011.

[29] Sherp G., Hoing A., Gudenkauf S., Hasselbring W. and Kao O.
Using UNICORE and WS-BPEL for Scientific Workfow execution
in Grid Environments. Proc. EuroPAR 2009. LNCS 6043. .
Springer. 2010. pp 455-461.

[30] Ludäscher B.,Weske M., McPhillips T. and Bowers S. Scientific
Workflows: Business as usual ? Proc. BPM 2009. LNCS 5701.
Springer. 2009. pp 351-358.

[31] Montagnat J., Isnard B., Gatard T., Maheshwari K. and Fornarino
M. A Data-driven Workflow Language for Grids based on Array
Programming Principles. Proc. SC 2009 4th Workshop on
Workflows in Support of Large-Scale Science. WORKS 2009.
Portland (Or). ACM 2009. pp 235-242.

[32] Yildiz U., Guabtni A. and Ngu A.H. Towards Scientific Workflow
Patterns. Proc. SC 2009 4th Workshop on Workflows in Support of
Large-Scale Science. WORKS 2009. Portland (Or). ACM 2009. pp
121-129.

[33] Plankensteiner K., Prodan R. and Fahringer T. Fault-tolerant
Behavior in State-of-the-Art Grid Workflow Management
Systems. CoreGRID Technical Report TR-0091. October 2007.
http://www.coregrid.net

[34] Duvigneau R. and Chandrashekaran P. A three-level parallelization
strategy for robust design in aerodynamics. Proc. 20th Intl. Conf.
on Parallel Computational Fluid Dynamics. May 2008. Lyon (F).
pp 101-108.

