Free-form deformation for multi-level 3D parallel optimization in aerodynamics

Michele Andreoli, Ales Janka, J-A Desideri, T. Nguyen

INRIA Rhône-Alpes

Projet OPALE

International Conference Parallel CFD 2004 Las Palmas de Gran Canaria

Objectives and possibilities

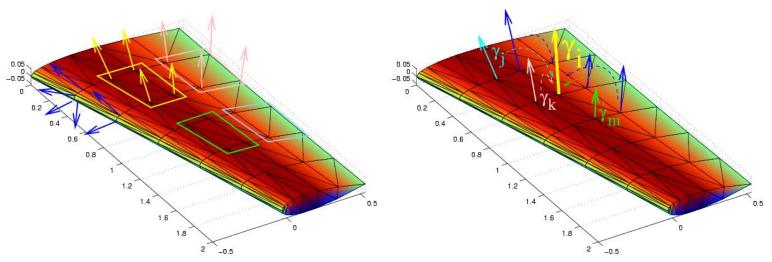
- Parameterization of (complex) shapes in 3D (airfoils or complete aircrafts) for shape optimization purposes
- Multilevel-approach: progressive enriching of the search space
- Reduction of shape parameters for genetic algorithms
- Inherent regularity properties of shape deformations
- Adaptability (future developments)

Possibilities in 2D/3D:

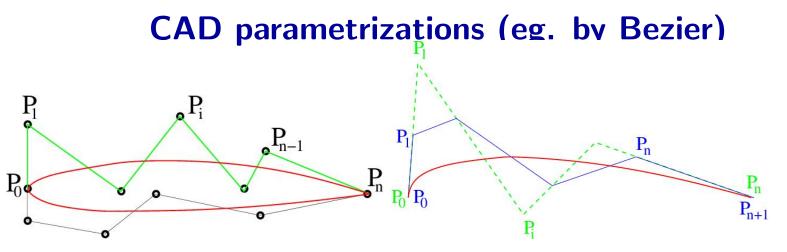
- CAD-free parametrization (based on finite-element mesh)
- CAD-like parametrization (modelization of surface by splines)
- Free-form deformation

Andreoli, Janka, Désidéri

CAD-free parametrizations



- Based only on 3D mesh of the skin
- Hierarchy of parametrizations
- Two important issues: smoothness of the shape deformations, local support of the basis (do we need it?)
- Versatility for complex 3D objects, but some problems with definition of normals to a discrete surface
- On finest level, too much parameters (as many as mesh nodes on the skin)



• Bezier curve:
$$\vec{x}(t) = \sum_{k=0}^{n} B_n^k(t) \vec{p}_k$$

- Bezier patch: $\vec{x}(s,t) = \sum_{i=0}^{n_i} \sum_{k=0}^{n_k} B^i_{n_i}(s) B^k_{n_k}(t) \vec{p}_{ik}$
- Nice properties:
 - Assures smoothness
 - Elevation of degree (both curves and patches):

$$\vec{x}(t) = \sum_{k=0}^{n+1} B_{n+1}^k(t) \vec{P}_k$$
, $\vec{P}_k = \frac{k}{n+1} \vec{p}_{k-1} + (1 - \frac{k}{n+1}) \vec{p}_k$

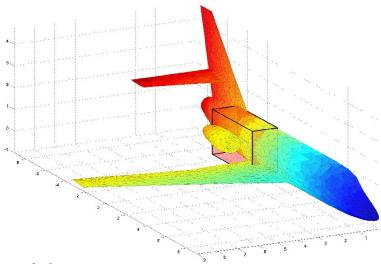
Bezier parametrization: inconveniences

- Standard Bezier describes only smooth objects
- For non-smooth objects needs either
 - very high order of one Bezier curves (with danger of oscillations), or
 - two curves/patches joined by some condition on smoothness C^0 , C^1 : complicated to handle, looses degree-elevation property
- Do we need to describe the optimized shape? Or do we need to describe just its deformation?
- Bezier "delta" formulation $\vec{x}(t) = \vec{x}^{\mathsf{init}} + \sum_{k=0}^{n} B_n^k(t) \vec{\delta p}_k$
 - Coordinates of mesh node *i*: $\vec{x}_i = \vec{x}_i^{\text{init}} + \sum_{k=0}^n B_n^k(t_i) \vec{\delta} p_k$
 - Control points $ec{p}_k$ lose its meaning of "position"
 - The parametrization tasks resumes to assignment of t_i for $ec{x}_i$

Andreoli, Janka, Désidéri

Free-form deformation

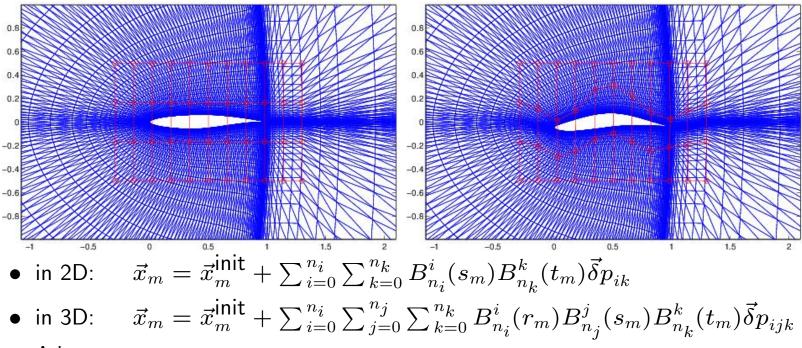
- Generalization of Bezier patches to 3D surfaces is difficult (intersecting/merging patches)
- How about parametrizing the whole space? Free-form deformation: Sederberg and Parry 1985 (computer graphics), Samareh (CFD).



- Advantages:
 - Avoids the complexity of 3D object

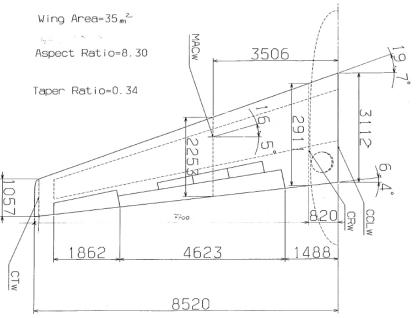
- Choose a box with the optimized form (part of the form) inside
- Parameterize the deformation of the volume inside the box by some 3D parameterization technique (tensorial B-splines, tensorial Bezier, ...).
- The deformations of the parameterized shape is the trace of the 3D deformation inside the box on the mesh skin.
- Deforms space, ie. can handle deformation of computational mesh in a very cheap way

Free-form deformation and Bezier parameterization



- Advantages:
 - Refinement of research space by degree elevation
 - Differentiability of the parametrization formula

Andreoli, Janka, Désidéri

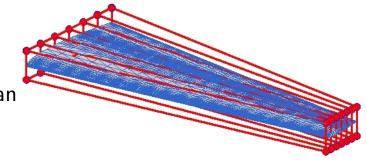


Transonic 3D test case

- section profile: NACA0012
- transonic Euler model
 - Angle of incidence 2^o
 - Free stream Mach number 0.83
- Lift-drag minimization
 - minimize drag
 - aerodynamic constraint: keep lift up to 0.1%
 - geometric constraint: leading and trailing edge fixed, "asymptotical thickness" at leading and trailing edge preserved

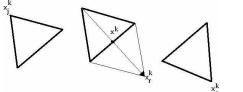
• cost:
$$J = \frac{\text{Cd}}{\text{Cd}_0} + 10^4 \cdot \max(0, 0.999 - \frac{\text{Cl}}{\text{Cl}_0})$$

• corner Bezier control points are fixed, others can move in thickness-wise direction



Simplex algorithm (Nelder-Mead)

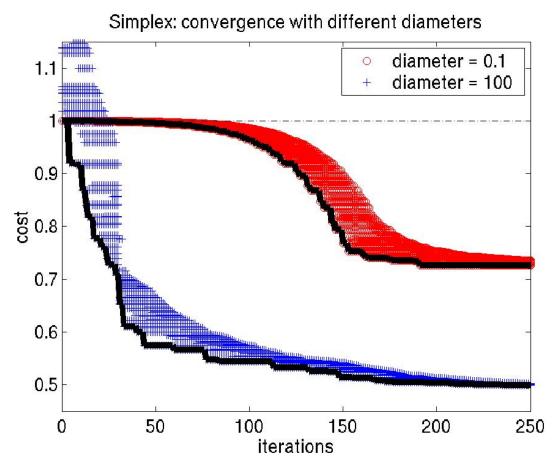
- Initialize n + 1 vertices of simplex $(n \dots$ number of parameters)
- Calculate the centroid \bar{x}^k of the other points
- Identify the worst vertex x_j^k in k-th iteration and replace it with better vertex x_r^k :
- Reflection: $x_r^k = \bar{x}^k + \alpha(\bar{x}^k x_j^k)$ Expansion: $\bar{x}^k + \gamma(x_r^k \bar{x}^k)$



- Contraction (1) $x_c^k = \bar{x}^k + \beta (x_r^k \bar{x}^k)$
- Reduction (1): around the best x_m^k

- Expansion: $\bar{x}^k + \gamma(x_r^k \bar{x}^k)$
- Contraction (2) $x_c^k = \bar{x}^k + \beta (x_j^k \bar{x}^k)$
- Reduction (2): around the best x_m^k

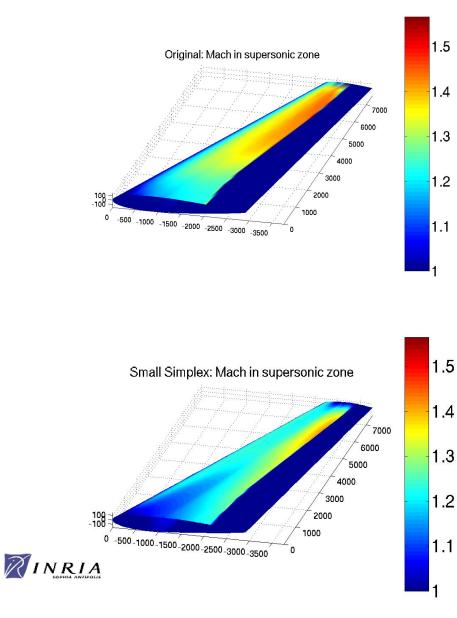
Simplex algorithm: diameter

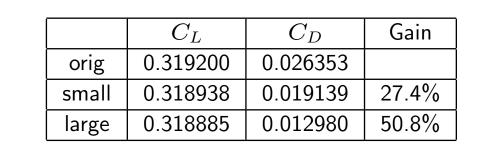


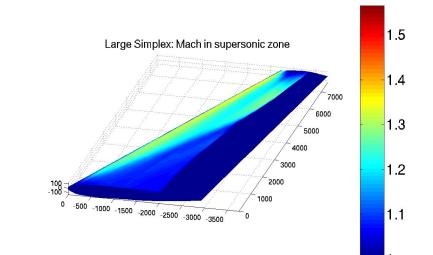
- 2 simplex optimizations with different simplex diameters:
- small diameter (0.1) for 250 iterations
- large diameter (100) for 250 iterations

	small	large
cost	0.726	0.492
gain	27.4%	50.8%

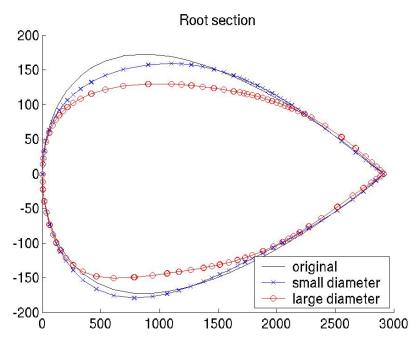
Andreoli, Janka, Désidéri

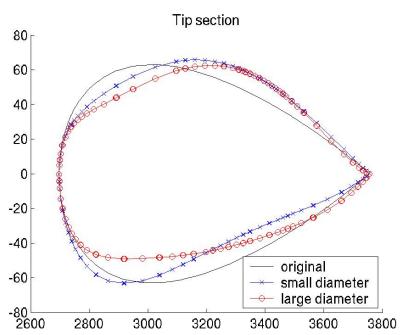




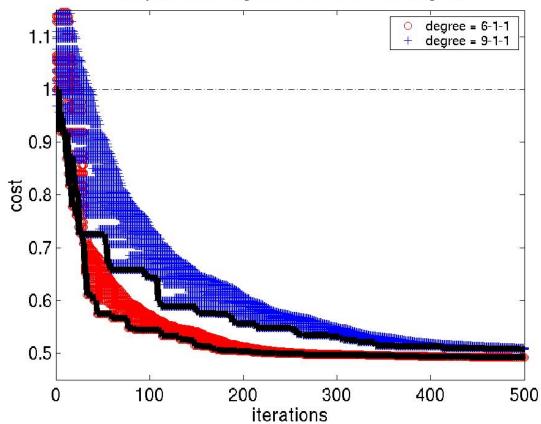


Simplex diameter: root and tip sections





Simplex algorithm: different degree



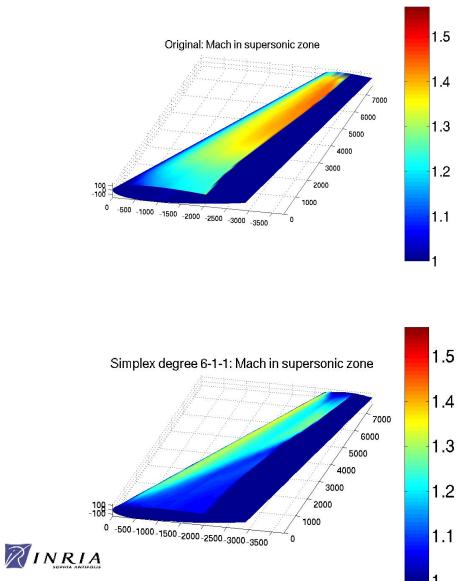
Simplex: convergence with different degree

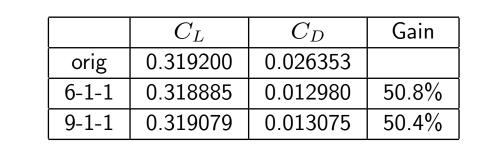
2 simplex optimizations with Bézier parameterization in chord-wise direction of different degree:

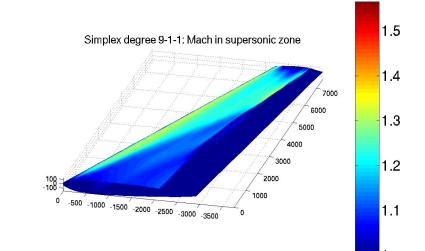
- degree 6-1-1 for 500 iterations
- degree 9-1-1 for 500 iterations

	6-1-1	9-1-1
cost	0.492	0.496
gain	50.8%	50.4%

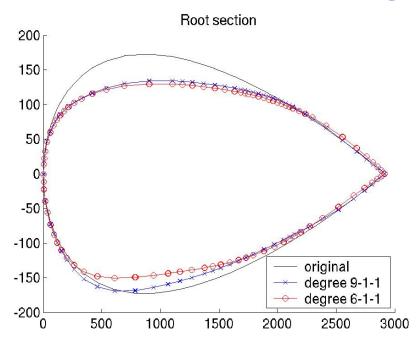
Andreoli, Janka, Désidéri

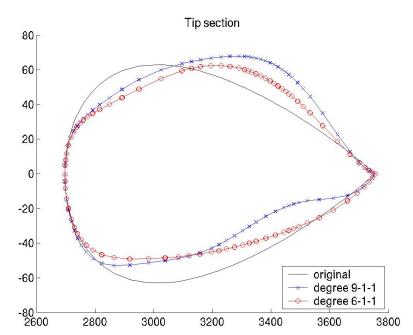






Simplex different degree: root and tip sections

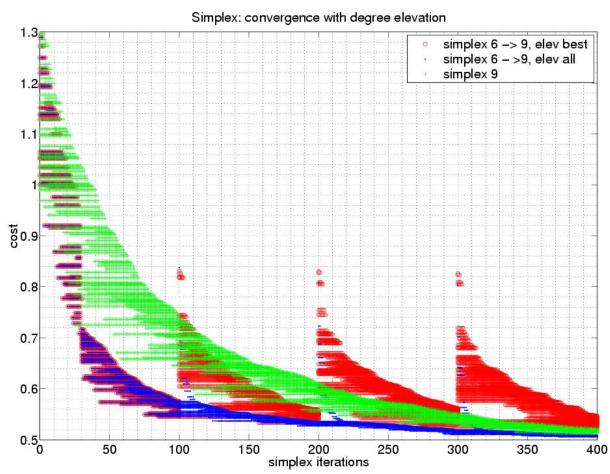




Andreoli, Janka, Désidéri

Hierarchical Parameterization

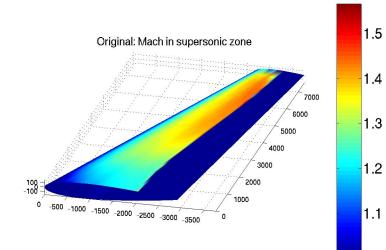
Simplex algorithm - degree elevation, large diameter

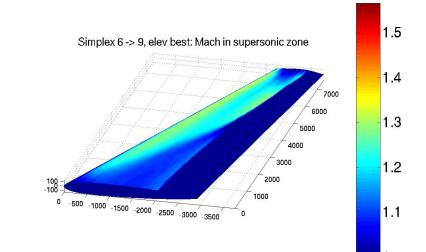


3 simplex optimizations with Bezier parametrization in chordwise direction of different degrees:

- degree 6 elevated by one degree each 100 iterations of simplex method, only best result is being elevated, simplex is re-initialized by perturbation of best result,
- degree 6 elevated by one degree each 100 iterations of simplex method, the whole simplex is being elevated, or
- degree 9 only during 400 simplex iterations.

Andreoli, Janka, Désidéri





Simplex 6 -> 9, elev all: Mach in supersonic zone

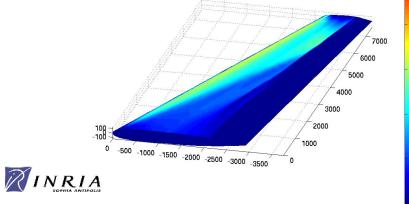
1.5

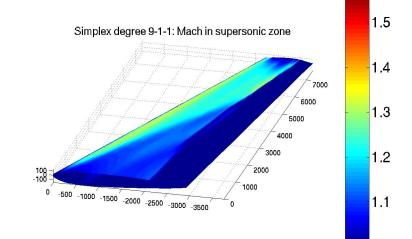
1.4

1.3

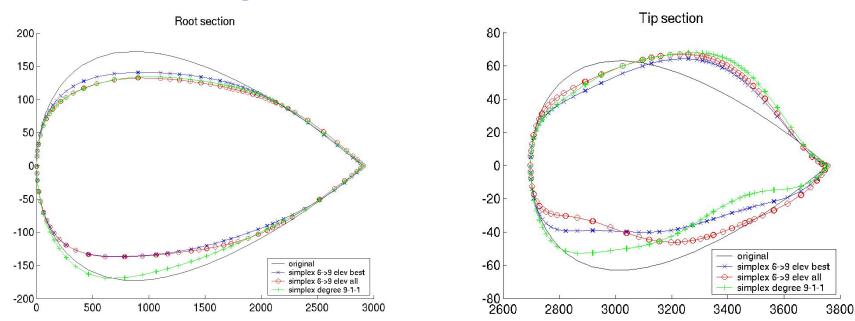
1.2

1.1



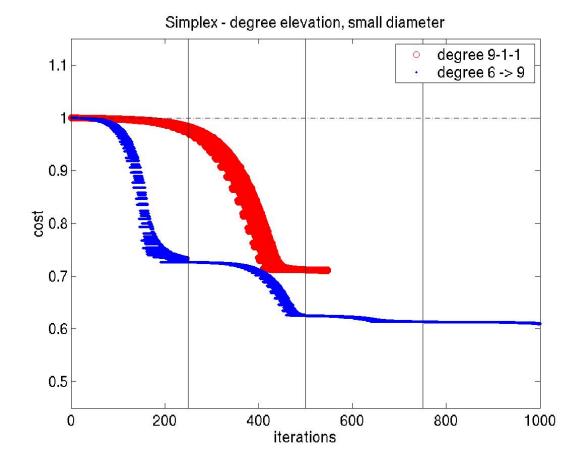


Simplex degree elevation: root and tip sections



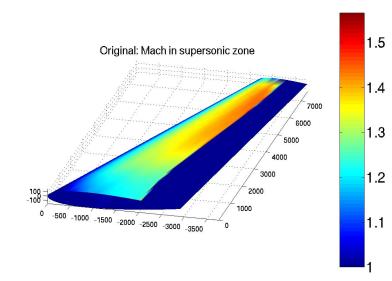
	C_L	C_D	Gain
orig	0.319200	0.026353	
$6 \rightarrow 9$ elev best	0.318885	0.012597	52.2%
$6 \rightarrow 9$ elev all	0.319477	0.012515	52.5%
degree 9-1-1	0.319079	0.013075	50.4%

Simplex algorithm - degree elevation, small diameter

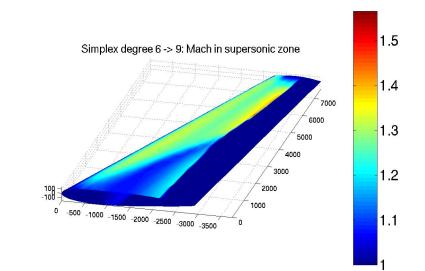


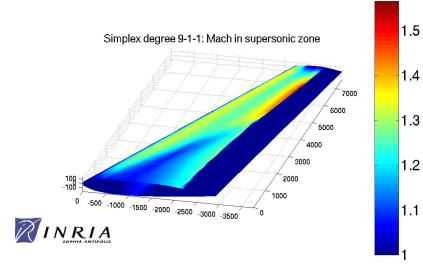
2 simplex optimizations with Bezier parametrization in chordwise direction of different degrees:

- degree 6 elevated by one degree each 250 iterations of simplex method, only best result is being elevated, simplex is re-initialized by perturbation of best result, or
- degree 9 only during 550 simplex iterations.



	C_L	C_D	Gain
orig	0.319200	0.026353	
9-1-1	0.326127	0.018709	29%
$6 \rightarrow 9$	0.319166	0.016054	39%



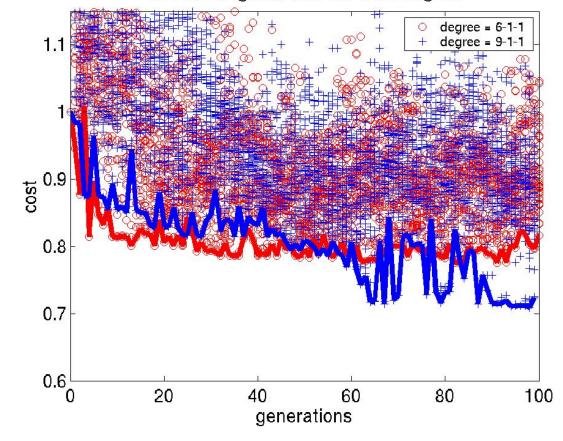


Andreoli, Janka, Désidéri

Genetic algorithm

- Coding of parameters: binary:
 - Search interval: $\pm 10\%$ of wing thickness
 - Precision: 0.005% of wing thickness
- Selection: roulette-wheel
- Crossover: two-point binary crossover with probability 85%
- Mutation: binary with probability 0.5%
- Population size: 40
- Number of parameters (3D): 20 for Bezier degree 6, 32 for Bezier degree 9
- Length of chromozome: 200 for Bezier degree 6, 320 for Bezier degree 9

Genetic algorithm: different degree

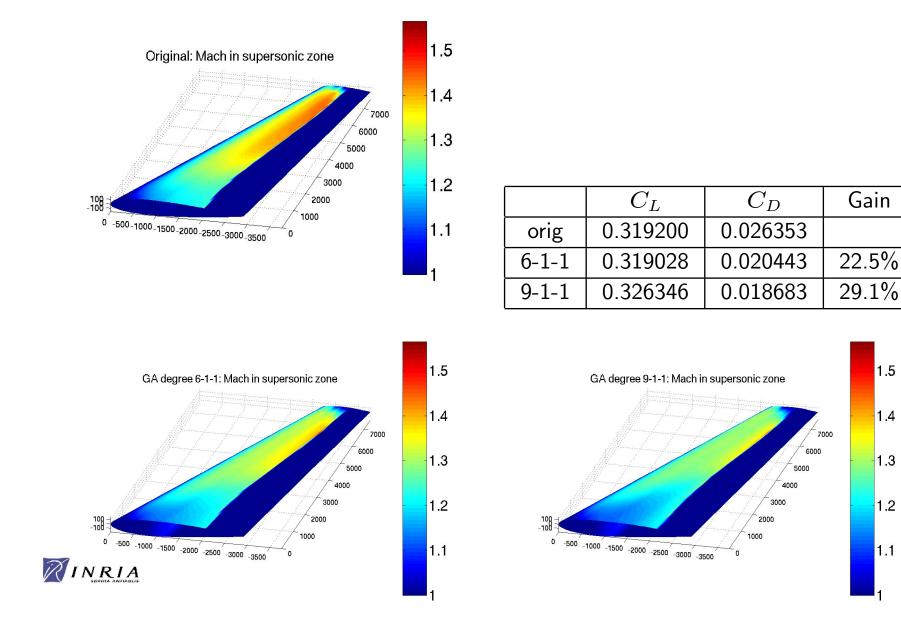


GA: convergence with different degree

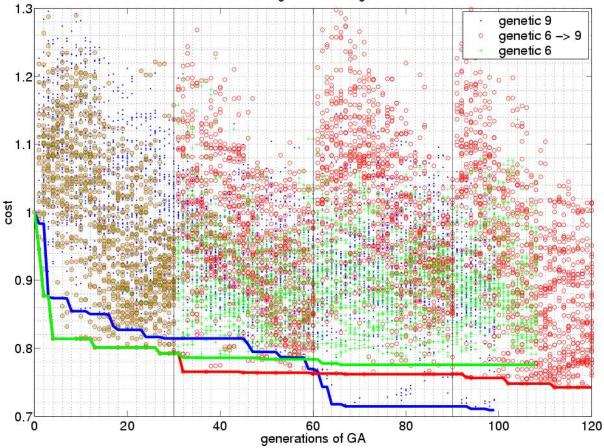
2 GA optimizations with Bezier parametrization in chord-wise direction of different degrees:

- degree 6 only during 100 generations, or
- degree 9 only during 110 generations.

	6-1-1	9-1-1
cost	0.775	0.709
gain	22.5%	29.1%



Genetic algorithm: degree elevation

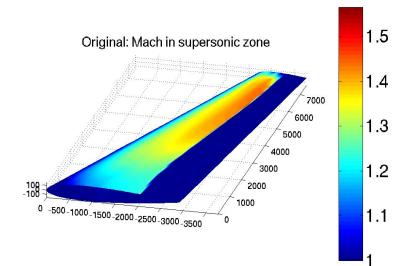


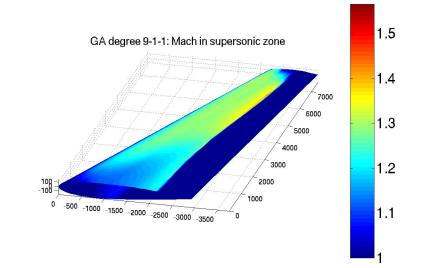
Genetic: convergence with degree elevation

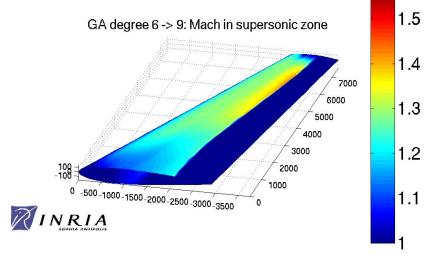
3 GA optimizations with Bezier parametrization in chord-wise direction of different degrees:

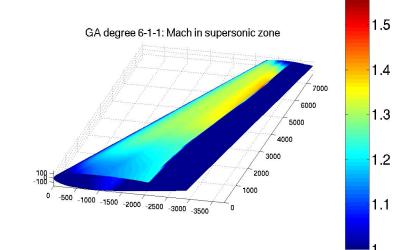
- degree 9 only during 100 generations, or
- degree 6 elevated by one degree after each 30 generations of GA, only best individual is being elevated, population is re-initialized by perturbation of best individual, or
- degree 6 only during 110 generations.

Andreoli, Janka, Désidéri

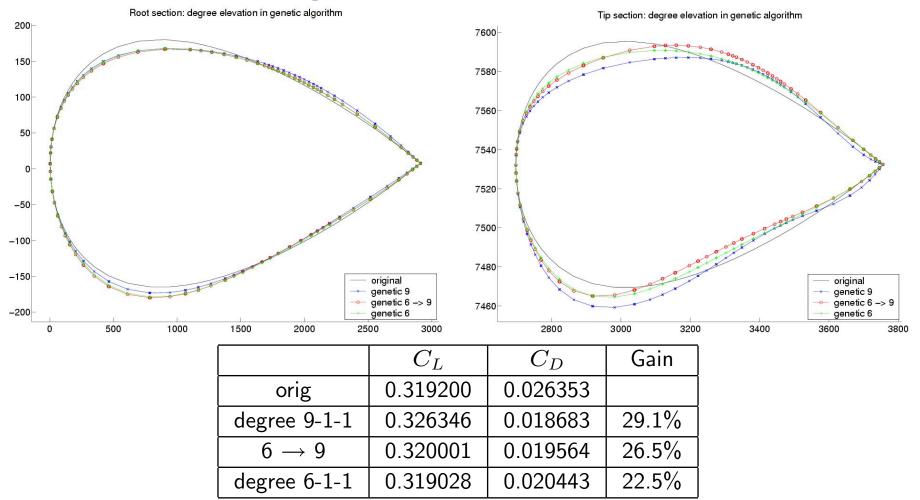




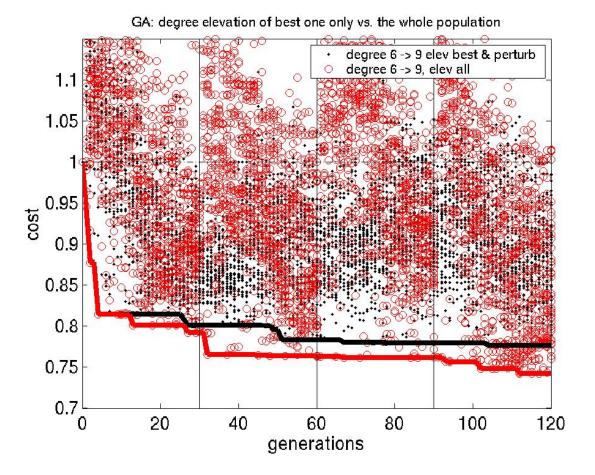




Genetic algorithm: root and tip sections



Genetic algorithm: elevate all or just the best?

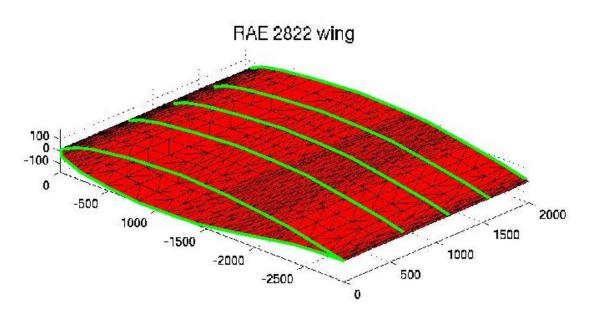


2 GA optimizations with Bezier degree elevation, the same parametrization, difference in inheriting information at elevation process:

- after the elevation, only best individual is kept, rest of the generation is re-set by random perturbation
- after the elevation, all individuals are kept (no loss of information)

Andreoli, Janka, Désidéri

One particular 3D test-case

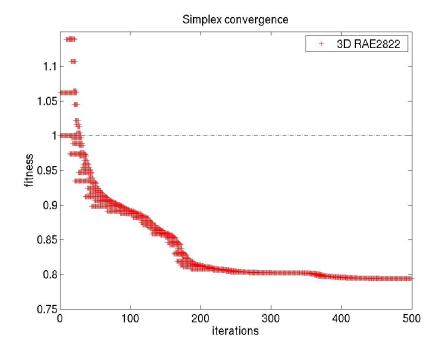


Simplex optimization using 3D RAE2822 wing:

- 2D RAE2822 airfoil extruded in span-wise direction
- 2 symmetry planes at tip and root sections
- degree 6-1-0, diameter = 100, 500 iterations
- Mach = 0.73
- angle of incidence $= 2^{\circ}$

Andreoli, Janka, Désidéri

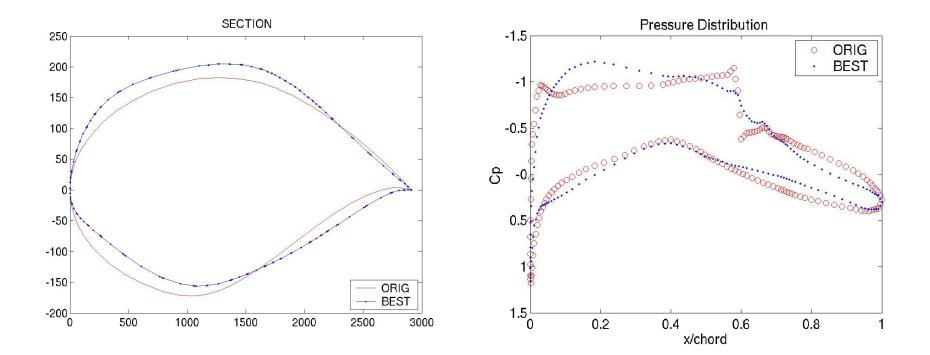
3D RAE2822 results



	C_L	C_D	Gain
RAE2822	0.698773	0.013167	
best	0.699080	0.010454	20.7%

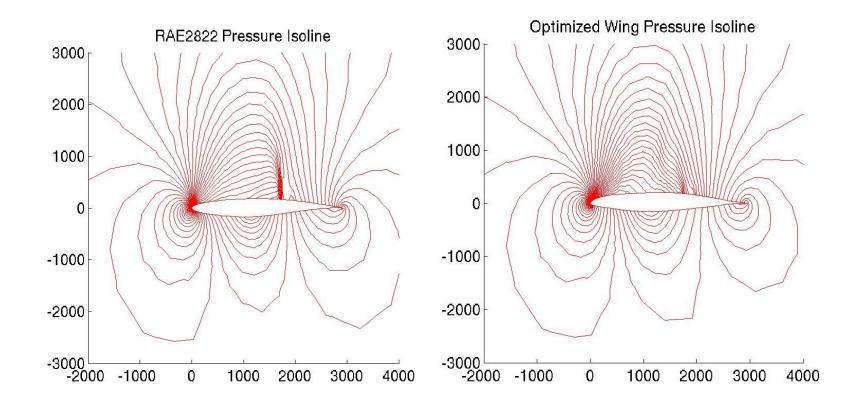
Andreoli, Janka, Désidéri

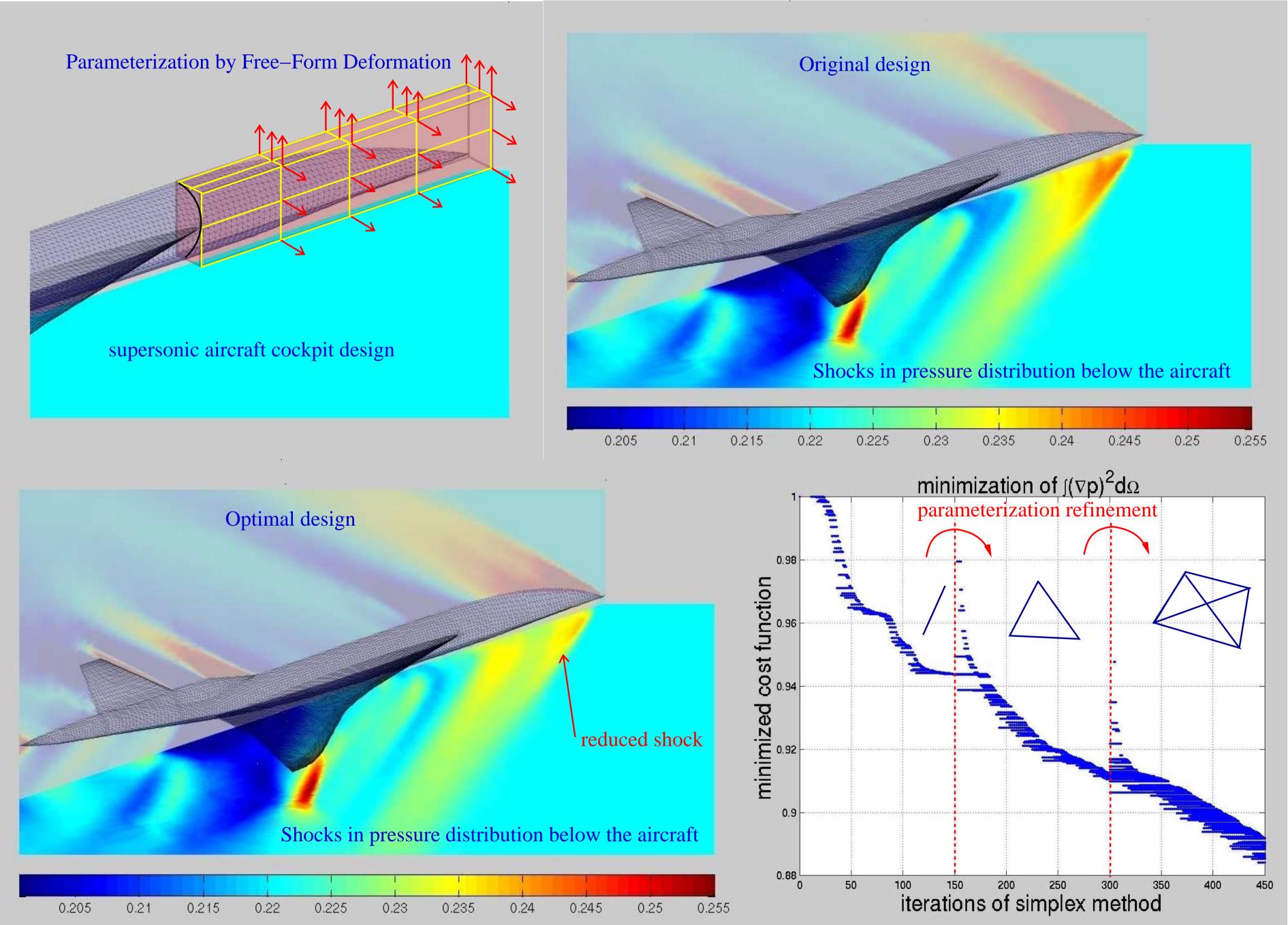
3D RAE2822 results

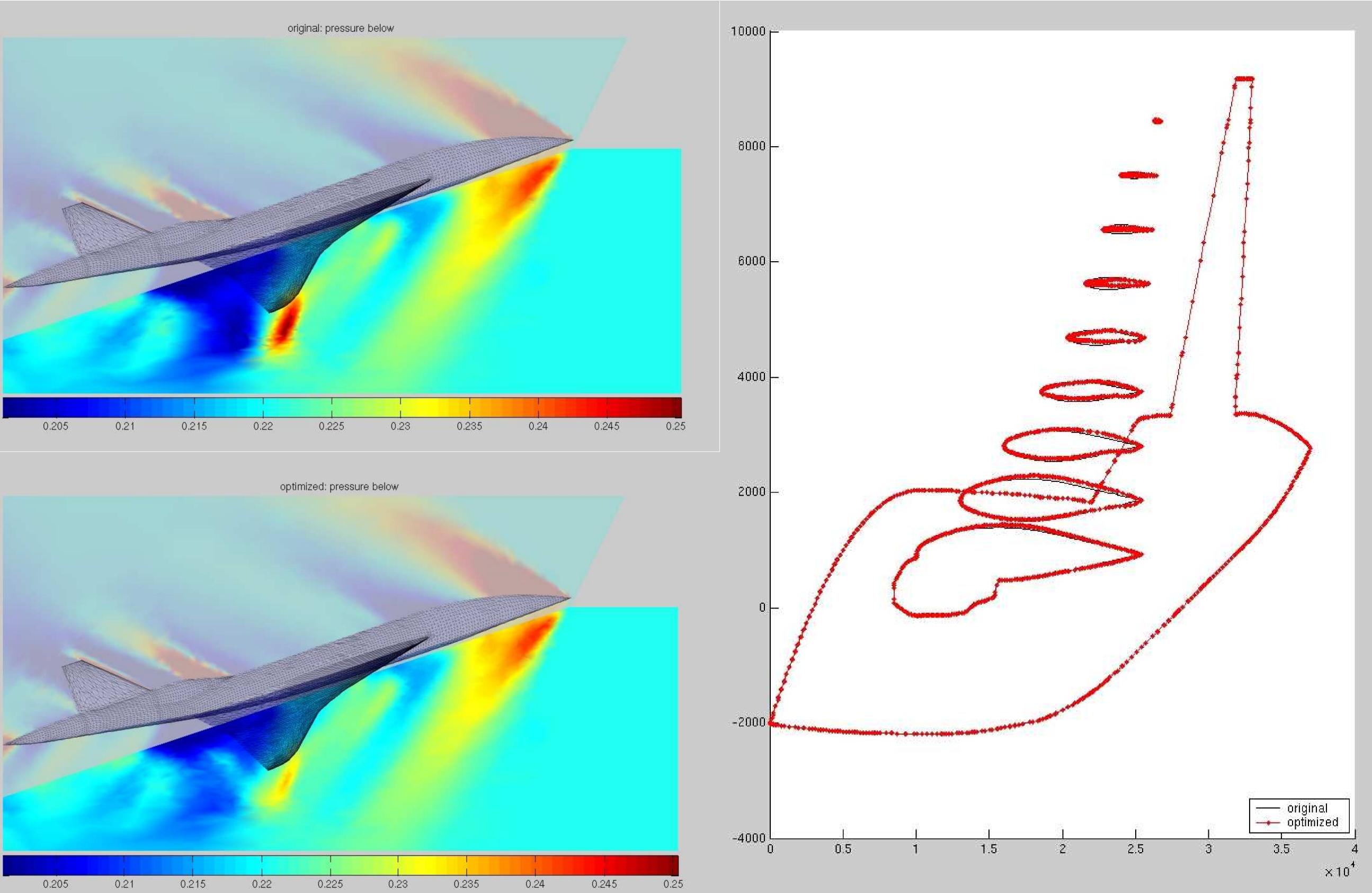


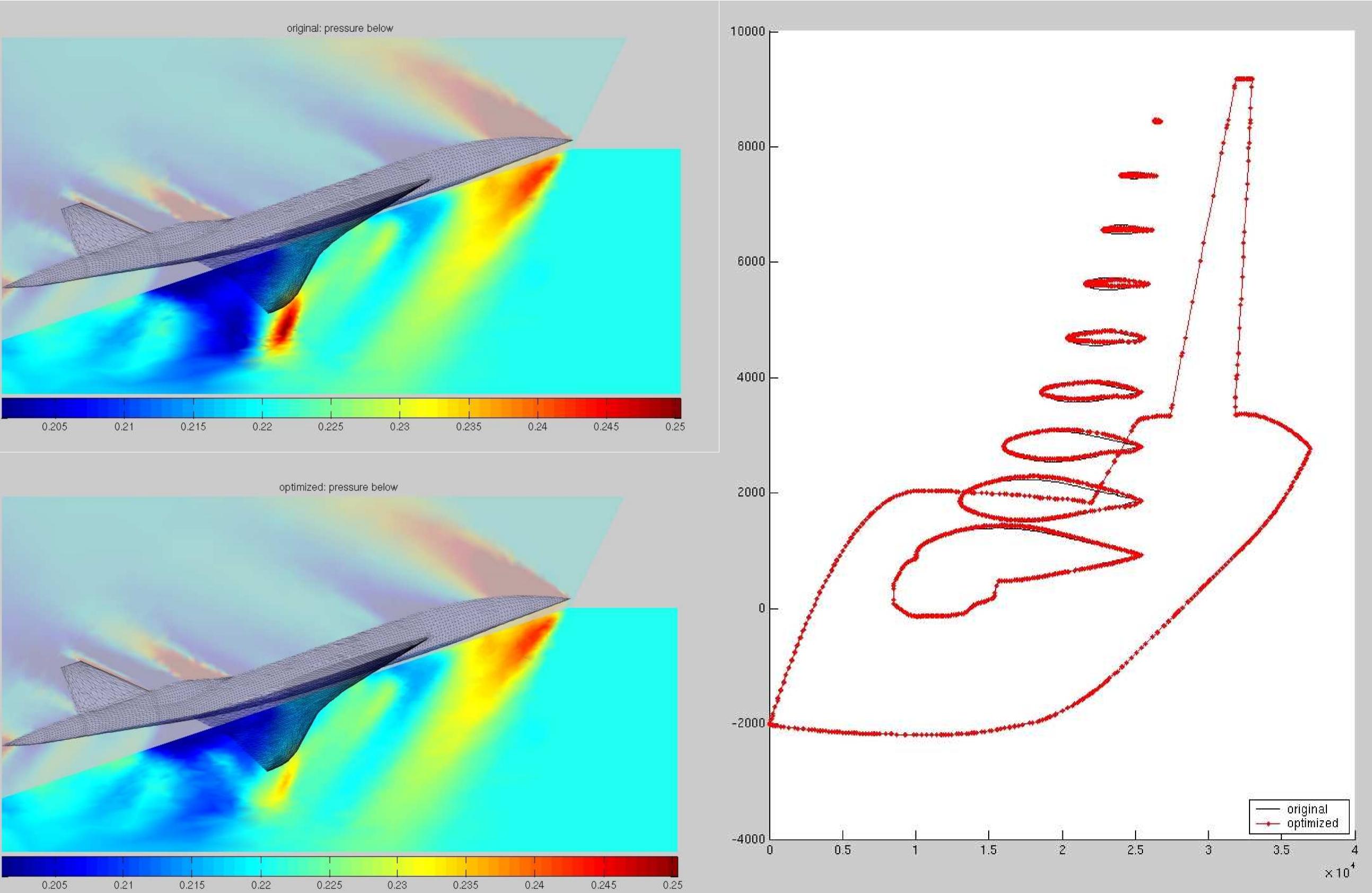
Andreoli, Janka, Désidéri

Pressure Isoline









Conclusions and perspectives

Conclusions:

- Hierarchical optimization algorithm based on multi-level parametrization (via degree elevation) is very promising (efficient with the simplex method)
- Multi-level genetic algorithm: information transfer from level to level still an open question: loss of genetic information vs. loss of search versatility
- Tensorial Bezier parametrization in conjunction with the free-form deformation technique provides a very versatile framework for 3D shape description and potentially also for automatic update of the computational 3D mesh

Perspectives and ongoing work:

- Adaptivity of the parametrization
- Cheap mesh update through free-form deformation

