
A GENERIC ARCHITECTURE FOR AUTOMATED CONSTRUCTION OF
MULTIMEDIA PRESENTATIONS

FREDERIC BES, MURIEL JOURDAN AND FARID KHANTACHE

Unité de Recherche INRIA Rhône-Alpes
ZIRST, 655 avenue de l’Europe, Montbonnot, 38334 St Ismier CEDEX

France
E-mail: {Frederic.Bes,Muriel.Jourdan,Farid.Khantache}@inrialpes.fr

We are interested in applications that automatically generate a dynamic multimedia
presentation adapted to the needs of the user from a database of XML fragments of basic
elements (video, images, paragraphs, etc.). In this paper we present an architecture which goal
is to support developers of such applications. This architecture takes benefits from both the
use of transformation sheets and the use of a constraint solver. Transformation sheets are used
to provide different renderings that depend on discrete parameters; whereas the constraint
solver aims to handle continuous parameters and to optimize both content selection and
formatting instructions taking into account global criteria like the total duration of the
generated multimedia document. We illustrate the use of this architecture by presenting an
application that builds a personalized TV sport news automatically.

1 Introduction

TV-like multimedia presentations will be more and more used to communicate
information: training courses, medical reports, news, on-line shopping
catalogues, etc. However, designing high-quality multimedia presentations is known
to be a complex, time-consuming and error prone task [3,5,10] whatever is the
authoring tool used. Moreover, the information overload problem associated with
the Internet and the frequent updates of some information like news or medical
reports raise a crucial need of information services that are customized for each
individual user [4,15]. Typical examples of such information services are:
educational courses adapted to the student’s knowledge, automatic design of
medical reports, personalized TV-news.

Whereas many works have been done in those areas on the run-time adaptation
of the navigational structure of a hypermedia document [8], few works focus on the
automatic generation of multimedia presentations. Moreover existing works often
propose solutions linked to some particular area and it is not easy to evaluate how
these specific experiments can help to implement other kind of applications. This is
why we propose an architecture to help the development of personalized multimedia
information services.

Starting from the twofold analysis that using transformation sheets is today the
best way to associate different presentations to the same set of objects depending on
discrete parameters; and that global criteria, like a user preference on the total

duration of the multimedia document get at the end, are easy to handle by using
optimization techniques, the architecture takes benefits from these two technologies.

We illustrate the use of this architecture by presenting an application that builds
a personalized TV sport news taking into account, among others parameters, the
favorite teams of the user, the style of the summary she/he wants to see.

The second section introduces the area of automatic document generation. The
third one is devoted to a structured presentation of related works that explains why
we base our application on the use of transformation sheets and optimization
techniques. The fourth section makes an overview of the architecture before
presenting it in details through the development of a working example in the last
section of this paper.

2 A KIND OF DECISION PROCESS

We consider in this paper that a personalized multimedia presentation system is an
application that takes some user parameters (content preferences, capabilities...) and
technical parameters (like screen size or bandwidth) and generates a dynamic
multimedia presentation from a set of XML fragments. Dynamic multimedia
presentation means that objects are organized both in time, space and hyperspace
(hyperlink structure). We do not make any hypothesis on how user parameters are
obtained: either by asking the user to answer some questions or by using some user
modeling techniques, like collaborative filtering [20].

The two following examples will help the reader to understand the kind of
applications we are interested in:
• personalized sport report: deliver a TV-like report after a championship day to

a user who can choose the total report duration, the teams for which she/he
wants to have detailed information (her/his favorite teams), the kind of the
report: an exhaustive one (at least some minimal information about each match
is given) or not (the maximum information about each favorite team is given).
This is the example detailed later on.

• personalized medical survey: deliver a multimedia presentation that describes
the main patient surgeries by using synchronization between a graphical
representation of a patient body, some speech and textual informations [5].

The development of such kind of applications can be thought as a decision process
that has to handle two kinds of decision:

content selection: which objects must participate to the final multimedia
presentation ?

object organization: how objects are organized in time, space and hyperspace
dimensions ?
One difficulty encountered in these applications is to know in which order content
selection and content organization (through the three dimensions) must be done. For

instance, deciding if an object with an intrinsic duration d has to be display in the
presentation which whole duration must be D (this is a user’s request) strongly
depends on the temporal organization of this presentation. On the other hand, the
temporal order between two objects may depend whether another object is present
or not in the final presentation. Actually, there is no strong argument in favor or
against one solution: in some situations it is better to select organization before
content (in order to perform a relevant selection), while in other ones the content
has to be selected first, for instance to adapt the spatial organization to the selected
content. The example of articles presentation from a catalog can illustrate this
problem.

3 Related works

In order to understand the choices made in the architecture we propose, we present
different existing methods that are used to develop automatic generation of
presentation. We have group them together in the five following approaches.

3.1 Programming based approach

It is obvious that programming languages like JAVA can be used to develop a
system that generates personalized multimedia presentation. On the Web, this
approach is mainly used by CGI scripts. Well known disadvantages of this approach
are: their lack of independence between the programming code and the piece of
information; the difficulty to reuse some parts of an application inside another one;
…

3.2 Using templates and selection instructions

Thanks to the use of more descriptive languages like XSLT [25], Northolk [16] or
more imperative ones like PHP [17], JSP [12], ASP [14] it is possible to write
virtual documents (they are dynamically generated on demand) that merge static
data, i.e. information that does not change, with dynamic ones, i.e. information
dynamically extracted from external data sources. This approach can be thought as
the design of a template in a presentation language (HTML for web pages or SMIL
[23] for multimedia presentation) that contains the static part of the document and
some selection instructions that express how to collect the dynamic data (like query
instructions in a database). It suits well to applications in which content selection
can be split into several local database requests. But this approach does not allow to
handle easily global content selection criteria like: choose the set of videos that
maximize the user interest and such that the sum of video duration is lower than D.
Moreover even if the developer implements global criteria through successive
requests it is done at the expense of time performances of the application.

3.3 Using a set of transformation sheets

Transformation sheets are a well known way to associate different presentations
(like different layout organizations) with the same set of objects. These
presentations are usually deduced from a logical structure (for instance a DTD)
associated with the objects. Personalization can be achieved by associating one
transformation sheet with each parameter value that controls the application.

An example of such kind of architecture can be found in [26] in which the user
can choose between three different styles to present the same set of objects. The
obvious limitation is that it is only possible to handle discrete parameters.

In [19] more flexible transformation sheets are presented. They are based on
constraints use. For instance the document layout can be expressed in the style sheet
by using high-level constraints (centering, alignment, etc.) that will be solved by
using a constraint solver. Doing so, the application has some possibilities to adapt
the document to the size of the user’s screen. However some drawbacks remain,
since it does not provide the designer with a powerful way to select information,
only filtering on some local criteria can be easily expressed.

3.4 Optimization algorithms

A lot of works in the area of automatic generation application put the emphasis on
its content selection step and formalize it as an optimization process [7,13,15].

For example, in [13] the system tries to create a TV news program that fits the
user interests (a lot of international political news followed by few sport news for
instance) and a maximal duration constraint. The database contains a set of
individual news classified by categories. Moreover a numerical value is associated
with each news to express its degree of importance. The content selection problem
is then equivalent to find a news subset that maximize the user interest while
respecting the duration constraint. Then the authors propose a heuristic that makes
the resolution of this NP problem more efficient. Once the content selection has
been done, the TV news program simply consists in concatenating the selected
elements (i.e. sequential presentation). A similar approach is used in [15] to
generate music program (a concatenation of music) adapted to user preferences (at
least 30% female-type voice or at most 20% “Jazz style” for instance).

These works seem to be very efficient for selecting content on global criteria
but they mainly address some specific applications (the proposed heuristic strongly
depends on addressed problems) and do not propose a more general solution to ease
the design of various kinds of generation applications. Moreover, they only consider
a simple and unique way to temporally organize the selected content (spatial and
hyperlink organization are not addressed at all).

Only the approach described in [7] takes the temporal organization issue into
account but in such a way that the content selection is done without any knowledge
on the future organization of the objects (content selection is performed before
temporal organization decision). As a consequence the selected content is often not

adapted to the user request. For instance, ever if the user wants a multimedia
document of 30 min, she/he may get something significantly shorter than the wished
30 min.

3.5 Knowledge based approach

People from knowledge based area make some propositions to use their experiment
to solve “automatic generation like” problem [1,4,5,18]. The idea is to use different
knowledge bases (on the content properties, on some principles for temporal
organization, on graphical rules…) in order to be able to answer to a large variety of
requests (even those not planned when the system was designed) by decomposing
the initial request in some sub-goals to reach. Thus, the content selection and the
objects organization decisions are broken into several steps and are distributed
through the application. This distributed way used to handle decisions makes global
criteria difficult to take into account.

3.6 Synthesis

Application based on transformation sheets or templates have the same kind of
advantages and limitations: they suit well to associate different well-fashioned
rendering (depending on discrete parameters) to a set of existing objects. However,
they fail to easily express global criteria. On the contrary, formalizing the automatic
generation application as an optimization problem provides the designer with a
powerful way to drive content selection upon global criteria but it keeps open the
problem of content organization. Moreover, only specific applications have been yet
handled by such an approach.

These two approaches use a two steps decision process but in the opposite
order. Whereas the content is selected first while using optimization constraints and
then an organization is set on the selected contents, approaches based on
transformation sheets select first an organization and then the content that fits well
with the selected organization. Concerning this aspect knowledge based applications
use an interesting alternative solution since they break each decision into several
entities and thus are able to adapt the decision order to local situations.

Another thing that we have learnt through this study is that few works propose
generic solutions able to help anyone that wants to design and maintain an
automatic generation application. This is why it is important for us to propose both
a methodology and a software architecture that are not tuned for a particular
application. The architecture we propose combines the advantages of the use of
transformation sheets and optimization tools described above and is also an attempt
to break the granularity of the decision steps (we have seen for instance in the
"knowledge approach").

4 Architecture Overview

We only give here an overview of the architecture. The details of each component
will be given in the next section through the description of the personalized sport
news example.

The main principle of our architecture is that a transformation sheet is used first
to build a coarse structure of the final document and then an optimization step is
used to refine this structure. In these two steps, objects are selected and some
decisions about objects organization are taken. The idea is that the transformation
step selects more objects than the wished final set while leaving the optimization
step to remove objects from this first selected set. Concerning the organization of
the presentation the principle is that the transformation sheet gives a global structure
of the document while keeping unspecified some formatting values (objects
duration, objects size…). This is one goal of the optimization process to fix these
formatting values.

The proposed architecture is described in Figure 1. An application built on this
architecture takes as input an XML database, a set of parameter values, several
transformation sheets and sets of constraints. The application generates a formatted
document through three different components. The first component (named
Analyzer) aims to take into account the values given by the user for each input
parameter in order to select:
• one transformation sheet TSi ;
• the constraints set CSjk associated to the each parameter value Vjk (value Vj of

Parameter Pk).
Then, the selected transformation sheet is used by the second component (named
Transformer) in order to apply it on the XML sources. Finally, the third
component (named Optimizer) takes into account the constraints sets selected by
the first component plus the set of global constraints, in order to decide which
objects from the intermediate document must be removed and which exact values
must be associated with open formatting parameters.

The developer of a generation application that wants to use our architecture has
to define:
• The input parameters that control the application (P1, …, Pp), including both

the user choices and the parameters coming from the environment (screen size
for instance);

• Several transformation sheets that are associated with the values of the input
parameters (TS1, …, TSt). For instance, the developer can write different
transformation sheets for each kind of target devices. These transformations
have to match the XML structure given as input of the application.

• Several sets of constraints that may depend on each value of the input
parameters. Suppose for instance, that the user can choose to see a multimedia
document without any audio, then a constraint that specified that the duration of
each audio is equal to zero must be associated to the value “without” of the

parameter untitled “with or without sound” . It means that this constraint will be
selected by the Analyzer component if and only if the “without” value is
selected by the user.

• A set of global constraints that does not depend on the input parameters value.
These constraints express some information about the application domain. For
instance, we can suppose that in a sport news application, showing the
summary of the match is always more important than showing some interviews.

Figure 1. Architecture for automated construction of multimedia presentation

The main feature of this architecture is the use of a constraint solver both to globally
optimize the content selection and to perform some parts of the formatting phase in
order to handle continuous parameters like global duration or screen size. Moreover
we choose to select the transformation sheet before selecting the content in order to
constrain this selection with some information deduced from the transformation
sheet.

5 The architecture in use

We present in this section the architecture in details by describing how we develop
the personalized sport TV-news example by using this architecture. The language
target for the generated presentation is the SMIL 1.0 language. This choice has been
done because of the need of the temporal dimension. But SMIL 1.0 is one of the
simplest language to describe multimedia documents. Even if it can describe a quite
complex temporal organization, it does not provide any operators for the spatial
dimension. This point is important for us to evaluate the power of our constraint
language.

5.1 The personalized sport TV-news example

The application presented to illustrate the use of the architecture is aimed to
generate a personalized TV-like sport news report about the results of a football
championship day. The user can express her/his favorite teams and can choose to
see either a report that focuses on these favorite teams or an exhaustive report of the
day. The user can also set a constraint on the total duration of the report and decide
to have or not have any audio in the document. Finally, the application is able to
take into account the kind of device used by the user (large screen, pocket PC…)
and thus to produce a multimedia document adapted to the resources of this device.

a) b)
Figure 2. Snapshot of a long summary a) and a short summary b)

Whatever the user choices are, the designer of this application decides to build
a document that has the same temporal structure: it basically presents sequentially
several matches by using either a long summary of the match or only a short
summary depending for instance on the total duration of the document. These two

kinds of summaries do not use the same spatial organization (Figure 2). After this
sequence some global information about the championship day (results and ranking)
are presented. In fact the user choices modify first which matches are presented in
the main sequence and in which order then how long is the time associated with
each summary and finally which media types (video, sound or only text and picture)
used.

5.2 The Analyzer component

This component analyses the input parameters in order to select the transformation
sheet that will be used by the Transformer component. It also builds the constraints
set linked up to these values and that will be merged with the global constraints in
order to be used by the Optimizer component.

In our example, the user of the application has to set four different values:
1. The duration of the report. She/He has to choose a value between 5mn and

60mn.
2. Her/His favorites team.
3. The kind of report she/he wants to see: an exhaustive report or a focused report

on her/his favorite teams.
4. A report with audio object or a report without any audio.
Moreover, one environment feature is taken into account by the application: the
screen size (only small or large screen values).

 (Parameter, value) Constraints (not formally expressed)

(P1, d) - total duration equals d

(P2, t1,t2,…,tn) - use teams t1,t2,… , tn as favorites teams

(P3,exhaustive) - each match is presented during approximately the same
amount of time.

(P3,focused) - priority for favorite teams

(P4,without) - duration of audio objects must be null
- duration of objects which type is interview must be null

(P5, small) - no scroll bar
- use time sequencing for large text presentation

Figure 3. Constraints associated to each parameter.

Once these five values have been specified, the component selects a
transformation sheet TSi. Its choice is simply based on the description made by the
developer of which set of parameter values corresponds to which transformation
sheet. This description is contained in the header of the transformation sheet. In our
example, the developer decides to write four transformation sheets that depend on
both the first user parameter (kind of report) and the screen size value. It means that

a first transformation sheet handles the case of an exhaustive report shown on a
large screen, a second one handles the case of an exhaustive report on a small screen
and so on. The second goal of the Analyzer component is to select the set of
constraints associated with the effective parameter values. We give in Figure 3, the
intuitive meaning of each constraint associated with their parameter values. The
exact language used to express them will be presented while describing the
Optimizer component.

5.3 The Transformer component

Once the transformation sheet has been chosen, the Transformer component applies
the transformation to the XML data. The transformation aims to build the coarse-
grained structure of the final document: selecting the maximal set of objects that can
be useful inside the final document and deciding the global objects organization in
each dimension (for instance, to decide that the document presents in sequence a set
of subparts, each of them being a parallel composition of some basic objects).
Indeed, to adapt the document in a finer way, we let the Optimizer component
refining the document resulting from the transformation: by removing some objects
and specifying some formatting values (like objects duration and objects size) that
the transformation process has not yet specified.

Figure 4. An example of the XML sources (team and match).

An example of XML sources are shown in Figure 4. The transformation result
shown in Figure 5 corresponds to the case of an exhaustive report presented on a
large screen. It means that the user is mainly interested in some favorite teams but
want to see all the match summaries. So for each match that does not involve a
favorite team, the transformation produces only a short summary (it should last less
than 5mn) whereas for each match involving one favorite team, the transformation
produces both a short summary and a long summary that contains all information
included in the XML data. These summaries are always built for large screen only.

In the "match" element of Figure 4, we can see that there is two "summary"
elements. Both will be transformed in the target language (elements with id equals
to "summary1" and "summary2" in Figure 5).

Figure 5. Intermediate SMIL document, result of the transformation process.

The final choice between the short and long summaries is under the
responsibility of the Optimizer component. In our example, only one of the two

summary elements will be display in the final presentation (the element with id
equals to "summary1" in Figure 8). Thus, the developer has first to express this
alternative using the constructions proposed by the target language and then to
express some constraints that will be used by the Optimizer to select only one object
contained inside the alternative. As we developed our example using SMIL as target
language of the transformation, we used a parallel construction between the long
and the short summary and a constraint (one of the global constraints in Figure 7)
that expresses the mutual exclusion between these two kinds of summaries. Note
that we can’t use here the "switch" element of the SMIL 1.0 language. Indeed, the
test made on the elements it contains to display them in exclusion manner can only
be computed on simple discrete parameters (like language, bitrate or screen depth)
whereas we would need more global criteria or complex functions. Here, the choice
is given by the computed duration that best fit the given parameter.

The global temporal structure given by the transformation process is a
sequential presentation of each match that begins with the matches involving at least
one favorite team (Figure 6).

Figure 6. Temporal organization of the generated presentation.

5.4 The Optimizer component

The Optimizer component works on the document resulting from the transformation
process and builds the final multimedia document. Its first goal is to decide which
objects have to be removed and its second goal is to set a value to each unspecified
formatting values. In our example, the main selection will be the choice between the
long summary and the short summary for each match that proposes both. The
formatting and content selection decisions are controlled both by the set of global
constraints and by the ones selected by the Analyzer component.

Thus the role of the developer according to this component is to express the
constraints that will guide the solver in the formatting and the content selection
phases. From intuitive ideas like "each match is presented during approximately the
same duration", she/he has to express real constraints. To do so, the architecture
needs to provide her/him with a language. This one must be able to express some
classical needs when dealing with formatting issues (for instance, instructions to
format a table) like done in XSLFO [24] or CSS [22] languages. Of course, it must

also integrate the multimedia dimension of the document (by proposing for instance
instructions to distribute a global duration through a temporal sequence) like it is
done in Madeus [9].

But it has also to express different strategies for achieving these formatting
instructions. For instance, the developer needs to express that a global duration must
be distributed through the objects of a temporal sequence by allowing the formatter
either to remove objects with some level of priority or to remove objects beginning
by the end of the sequence. In order to perform some experiments with our
architecture, we have currently defined a first basic language that should be
extended in the future to be more expressive. We present an overview of this
language by presenting its three main features and showing how some constraints
expressed in Figure 3 and some global constraints useful for our working example
are expressed. Finally, the constraints expressed by the developer of our working
example are summarized in Figure 7.

(Parameter,
value)

Constraints (not formally expressed)
Explicit Constraints

(P1, d) - total duration equals d - duration(element[id="Summary"]) = d

(P2, t1,t2,…,tn) - use teams t1,t2, …, tn as favorites teams - priority((element[id="team_t1"],1),(element[id=
"team_t2"],2)… (element[id="team_tn"],n))

(P3,exhaustive) - each match is presented during
approximately the same amount of time.

- time_well_balanced(element[id="Summary"])

(P3,focused) - priority for favorite teams - remove_last_element_first(element[id="Summary"])

(P4,without)
- duration of audio objects must be null

- duration of objects which type is
interview must be null

- duration(element[media="audio"])=0

- duration(element[type="interview"])=0

(P5, small)
- no scroll bar

- use time sequencing for large text
presentation

- scrollbar="no"

- cut(element[media="text"]) =time_sequence

Global Constraints
- mutual_exclusion(element[id="LongSummary"], element[id="ShortSummary"])

- priority((element[id="MatchSummary"],1),(element[id="Interview"],2))

- remove_low_priority_first(element[id="Summary"])
- remove_low_priority_first(element[id="Match"])

Figure 7: Constraints needed for the example

Addressing

One feature of our architecture is that the constraints are separated from the
document on which they apply. So the first need for this language is to be able to

address some parts or elements of the documents. For instance in the constraint
duration(element[media="audio"])=0 associated with the constraint "duration of
audio object must be null" addresses all audio objects of the document.

Formatting strategies

One key point of this language is to provide the developer with some
possibilities to control the formatting phase performed by the Optimizer. For
instance, the constraint "each match is presented during approximately the same
amount of time" is explicitly expressed by the constraint
time_well_balanced(element[id="Summary"]) where Summary is a sequential
composition produces by the transformation sheet. The time_well_balanced
instruction asks the solver to give children of this sequence approximately the same
duration (as long as possible).

Removing strategies

The developer has also to guide the Optimizer when it fails to fulfill a
constraint and thus has to remove some objects. For instance, while failing to format
a temporal sequence with a fix duration, there are a lot of possibilities to reduce the
set of objects: removing last objects first, removing objects with low priority, etc.
Thus, the language has to enable the developer to express these strategies and also
some priority levels. To do so, she/he can use the following instructions :
priority(element(),1)(element(),2))…(element(),n)) to set priorities and
remove_low_priority_first(element()) or remove_last_element_first(element()) to
decide how to remove objects into a temporal sequence. Another thing that the
developer should be able to express is some kind of mutual exclusion in order to
solve alternatives between elements that are still present after the transformation
step. To do so, we provide her/him with a mutual_exclusion(element(), element())
instruction that can be used in our example to express mutual exclusion between
short summaries and long summaries.

It is important to understand that all formatting instructions given by the
developer have not to be satisfied by the solver, but this one has to find a solution
that is the best compromise between these (sometime contradictory) orders. To do
so, the Optimizer needs to know which level of priority must be associated with
each language instructions. Even if it is possible to let the developer of the
application to set these levels of priority, we consider that it is a too difficult task
and we prefer to associate a default priority level with each instruction.

Given these constraints, expressed by the developer of the application, the first
thing done by the Optimizer is to translate both the semantic of the document

produced by the transformation and the high level constraints given by the
developer into constraints understandable by the solver. This sub-step is handled by
the Translator component that takes place before the Solver inside the Optimizer.
The semantic interpretation corresponds to the translation of the each object into
variables and each relation into constraints between those variables following the
semantic of the target language (in our application: SMIL). The second translation,
that handles the high-level constraints, strongly depends on the temporal and spatial
organization of the document resulting from the transformation process. For
instance, the constraint duration(element[id="Summary"])=d is translated into the
sum of all objects included in the document if and only if these objects are
organized in sequence. Given the Transformer tasks presented above, it is easy to
understand that the Translator component is specific to a language used to describe
multimedia document.

Figure 8. Result of the optimization on the previous document

Once this translation phase has been done, the Solver computes a solution: it
sets a value to each variable (the best compromise between the set of constraints).
Theses values are then integrated into the document as object attributes. This is the
last step of our architecture and in our example it gives the SMIL document in the
Figure 8. In this document, all the duration attributes of the elements have been
computed. For instance, the duration of the global sequence is formatted to 900
seconds. The choice between the short and the long summary has been fixed in

favor of the long summary and we can see in it that the video of the second
interview has been suppressed.

Before concluding this paper, we briefly present the technical state of the
architecture we propose. Its implementation is based upon the use of the Kaomi
toolkit [11]. This one aims to ease the design, the transformation and the
presentation of multimedia documents. Kaomi integrates a XSLT [25] Xalan [27]
processor that we use to develop both the Analyzer and the Transformer. Of course,
the core element of our architecture is the Optimizer. It is also the most complex
one. Kaomi contains a SMIL parser that we use to build the Translator sub-
component. Moreover, it provides the developer with some basic formatting
supports that are based on the use of the Cassowary constraint solvers [2], a time-
efficient solver for linear constraints. We currently experiment its use to perform
some kind of optimizations problems that we encounter in automatic generation
applications. For instance, how to format a temporal sequence while following some
removing strategies. In parallel, we are connecting the Scilab [6] scientific software
package for numerical computations into the Kaomi toolkit in order to express more
general constraints and to take advantages of Scilab optimization support.

6 Conclusion

After a detailed analysis of existing works on automatic generation of multimedia
documents that highlights the absence of general proposition to handle generation
applications that deal with global criteria, we propose both a methodology and a
software architecture to help the development of such kind of application. This
architecture takes benefits from both the use of transformation sheets and the
expressive power of constraint solvers to easily and efficiently associate different
rendering to the same set of objects and to handle global criteria during the
generation process. Taking both content and organization decisions allows to build
multimedia documents having nice rendering (like with template approaches) while
choosing the best content to fit global criteria. Moreover, thanks to the use of
constraints some properties that would be tedious to express by using only a
transformation sheet, are easily expressed in terms of constraints. For instance, the
“with-or-without audio" parameter can be handled by using some ‘switch’ rules in
each transformation sheet, but it is much easier to add the constraint:
duration(element[media="audio"])=0 if necessary. Beyond the implementation tasks
described above, our main goal is to extend the language used to describe high-level
constraints in order to cover more generally the needs of documents generation
applications.

7 Bibliography

1. André E. and Rist T., "Generating Coherent Presentations Employing Textual
and Visual Material", AI Review 9 (1995) pp. 147-165.

2. Badros G. J. and Borning A., “The Cassowary Linear Arithmetic Constraint
Solving Algorithm: Interface and Implementation” , Technical Report UW-
CSE-98-06-04 (1998).

3. Boll S. and Klas W., "ZYX - A Multimedia Document Model for Reuse and
Adaptation", In Transactions on Knowledge and Data Engineering, DS-8
Special Issue, IEEE (2000).

4. Bordegoni M., Faconti G., Feiner S., Maybury M., Rist T., Ruggieri S.,
Trahanias P. and Wilson M., "A Standard Reference Model for Intelligent
Multimedia Presentation System", Computer Standards and Interfaces, Special
Issue on Intelligent Multimedia Presentation Systems, 18(6-7) (1997) pp. 477-
496.

5. Dalal M. et al., "Negotiation for Automated Generation of Temporal
Multimedia Presentations. ", Proceedings of ACM Multimedia’96, ACM Press
(1996) pp. 55-64.

6. Gomez C., "Engineering and Scientific Computing with Scilab" (INRIA -
Rocquencourt Ed., France, 1999) 512 pages; http://www-rocq.inria.fr/scilab,
May 2001.

7. Hakkoymaz V., Kraft J. and Ozsoyoglu G., "Constraint-Based Automation of
Multimedia Presentation Assembly", Proceedings of ACM Multimedia’99,
ACM Press (Orlando, USA, 1999).

8. Henze N. and Nejdl W., "Adaptivity in the KBS Hyperbook System", 2nd
Workshop on Adaptive Systems and User Modeling on the WWW, (Toronto,
1999).

9. Jourdan M., Layaïda N., Roisin C., Sabry-Ismail L. and Tardif L., "Madeus,
an Authoring Environment for Interactive Multimedia Documents", ACM
Multimedia’98, ACM (Bristol, UK, 1998) , pp. 267-272.

10. Jourdan M., Roisin C., Tardif L. and Villard L., "Authoring SMIL documents
by direct manipulations during presentation", World Wide Web, Balzer Science
Publishers, 2 (4) (1999).

11. Jourdan M., C. Roisin and L. Tardif, "A Scalable Toolkit for Designing
Multimedia Authoring Environments'', Multimedia Tools and Applications
Kluwer Academic Publishers, vol. 12, num. 2/3 (2000), pp. 257-279.

12. JSP, http://java.sun.com/products/jsp, May 2001.
13. Merialdo B., Lee K.T., Luparello D., Roudaire J., "Automatic Construction of

Personalized TV News Programs", Proceedings of ACM Multimedia’99, ACM
Press (Orlando, USA, 1999).

14. Microsoft ASP, http://www.microsoft.com, May 2001.
15. Pachet F., Roy P. and Cazaly D., "A Combinatorial approach to content-based

music selection", IEEE Multimedia (2000).

16. Paradis F. and Vercoustre A.-M., "A Language for Publishing Virtual
Documents on the Web", in International Workshop on the Web and
Databases (Valencia, Spain, 1998).

17. PHP, http://www.php.net, May 2001.
18. Rutledge L., Hardman L., van Ossenbruggen J. and Bulterman D.C.A.,

"Adaptable Hypermedia with Web Standards and Tools", The Active Web -- A
British HCI Group Day Conference (London, 1999).

19. Rutledge L., Davis J., van Ossenbruggen J. and Hardman L, "Inter-
dimensional Hypermedia Communicative Devices for Rhetorical Structure",
In: Proceedings of International Conference on Multimedia Modeling 2000
(MMM00) (Nagano, Japan, 2000) pp. 89-105.

20. Sarwar B, Karypis G., Konstan J. and Riedl J., "Item-Based Collaborative
Filtering Recommendation Algorithms", The Tenth International World Wide
Web Conference (WWW10) (Hong-Kong, 2001).

21. Villard L., Roisin C. and Layaïda N., "A XML-based multimedia document
processing model for content adaptation", Digital Documents and Electronic
Publishing (DDEP00) (2000).

22. W3C, CSS2 Recommendation (1998); http://www.w3.org/TR/REC-CSS2,
May 2001.

23. W3C, SMIL Recommendation (1998); http://www.w3.org/TR/REC-smil,
May 2001.

24. W3C, XSL Candidate Recommendation (2000); http://www.w3.org/TR/xsl,
May 2001.

25. W3C, XSLT Recommendation (1999); http://www.w3.org/TR/xslt.html,
May 2001.

26. Weitzman L. and Wittenburg K., "Automatic Presentation of Multimedia
Documents Using Relational Grammars", Proceedings of 2nd ACM
Conference on Multimedia, ACM Press (San Francisco, California, 1994)
pp. 443-451.

27. Xalan, http://xml.apache.org, May2001.

