
DeSCal — Decentralized Shared Calendar for P2P and Ad-Hoc Networks

Jagdish Prasad Achara and Abdessamad Imine

Nancy University and INRIA Nancy-Grand Est, France
Email: {Jagdish.Achara, Abdessamad.Imine}@inria.fr

Michael Rusinowitch

INRIA Nancy-Grand Est, France
Email: Michael.Rusinowitch@inria.fr

Abstract—This paper describes the design and implemen-
tation of a Decentralized Shared Calendar (abbreviated as
DeSCal), a distributed application which provides users a
decentralized infrastructure to share their calendar events with
selected users in a dynamic group. Although being a distributed
application, DeSCal is as responsive as a personal calendar. It
achieves this high responsiveness by keeping a local copy of
the shared calendar at each participating user. Consistency of
these replicated copies of the shared calendar is carried out in a
decentralized fashion using Operational Transformation (OT)
approach. OT allows users to concurrently modify the shared
calendar and exchange their updates in any order since it
ensures the convergence of copies of the shared calendar in all
cases. To prevent unauthorized access by illegal users, DeSCal
is endowed with access control mechanism on the local copy of
the shared calendar. It employs a flexible access control model
based on replicating the access data-structure at each user site
to overcome the latency problem. Also, access control on the
shared calendar events is dynamic i.e. users are able to change
the access rights on their shared calendar events at any point of
time after the creation of an event. In short, DeSCal is totally
decentralized, scalable and self-configurable i.e., no need of a
third party to manage it.

Keywords-Consistency; Access Control; Decentralized; Scal-
ability, Concurrency; Responsiveness;

I. INTRODUCTION

Both personal as well as shared calendar provide a user the

functionality to keep track of his important events. However,

shared calendar simplifies the task of sharing an event

information with other persons involved, which otherwise,

has to be done through some other means like phone, email

or personally meeting these persons. Further, it may not

always be appropriate for a user to share each event in the

calendar with other users in the group. A user may have

some personal events which he would like to share only

with some selected user(s) in the group, not to everyone.

To deal with this aspect of shared calendar, there must

be some mechanism for access control on calendar events.

Here, sharing of an event may correspond to allow other

users for any subset of <Read, Delete & Edit> operations

on calendar events.

In order to avoid a single point of failure, the shared

calendar should not depend on a central entity. A centralized

shared calendar will no more work if the central entity

is down and all participating users will be affected by it

instantly. A decentralized shared calendar provides far better

Funded by ANR Streams project and ARC INRIA Access project.

fault tolerance as compared to its centralized counterpart.

An attacker trying the decentralized shared calendar to stop

functioning will only be able to do so if he can successfully

perform Denial-of-Service (DoS) attack on all the users of

the shared calendar. On the other hand, it will take less

efforts by an attacker in case of centralized shared calendar

as he has to hijack only central entity on which centralized

shared calendar depends. Besides, shared calendars based on

a third party central server like Google Calendar [1] prevents

users to create a dynamic Ad-Hoc group as users always

have to communicate through this central server. In the case

of third party dependent centralized shared calendar, there

is no direct communication between users and they need to

have a constant connection to this third party central servers

(e.g. an Internet connection to connect to Google Servers

to use Google Calendar). Above all, using a third party for

sharing calendar events between a group of users may also

lead to sacrificing the confidentiality of these users’ events

which is possibly an important concern for a user.

A. Motivation

The motivation behind this work lies in the design and

implementation of a decentralized shared calendar where a

third party is not needed. This makes shared calendar more

robust against possible attacks and users no more have to

tolerate the fact of disclosing their events to a third party.

Subsequently, such a shared calendar should enable users

to form a group locally in an organization where they can

share their events with each other. Being a user-interactive

application, it should consider human factors like [2]:

1) High responsiveness: the shared calendar must be as

responsive as a personal calendar i.e. users should have

an illusion that they are alone while using the shared

calendar.

2) High concurrency: any number of users should be able

to concurrently modify this shared calendar.

3) Consistency: users must eventually be able to see a

converged view of all replicated calendar copies.

4) Scalability: the shared calendar must be dynamic in

the sense that users may join or leave the application

at any point of time during its runtime.

B. Contributions

We present DeSCal, an initial framework to satisfy all the

above stated requirements of such a decentralized shared

2011 10th International Symposium on Parallel and Distributed Computing

978-0-7695-4540-0/11 $26.00 © 2011 IEEE

DOI 10.1109/ISPDC.2011.40

223

calendar. We keep a copy of the shared calendar at each

user site to improve performance of DeSCal. Users can

perform updates on his local copy of the shared calendar

independently and then, these locally executed updates are

transmitted to other users in the group. To deal with latency

and dynamic access changes, we use an optimistic access

control technique (inspired from [3]) in such a way that

enforcement of authorizations is retroactive. Access control

is the ability to authorize or deny the manipulation of

information by someone. A data structure is used to store all

access rights. This data structure is checked whenever the

controlling-access is started. We store this access data struc-

ture at each user site because high responsiveness can be lost

if every update must be authorized by some authorization

coming from a distant central server. To achieve our goal,

we have to balance the computing goals of collaboration

and access control to this shared calendar information in a

decentralized fashion. Indeed interaction in shared calendar

is aimed at making calendar events available to all who need

it, whereas access control seeks to ensure this availability

only to users with proper authorization. Due to replication

and arbitrary exchange of updates, consistency maintenance

in a scalable and decentralized manner is a challenging task.

The challenges to develop such an application are 1) to

handle the concurrent operations on shared calendar and

2) and to provide a mechanism for access control on these

calendar events, both in a decentralized fashion. To the best

of our knowledge, this is the first effort towards developing

a decentralized and scalable shared calendar which is best

suited for Peer-to-Peer (P2P) and Ad-Hoc networks.

C. Outline of the paper

The rest of this paper is organized as follows. Section II

presents a real world scenario pointing out a possible deploy-

ment of DeSCal and outlines some related work in the field

of shared calendar. In Section III, we present our collabora-

tion model. Section IV describes overall DeSCal system by

presenting its design and next, detailing architecture of a user

site. In Section V, we present our implementation of DeSCal

system on iPhone OS [4]. Section VI avails the usefulness of

DeSCal system by presenting various scenarios. Section VII

concludes our work and sketches possible future work.

II. USE CASE SCENARIO AND RELATED WORK

A. Use case scenario

We present one real world scenario to illustrate the

usefulness of DeSCal: A research team in an organization

usually consists of a scientific and administrative leader,

other members of the team and an administrative assistant.

All members of the team can run an instance of DeSCal to

keep track of their personal events and also, to share some

group events with others. They can hide their personal events

by not sharing these events with others. For group events

involving two or more persons, one can create the event

and share it with other members who are concerned by it. If

few members of the team are in a group meeting, others can

know this by just having a look on DeSCal. In addition, it is

more intuitive for a team leader to share some administrative

events with delete and/or edit right with the administrative

assistant of the team so that extra hassle of communication

can be avoided to deal with administrative tasks.

At the same time, we agree with the fact that this can

be easily done using a centralized shared calendar too like

Google Calendar but members of this research team can find

DeSCal more appropriate if any one or all of the following

possible scenarios are true:

1) The central entity in the centralized shared calendar

is not owned by the organization itself and also,

this organization has no connectivity with the outside

network of a third party on which centralized shared

calendar depends. For example, this research team

can’t use Google Calendar if they don’t have Internet

connection as it is managed by a third party.

2) Members of the team want to keep their calendar

events confidential i.e. they don’t want to disclose

their calendar events with this third party (for instance,

Google in case they use Google Calendar) who pro-

vides shared calendar service.

3) A team member meets someone while going for lunch

or for a coffee and he wants to share some events with

this person. This can be done instantly without any

overhead like registering for shared calendar service

of a third party; just by allowing other person to join

the group and sharing only some specific events which

this team member wants to share.

B. Related work

Shared calendars are common now-a-days but none of

them is decentralized and self-configurable to the best of our

knowledge. Google Calendar is a shared calendar application

by Google but it needs a constant connection to Google

Servers by each user and a prior registration for its shared

calendar service. This follows that it can’t be used over

local Wi-Fi networks or over blue-tooth in an organization

where mobile users can leave or join the group in an Ad-

Hoc manner. This gives an edge to DeSCal over centralized

shared calendars as users can use mobile version of DeSCal

and join/leave the group in an Ad-Hoc manner. There exists

mobile version of Google Calendar which is made for small

screen and also, mobile phones’ built-in calendars can be

synchronized with Google Calendar when users are away

from their desk but the need to depend on a third party (i.e.
a constant connection to Google Servers) never goes away.

Zimbra platform calendar application [5] enables users to

share their events with other users in a group but again,

this is centralized and a server needs to be run before

using this application. While using Zimbra platform calendar

application, one can run his own server in an organization

224

�������	��
�������

����������	��� ��������	���

����������������	����

�������	��	��������

� 	!���"�	�������	�

���#���	�������

��������
$	�	�

������

�����%

������

�����&

Figure 1. Design of DeSCal

without depending on a third party but centralized server

prevents users to create Ad-Hoc group as users need prior

knowledge of central server to run the application and also,

this central server becomes a single point of failure for the

shared calendar. Both Google Calendar and Zimbra platform

calendar application uses CalDAV (Calendar extensions for

Distributed Authoring and Versioning) [6] which is an

Internet standard allowing a client to access scheduling

information on a remote server.

III. COLLABORATION MODEL

In our collaboration model, we consider that a user

maintains two copies: the shared calendar and its access
control policy. A user in the group is the administrator for

the events created by him and only an administrator can

specify authorizations in his access control policy for the

events administered by him. Users can modify an event

in shared calendar with respect to the local access control

policy of the administrator of that event. We define two types

of operations: Cooperative and Administrative operations i.e.
Operations concerning the state of the shared calendar and

of the access control policy respectively. Our collaboration

protocol proceeds as follows:

1) When a user manipulates an event in the local copy

of the shared calendar by generating a cooperative

operation, this operation will be granted or denied

by only checking the local copy of the access control

policy of the administrator of that particular event.

2) Once granted and executed, the local cooperative

operations are then broad-casted to the other users. A

user has to check whether the remote operations are

authorized by his locally stored access control policy

of this event’s administrator before executing them.

3) When an administrator modifies his local access con-

trol policy by adding or removing authorizations, he

sends these modifications i.e. administrative operations

to the other users in order to update their local copies

of the access control policy.

4) We assume that messages are sent via secure and reli-

able communication network, and users are identified

and authenticated.

Here, we remind that copies of both the shared calendar

and the access control policy are replicated at each user site

as it is twofold beneficial: firstly, it ensures the availability of

the shared calendar, and secondly, it allows for flexibility in

access rights checking. However, this replication may create

violation of access rights which may lead to fail meeting

one of the most important requirements of DeSCal, the

consistency of the replicated copies of the shared calendar.

Indeed, the cooperative and administrative operations are

performed in different orders on different copies of the

shared calendar and the policy object. But thanks to the

coordination [2] and access control [3] models used in

DeSCal which ultimately ensures the consistency of the

shared calendar at each participating node.

IV. DESCAL SYSTEM

In this section, we present how DeSCal modules are

organized in a running environment and then, we unravel

the architecture of a user site describing how it handles local

and remote updates on shared calendar.

A. Design

DeSCal has a generic design that can be deployed easily

for decentralized architectures e.g. P2P. We describe the

main building blocks of DeSCal. The design of DeSCal

(Fig. 1) is composed of four well-separated conceptual mod-

ules: Coordination, Access Control, P2P/Ad-Hoc Network

and User Interface.
1) Coordination Module: As DeSCal relies on decentral-

ized architecture where no central server is required to be

permanently on-line, it keeps a copy of the calendar at each

participating node. Therefore, we need a mechanism which

225

O1

O2

O'=IT(,)1 O1 O2

O'=IT(,)2 O2 O1

Figure 2. Operational Transformation (OT)

can handle the coordination of concurrent updates on this

shared calendar by different users in a decentralized fashion.

This mechanism should also handle the scalability feature of

DeSCal where a user can join or leave the application at any

point of time. We follow the coordination model proposed

in [2]. This model ensures the same converged, consistent

copy of the calendar at each node in all cases. It is based

on Operational Transformation (OT) approach [7] .

This approach has been proposed in [8] for consistency

maintenance in collaborative editors. It is an optimistic

replication technique which allows many users to concur-

rently modify the shared data and next, to synchronize their

divergent replicas in order to obtain the same data. It is

considered as the efficient and safe method for ensuring

consistency in a decentralized way without a need of any

global order of updates. In general, it consists of application-

dependent transformation algorithm, called IT, such that for

every possible pair of concurrent updates, the application

programmer has to specify how to integrate these updates

regardless of reception order [2]. In Fig. 2, two users execute

operations O1 and O2 on their local copy of the shared

calendar (O2 before O1) and then, send it to other user.

Operations O1 and O2 are concurrent in the sense that they

are executed locally at their corresponding sites but their

effect has not yet been seen on other sites. Upon reception of

these operations at other user site, the received operation has

to be transformed with respect to other in order to include the

effect of other operation. One has to note here that reception

of these locally executed updates at other user site is not

guaranteed to be in the same order as they are executed

locally at their corresponding local sites because of network

latency variation, application execution speed depending on

computer resources etc. Google Wave [9], Google Docs and

many collaborative applications such as Joint Emacs [10],

CoWord [11], CoPowerPoint [11] relies on OT approach for

consistency maintenance. OT also has been proposed as a

consistency model for replicated mobile computing [12].

There exists a variety of coordination models based on

OT approach but we follow [2] because it is scalable,

decentralized and fulfills all the requirements of a shared

calendar for P2P and Ad-Hoc networks.

The coordination module directly interacts with the local

copy of the calendar and is responsible for maintaining its

consistency. It keeps track of both local and remote calendar

update requests by storing them in a log called cooperative
log. This log helps in maintaining the consistency of the

shared calendar. In general, the collaboration is performed

as follows: each user’s updates are locally executed in

nonblocking manner and then are propagated to other user

sites in order to be executed on their local copies of the

shared calendar. For more in-depth detail on coordination

module for consistency maintenance, refer to [2].

2) Access Control Module: The whole copy of the shared

calendar is kept at each user site to improve availability

of data. However, we need to control the access to this

local copy because users generally don’t want to share all of

their events with everyone in the group. We need to provide

some access control mechanism to control access to these

events so that a user is able to access the events for which

he is authorized. Also, we remind that this access control

mechanism on shared calendar events should be dynamic,

decentralized and scalable as per requirements of DeSCal.

Controlling access in such an environment is a challenging

task as it needs dynamic access changes and low latency

access to the shared calendar.

In addition, the requirements of DeSCal include high

responsiveness of local updates. But, when adding a central-

ized access control layer, high responsiveness may be lost

because every update must be granted by some authorization

coming from a distant user (as a central server). So, we can’t

use a centralized access control model for DeSCal. To satisfy

all requirements of DeSCal, we follow the decentralized

access control model described in [3] where the shared

calendar and its authorization policies are replicated at the

local memory of each user. Thus, a user owns two copies: the

shared calendar and the policy. It is clear that this replication

enables users to gain performance since when they want to

manipulate the shared calendar, this manipulation will be

granted or denied by controlling only the local copy of the

policy.

However, the access control model described in [3]

doesn’t satisfy all the requirements of DeSCal. The model

proposed in [3] is single-administrator whereas in DeSCal,

each user is the administrator of the events created by him.

The single administrator model, proposed in [3], keeps a

copy of the authorization list or policy and an administrative

226

Figure 3. Peer-to-Peer Network of iPhone Users

log containing all administrative requests at each user site.

We extend this model to make it a multi-administrator model

where each user has his own 1) authorization list for the

events created by him and 2) administrative log to store his

administrative requests. Eventually, this requires each user

to keep a copy of the policy and administrative log of all

other users in the group.

The actions taken by a user on the shared calendar through

user interface has to be passed through access control

module and if authorized by this module, they are passed to

coordination module to deal with consistency issues, which

in turn, changes the state of the shared calendar. The updates

on shared calendar and policy are applied in different order

at different user sites. The absence of safe coordination

between these different updates may cause security holes

(i.e. permitting illegal updates or rejecting legal updates on

the shared calendar). But the model proposed in [3] which

is inspired by the optimistic security concept introduced in

[13], relies on an optimistic approach that tolerates momen-

tary violation of access rights but then ensures the copies

to be restored in valid states with respect to the stabilized

policy. For detailed description of this access control model,

see [3].

3) P2P/Ad-Hoc Network Module: The role of this module

is to maintain a local knowledge of the network infrastruc-

ture. It is the responsibility of this layer to provide Peer-

to-Peer distributed architecture services to DeSCal for any

kind of network like Wireless Ad-Hoc networks, Short range

communication (e.g. blue-tooth), LAN, Internet or Managed

infrastructure Wireless LAN. To implement this module, one

can use an existing library capable of discovering network

nodes independently i.e. without a need of a central entity

����
���������
�	
���

		�
�����	�
�	
���

������
	���	�
�	
���

����	���
��	�
����	����	
���

����
��

�	����

����

��	����������
�	���������

���	�������
�����
���

�	��������
�����
���

�	�����	�������
���

���	����	�������
���

�����

�����������

Figure 4. Architecture of a user site of DeSCal

(JXTA [14] is a good example of such a library) or can write

his own library for this task.

The current implementation of DeSCal on iPhone OS

uses Apple’s Bonjour service [15] for discovering users in a

local area network. This limits the use of current iPhone

OS implementation of DeSCal in a local area network

but it discovers both Wi-Fi and Blue-tooth users. Users

communicate directly with each other and they have a total

knowledge of the network infrastructure (Fig. 3). This allows

users to create or join a group in an Ad-Hoc manner. All

users are equally privileged in the system and a malicious

user can’t affect the application’s execution for other users.

4) User Interface Module: It should be designed in a

way that simplifies the use and hides the complexity of

DeSCal to the user. It enables users to take actions on shared

calendar. However, this module can’t directly change the

state of the shared calendar without interacting with the

access control module. An action taken by the user on this

module has to pass through access control module. If this

action is authorized by access control module, it is passed

to coordination module to change the state of the shared

calendar and to deal with consistency issues.

B. Architecture

In this section, we present how a user handles the local

updates generated by himself and remote updates by other

users in the group received through P2P/Ad-Hoc Network

module (Fig. 4). Both local and remote updates can be of two

types: Policy Update or Calendar Update. Policy updates

are generated if a user changes his policy whereas calendar

updates are a result of various actions taken on the shared

calendar. The various actions taken by the users can be

inserting a new event and deleting/editing an existing event.

227

If the local update is a Calendar Update, it is passed

immediately to access control module which checks whether

the user is authorized to take this action on the shared calen-

dar or not. Each user is authorized to insert an event in the

calendar, so, a request to insert a new event in the calendar

by a user will always be authorized by the access control

module. Moreover, access control module will allow a user

to take all actions on an event if it is created by him as, by

default, he is the administrator of this event. However, for the

event created by other users, access control module checks

the policy of the corresponding administrator of that event

and allows/denies the user to take that particular action on

shared calendar accordingly. In our current implementation

of DeSCal on iPhone OS, if a user is not authorized to take

an action on shared calendar, a warning is shown to this user

stating this fact and no change is made to the calendar state.

As opposed to this, if a user is authorized to take an action,

this local update is executed immediately on local copy of

the shared calendar and then, it is forwarded to coordination

model which deals with consistency issues. After processed

by coordination module, this locally executed operation is

broad-casted to all other users in the network and somehow,

our coordination module manages to have the same copy of

shared calendar at each user site with respect to the stable

access control policy.

A local Policy Update is sent to coordination module

which in turn, changes the local copy of the access control

policy. Afterwards, this change in local copy of access

control policy is broad-casted to other users to update their

local copy of the access control policy.

A user can also receive these two types of updates from

other users through P2P/Ad-Hoc network module. If the

remote update is Policy Update, the local copy of the

policy of that user is changed. Additionally, we store this

administrative request in local administrative log of that

user as a cooperative request can be undone if this remote

administrative request is restrictive.

Lastly, if the remote update is Calendar Update, access

control layer checks whether this operation is authorized

or not and if authorized, sends it to coordination module

for some further processing to deal with consistency issues.

Moreover, if the receiver is the administrator of that event,

the administrator generates and sends a special type of admin
request: Validate to validate this calendar update to all users.

This Validate administrative request is just to notify other

users that the operation is granted by the local copy of

the access control policy of the administrator and calendar

updates can’t be undone anymore.

V. IMPLEMENTATION ON IPHONE OS

Our implementation of DeSCal system on iPhone OS

enables a user to share his events with other users to whom

he wants to share. Each user has to manage his policy to

control the access for other users on the events created

Figure 5. Calendar and Event Detail View in iPhone OS implementation
of DeSCal

by him. The interaction between the layers is limited and

performed in such a way that it helps in making DeSCal

more secure and robust. We explain here few key entities

used in our implementation around which the whole story

of DeSCal implementation revolves:

A. Key Entities

1) Calendar: It is list abstract type where each element of

this list is an event. Events in this list are sorted in increasing

order of date and time of the event.

2) Event: An event is an implementation based entity

which may have variable user based attributes. In our

implementation, an event has three attributes to be entered

by the user: 1. Event Title 2. Event Location and 3. Date and
Time of the event. In addition, our implementation stores a

unique event id corresponding to each event to identify an

event uniquely since other attributes can be same for two

events. Furthermore, we need to have one more attribute

to store the creator of the event. In DeSCal, an event is

the smallest element for our coordination and access control

modules.

Fig. 5 contains two snapshots of our iPhone OS imple-

mentation of DeSCal (Calendar view and Event Detail view

from left to right).

3) Rule. : A rule is a quadruple <Peer(s), Event(s),

Right(s), Permission> where Peer(s) can be any subset

of all available users except the user who is inserting

the rule; Event(s) can be any subset of all events created

by that particular user; Right(s) can be any subset of set

<Read, Delete, Edit>; Permission can be either attribution

or revocation of rights.

To insert a new rule in the policy, our implementation

allows a user to select the users from the list of available

228

Figure 6. Selection of various attributes to insert a new rule in policy in iPhone OS implementation

users, events from the list of events (only the events created

by that user will be shown/available to select in this view),

rights which (s)he wants to attribute or revoke and finally,

Right Attribution/Revocation depending on whether (s)he

wants to revoke or attribute these rights on these selected

events for these selected users.

For demonstration, let’s take an example where a user

wants to give ‘Delete’ and ‘Edit’ right to a user named

‘Michael’ for his event: <Event 1> where Event 1 =

{Title:Appointment with Doctor Location:Vandouvre-les-

Nancy Date & Time:13 November 2008 02:00AM}. So, in

this case, we will have to select ‘Michael’ from the list of

users, ‘Event 1’ from the list of events, ‘Delete’ & ‘Edit’
from the list of rights(Read, Delete & Edit) and ‘Right
Attribution’ from the list of permissions(Right Attribution
& Right Revocation). See Fig. 6 to have a look on how this

rule selection is performed in iPhone OS implementation of

DeSCal.

4) Policy: Policy is an indexed list of rules. When a user

wants to delete/edit an event, the application needs to check

whether the user is allowed to do that action or not. The

application checks rules one by one in policy (indexed list

of rules), starting from the first rule and stopping when it

reaches the first rule that matches its request (based on first-
match semantics). If no matching rule is found, that action

can’t be taken on the shared calendar. Fig. 7 contains two

snapshots where left one is Policy view of our iPhone OS

implementation of DeSCal.

B. Working

At start-up, application prompts a user to enter his/her

name and then, shows the list of other available users (Fig. 7

right snapshot) participating in the shared calendar.

Figure 7. Policy and Available Peers view in iPhone OS implementation
of DeSCal

Depicted below are three major actions a user can take in

our DeSCal implementation:

1) Inserting a new Event: Our implementation allows

each user to insert a new event in the calendar. The actual

position of the insertion of the event in the calendar is

determined by the application itself depending on event’s

date and time. Events are stored and displayed in increasing

order of their date and time. Each event in the calendar has

its unique event id, thus by, allowing two or more events to

have the same attributes.

2) Managing Policy: A user can insert a rule anywhere

in the policy and can delete any of the existing rules from

the policy. The position of rule has importance in the policy

229

because application starts checking a request from the first

(at the top) rule in the policy.

3) Deleting/Editing an Event: A user can always

delete/edit the events created by him as he is the administra-

tor of the event and can also delete/edit the events created

by other users if he is allowed to do so.

VI. VARIOUS SCENARIOS DEMONSTRATING

APPLICATION’S NOVELTY

Using following three scenarios, we will demonstrate all

the novel features of DeSCal.

A. Scenario One

Any number of users can simultaneously use this shared

calendar, but the application will eventually have a single

converged, consistent copy of the shared calendar at each

user site. All users are allowed to insert a new event. By

default, this new event is the user’s private event and it will

not be shared with other users in the group. However, at

any point of time, this user can go to his policy view to

share his event to all or a subset of users. Our application

enables a user to revoke the rights attributed previously to

some other user(s) as a user can change his mind later and he

may decide to revoke the right for some user(s). Moreover,

he may like to share his event to a newly arrived user. In

brief, DeSCal provides high concurrency to users and access

control on calendar events is dynamic as it can be changed

at any point of time during application lifetime.

B. Scenario Two

Let’s say, an event e1 is created in the shared calendar by

user u1 and he allows user u2 to delete e1. Later, suppose,

u1 (administrator) of the event e1 revokes the delete right for

u2 and at the same time, u2 deletes e1. These two operations

are concurrent because they are locally executed at their

respective sites but the effect of these operations are not

seen at other sites. When u1 will receive the remote delete

operation, the delete operation will be rejected according to

u1’s local copy of policy whereas e1 is already deleted at

user site u2. This leads to inconsistent state of the calendar

for a while. Since our approach is optimistic, we may

tolerate momentary violation of access rights but we ensure

the copies to be restored in valid states with respect to stable

policy. When u2 receives the revoke operation by u1, our

application detects this somehow that these two operations

are concurrent. In cases where policy and calendar updates

are concurrent, the priority is given to policy updates. So,

the deletion of event e1 will be undone at user site u2. A

calendar update can’t be undone if the update is validated

by the administrator of that event. By presenting this short

scenario, we illustrate how DeSCal deals with the conflicts

caused by change in policy and modification of events

simultaneously. In short, DeSCal achieves consistency of

shared calendar at each user site in all cases.

C. Scenario Three

When a new user joins the application, he retrieves the

copy of the shared calendar, policies and administrative

logs from a nearby user. After retrieval, this new user can

participate in the same manner as all other existing users. If

a user leaves the shared calendar, other users are not affected

by it. Session is up and running if at least, one user is online.

VII. CONCLUSION AND FUTURE WORK

We have described in this paper the design of a distributed

application offering a decentralized and scalable environ-

ment for sharing calendar events with other users in the

group. It is based on optimistic replication of both the shared

calendar and the access control policies of each administrator

in the shared calendar. As the design of DeSCal is scalable,

it can be easily deployed on P2P and Ad-Hoc networks.

DeSCal system is implemented on iPhone OS to test its

deploy-ability.

In future work, we intend to improve security features for

DeSCal like confidentiality of data, secure communication

between users etc. as access control on local copy of the

calendar is not sufficient to provide enough security against

malicious users.

REFERENCES

[1] “Google Calendar,” http://www.google.com/googlecalendar/
about.html.

[2] A. Imine, “Coordination model for real-time collaborative ed-
itors,” in Proceedings of the 11th International Conference on
Coordination Models and Languages, ser. COORDINATION
’09. Berlin, Heidelberg: Springer-Verlag, 2009, pp. 225–246.

[3] A. Imine, A. Cherif, and M. Rusinowitch, “A flexible ac-
cess control model for distributed collaborative editors,” in
Proceedings of the 6th VLDB Workshop on Secure Data
Management, ser. SDM ’09. Berlin, Heidelberg: Springer-
Verlag, 2009, pp. 89–106.

[4] “iPhone OS,” http://en.wikipedia.org/wiki/IOS %28Apple%
29.

[5] “Zimbra Platform Calender Application,” http://www.zimbra.
com/products/calender-collaboration.html.

[6] “CalDAV,” http://caldav.calconnect.org/.

[7] “Operational Transformation,” http://en.wikipedia.org/wiki/
Operational transformation.

[8] C. A. Ellis and S. J. Gibbs, “Concurrency control in group-
ware systems,” in Proceedings of the 1989 ACM SIGMOD
international conference on Management of data, ser. SIG-
MOD ’89. New York, NY, USA: ACM, 1989, pp. 399–407.

[9] “Google Wave,” http://www.waveprotocol.org/whitepapers/
operational-transform.

230

[10] M. Ressel, D. Nitsche-Ruhland, and R. Gunzenhäuser, “An
integrating, transformation-oriented approach to concurrency
control and undo in group editors,” in Proceedings of the
1996 ACM conference on Computer supported cooperative
work, ser. CSCW ’96. New York, NY, USA: ACM, 1996,
pp. 288–297.

[11] C. Sun, S. Xia, D. Sun, D. Chen, H. Shen, and W. Cai,
“Transparent adaptation of single-user applications for multi-
user real-time collaboration,” ACM Trans. Comput.-Hum.
Interact., vol. 13, pp. 531–582, December 2006.

[12] R. Guerraoui and C. Hari, “On the consistency problem in
mobile distributed computing,” in Proceedings of the second
ACM international workshop on Principles of mobile com-
puting, ser. POMC ’02. New York, NY, USA: ACM, 2002,
pp. 51–57.

[13] D. Povey, “Optimistic security: a new access control
paradigm,” in Proceedings of the 1999 workshop on New
security paradigms, ser. NSPW ’99. New York, NY, USA:
ACM, 2000, pp. 40–45.

[14] L. Gong, “Jxta: a network programming environment,” In-
ternet Computing, IEEE, vol. 5, no. 3, pp. 88 –95, may/jun
2001.

[15] “Bonjour,” http://www.apple.com/support/bonjour/.

231

