
Short Paper:
WifiLeaks: Underestimated Privacy Implications of the

ACCESS_WIFI_STATE Android Permission∗

Jagdish Prasad Achara†

Mathieu Cunche‡† and Vincent Roca†

†Inria, Grenoble, France
‡University of Lyon, France

firstname.lastname@inria.fr

Aurélien Francillon
EURECOM, Sophia-Antipolis, France
aurelien.francillon@eurecom.fr

ABSTRACT
On Android, installing an application implies accepting the
permissions it requests, and these permissions are then en-
forced at runtime. In this work, we focus on the privacy im-
plications of the ACCESS_WIFI_STATE permission. For this
purpose, we analyzed permissions of the 2700 most popular
applications on Google Play and found that the ACCESS-

_WIFI_STATE permission is used by 41% of them. We then
performed a static analysis of 998 applications requesting
this permission and based on the results, chose 88 appli-
cations for dynamic analysis. Our analyses reveal that this
permission is already used by some companies to collect user
Personally Identifiable Information (PII). We also conducted
an online survey to study users’ perception of the privacy
risks associated with this permission. This survey shows
that users largely underestimate the privacy implications of
this permission. As this permission is very common, most
users are therefore potentially at risk.

Categories and Subject Descriptors
K.4.1 [Public Policy Issues]: Privacy

Keywords
Android Permissions; Wi-Fi; Personally Identifiable Infor-
mation (PII) leakage; Static/Dynamic Analysis; User survey

1. INTRODUCTION
Mobile devices have become ubiquitous and are a crucial

part of our lives today. These devices handle a lot of private
data such as our email, communications, location, etc. As
useful as they are, they also became a serious threat to user’s
privacy. Indeed, very accurate profiles can be created using
the vast amount of data available on them. Advertising

∗A full version of this paper is available at [1].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WiSec’14, July 23–25, 2014, Oxford, UK.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2972-9/14/07 ...$15.00.
http://dx.doi.org/10.1145/2627393.2627399.

and Analytics (A&A) companies have therefore shifted their
focus from traditional desktop computers and browsers to
applications running on mobile devices.

Today a large fraction of mobile devices are running An-
droid, where access to user data is controlled by the permis-
sion system. However, users have a poor understanding of
the permissions and do not pay enough attention to these
messages; they therefore often do not realize the kind of in-
formation accessible to an application once installed [7]. In
order to help users perceive the potential risks, Android clas-
sifies the permissions based on their expected risk1. ACCESS-
_WIFI_STATE, on which we focus in this work, allows an ap-
plication to access various information related to the the
Wi-Fi interface. As such it is categorized as normal as com-
pared to, e.g., ACCESS_FINE_LOCATION which is classified as
dangerous. In this work we show that the ACCESS_WIFI-

_STATE permission is actually dangerous as a user’s PII
can be (and is already) derived from the use of this permis-
sion. Also, as the use of this permission by ad libraries has
increased over time [3], the problem is severe.

More specifically the contributions of this work are three-
fold: First, we consolidate what PII can be derived from the
data related to Wi-Fi interface (Section 3), namely unique
identifiers (useful for tracking purposes), device geolocation,
travel history and social links between users. Second, we an-
alyze the current situation on Google Play employing both
static and dynamic analysis of Android applications (Sec-
tion 4), revealing that a large number of applications have
actually started to exploit this permission to obtain user PII.
Finally, we analyze the user perception of this permission us-
ing an online survey to which 156 Android users answered
(Section 5). The results clearly demonstrate that users do
not understand the privacy implications of this permission.

2. BACKGROUND AND RELATED WORK

2.1 Android Permission System
As Android gives no privilege to applications by default,

applications must ask the user for privileges by statically
declaring the list of permissions it requires. There are a total
of 145 different permissions available (as of Android version
4.4) for an application to ask for. Many of these permissions
are required by applications to access user sensitive informa-
tion (e.g. ACCESS_FINE_LOCATION and READ_CONTACTS are

1http://developer.android.com/guide/topics/
manifest/permission-element.html

Table 1: WifiManager’s method restricted by the ACCESS_WIFI_STATE permission.
Method name Description Retrievable Information

isWifiEnabled() Returns whether Wi-Fi is enabled or disabled. Returns true if Wi-Fi is enabled.
getWifiState() Gets the Wi-Fi enabled state. (Currently being) enabled/disabled or unknown
getConfiguredNetworks() Returns a list of all configured networks. For each configured network/AP: SSID, al-

lowed protocols and security schemes
getConnectionInfo() Returns dynamic information about the cur-

rent Wi-Fi connection, if any is active.
About AP: BSSID, SSID, RSSI About Device:
Wi-Fi MAC address, IP address

getScanResults() Returns the results of the last AP scan. For each AP: BSSID, SSID, signal strength,
channel, capabilities

getDhcpInfo() Returns the DHCP-assigned addresses from
the last successful DHCP request, if any.

IP address, DNS server address, gateway and net-
mask

the permissions required to respectively geolocalize the de-
vice and read user’s contact data).

The ACCESS_WIFI_STATE permission. It makes some of
the methods of the WifiManager class2 available to be ac-
cessed by applications (Table 1) and falls in the ‘Network
communications’ group of permissions. It is worth mention-
ing that these methods only allow to read the data associated
with the Wi-Fi interface, but not to modify it: a different
permission, CHANGE_WIFI_STATE, is required to change the
state of the Wi-Fi interface.

2.2 Related Work
Zhou et. al. [13] show how PII (e.g., geolocation, identity)

can be inferred from publicly available information in the
Android system. We note that getting device geolocation
is common in both ours and [13]. However, in [13], device
geolocation is only obtained when the device is connected to
a Wi-Fi network, whereas in our study, we show that it can
be obtained as long as the Wi-Fi interface is enabled.

Book et al. [3] investigates changes over time in the behav-
ior of Android ad libraries. The study reveals that number
of libraries able to use different permissions, ACCESS_WIFI-
_STATE permission is one among them, drastically increased
over time. Also, Nguyen et al. [10] show that Wi-Fi in-
formation could be used to breach location privacy. How-
ever, [3] and [10] did not analyze the current situation on
Google Play. As opposed to these studies, our study em-
ploys in-depth analysis of applications requesting ACCESS-

_WIFI_STATE permission and shows that a number of user
PII can be and are already derived from the data accessible
using this seemingly network-related permission.

The user comprehension of Android permissions have been
studied in [7]. The study considered a total of 11 per-
missions but left out ACCESS_WIFI_STATE and the ACCESS-

_FINE_LOCATION permissions. Likewise our specific study of
ACCESS_WIFI_STATE permission, the results of this study
also indicate that users have a poor understanding of the
Android permission system.

3. USER PII INFERRED FROM WI-FI DATA
As we have seen, the ACCESS_WIFI_STATE permission en-

ables an application to read data related to the Wi-Fi con-
figuration of the device. This raw data may look innocuous,
but it is actually possible to either directly access or infer
several user PII. In this section, we describe such user PII.

A unique device identifier. Using the getConnection-

Info() method, an application can obtain the MAC address

2http://developer.android.com/reference/android/
net/wifi/WifiManager.html

of the Wi-Fi interface. In fact, there are other hardware-tied
identifiers available to be accessed by applications, e.g., IMEI
and MEID with READ_PHONE_STATE permission. As these
unique identifiers could be used by advertisers to track user
activities across all applications, they pose serious threat
to user privacy. In particular, Wi-Fi MAC is also used to
track users in the physical world [12, 6] and therefore, allows
trackers to link both online and physical profiles of the user.

Geolocation. The list of surrounding Wi-Fi APs can be ob-
tained thanks to the ACCESS_WIFI_STATE permission through
the getScanResults() method of WifiManager class. This
method does not trigger the scanning of Wi-Fi APs, but
return the list of last scanned Wi-Fi APs. Wi-Fi scan is
performed automatically by the system every 15 seconds
and can also be triggered by other applications, therefore
this list of surrounding Wi-Fi APs is often up-to-date. By
submitting the raw result of a Wi-Fi scan to a remote ge-
olocation service3, the device gets geolocation information
(coordinates and accuracy metric) in return. Wi-Fi based
geolocation is accurate to 20 meters in urban areas [9]. The
Wi-Fi, GSM and GPS-based geolocation systems are em-
ployed by the Android system, but access to this information
is restricted by the ACCESS_FINE/COARSE_LOCATION permis-
sions. On the opposite, the raw Wi-Fi scan information is
not protected by any of these two geolocation permissions.
By using a third party Wi-Fi based geolocation service, it
is therefore possible for an application to obtain geolocation
information without having to explicitly ask for geolocation
permissions as long as the application has both the ACCESS-

_WIFI_STATE and INTERNET permissions. And in Section 4,
we show that this is often the case.

Therefore in practice the list of surrounding Wi-Fi APs is
often up-to-date and an application does not really need to
start the scanning by itself.

Travel history. The list of Wi-Fi networks to which the
device has been connected to in the past is stored in the
Configured Networks List that can be accessed through the
getConfiguredNetworks() method of WifiManager class.
For each of these configured networks, the SSID is available
along with other information such as the supported secu-
rity protocols and authentication algorithms used. It has
been shown in [8] that the data stored in the Configured
Networks List can be combined with external resources4 to
obtain information such as the previously visited locations.

Social links. It is possible to predict the existence of a
social or professional link between the owners of devices by

3https://developers.google.com/maps/documentation/
business/geolocation/
4http://wigle.net/

Table 2: Most commonly used methods of WifiMan-

ager class, in 998 applications.
Method call # of Apps

getConnectionInfo() 753 (75.45%)
isWiFiEnabled() 344 (33.47%)
getScanResults() 156 (15.63%)
getConfiguredNetworks() 59 (5.91%)
getWifiState() 76 (7.62%)
getDhcpInfo() 63 (6.31%)

comparing the list of SSIDs known by any two devices [5].
By collecting this data on a large population, an applica-
tion could gather information that would make it possible
for them to build a social network between their users. The
Configured Networks List returned by the getConfigured-

Networks() method can be used for the same purpose. In
fact, it also contains some other information about the con-
figured Wi-Fi AP (e.g., allowed protocols, authentication al-
gorithms, key management). This information can be lever-
aged to improve the quality of the social link establishment
as [5] relies only on the SSID.

Other PII derived from SSIDs. SSIDs are often made to
be meaningful to users and potentially contain information
about the network owner or its users (e.g., name of institu-
tions, individuals or locations [11]). Extraction of this infor-
mation can be done manually or could be automated using
techniques like Named Entity Recognition [4] and could then
be used, for example, by advertisers to enrich the profile of
the user to serve targeted ads.

4. ANDROID APPLICATIONS ANALYSIS
We have analyzed the 100 most popular free applications

in each of the 27 categories present on Google Play, i.e.,
2700 applications in total. We focused only on those that
require both the ACCESS_WIFI_STATE and the INTERNET per-
missions (only 5 applications ask for the first permission but
not the second one). To that purpose, we crawled Google
Play5 and collected the list of required permissions. Then
we statically analyzed 998 applications requesting these per-
missions and based on the results, we chose 88 applications
for an in depth, dynamic analysis. This section details our
findings.

4.1 Static analysis
We used custom scripts (based on Androguard6) to stat-

ically analyze the 998 APK files corresponding to applica-
tions requiring both the ACCESS_WIFI_STATE and the INTER-
NET permissions.

4.1.1 Use of the WifiManager class’ methods
We note that 17% (165) of the applications request ACCESS-

_WIFI_STATE permission but do not access any of its meth-
ods. Those over privileged applications present a privacy
risk as later revisions of those applications will be able to
use the protected methods by this permission.

Table 2 presents the number of applications calling the
WifiManager class’ methods. In fact, ∼76% (762) appli-
cations are accessing at least one of these three privacy-
sensitive methods whereas ∼1% (11) of them are accessing

5Using https://github.com/egirault/googleplay-api
6https://code.google.com/p/androguard/

Figure 1: Per category popularity of 3 privacy-
sensitive methods (100 applications/category).

all 3 privacy sensitive methods. Among the 6 methods pro-
tected by this permission, we chose to focus on the ones that
pose serious privacy risks to the user, namely: getScanRe-

sults(), getConfiguredNetworks() and getConnection-

Info(). Note that the access to WifiManager class’ methods
might be legitimate, for example, in case of a Wi-Fi man-
ager application in the Tools or App Widget categories, but
probably not for a cooking or wallpaper application. From
now on, our analysis only focuses on these three methods.

Figure 1 presents a per category distribution of the appli-
cations accessing these privacy-sensitive methods. Overall,
applications in the Game category are the ones that use these
3 privacy-sensitive methods the most. There are also sev-
eral other categories of applications that show a high usage
of those methods without an obvious reason, like Lifestyle,
Comics and App Wallpaper.

4.1.2 Analysis of third-party code inside applications
It is interesting to identify if the method calls are made by

code written by the application developer (“first-party”) or
by the libraries (e.g., advertisement, analytics, performance
monitors, crash reporters) included by the application de-
veloper (“third-party”). For this purpose we use a heuristic:
classes belonging to a package whose name is the same as the
application package name is considered coming from the ap-
plication developer, otherwise it is considered as third-party
code. Based on this, we find that 18% (136) of the appli-
cations accessing at least one of these methods are doing so
only from third-party code. This confirms that third-party
code is often responsible for the usage of the ACCESS_WIFI-

_STATE permission. Access to an API call by third-party
code is sometimes legitimate, but there are cases where it is
clearly not (e.g., Wi-Fi scanning is performed by inmobi.com

and skyhookwireless.com in 13 applications out of 156 that
scan for Wi-Fi APs).

Figure 2 presents, for each of the three privacy-sensitive
methods, whether a first-party, third-party, or both access
these methods. It reveals that there are some applications
in which only the third-party code accesses these privacy-
sensitive methods. This means that if the code written
by the application developer does not require the ACCESS-

_WIFI_STATE permission, the third-party library does need
it. The motivation for a third party library can be to se-
cretly collect user information, or to provide a functionality

Table 3: Top 5 third-parties in each category and their corresponding number of applications.
ConnectionInfo ScanResults ConfiguredNetworks

Third-party # Apps Third-party # Apps Third-party # Apps

inmobi.com 74 inmobi.com 9 google.com 10
chartboost.com 55 domob.cn 9 mobiletag.com 4

tapjoy.com 49 mologiq.com 6 lechucksoftware.com 2
vungle.com 47 tencent.com 5 android.com 2
jirbo.com 43 skyhookwireless.com 4 Unibail.com 1

Figure 2: Distribution based on the party accessing
privacy-sensitive methods, in 762 applications.

to the application. For example, an application developer or
a third-party can use the code from skyhookwireless.com

to retrieve device geolocation without needing explicit ded-
icated geolocation permissions. It is worth mentioning that
skyhookwireless.com retrieves the list of surrounding Wi-
Fi APs in 4 applications (Table 3). In any case deriving
device geolocation without any explicit user permission is
not legitimate and should be prevented by Android.

Table 3 presents the top 5 third-parties in each category
and the number of applications in which they are present.
Looking at the web pages of these third-parties, one may
understand the purpose of these third-parties in various ap-
plications. It seems like most of them (inmobi.com, jirbo.
com, vungle.com, chartboost.com) belong to A&A busi-
ness, whereas others are different kinds of service providers,
e.g., skyhookwireless.com. Here it is worth noting that
skyhookwireless.com provides geolocation service among
other kinds of services. With this service, an application can
get the location of the phone with the use of ACCESS_WIFI-
_STATE and INTERNET permissions and without explicitly
requesting a geolocation related permission.

4.2 Dynamic analysis
In Section 3 we speculated that applications can infer PII

using the methods made available with the ACCESS_WIFI-

_STATE permission. We now analyze their network com-
munications to check if these applications (or third-party
libraries they embed) actually send private information to
remote servers. We performed this dynamic analysis on 88
applications that access, at least, two privacy sensitive meth-
ods. For this purpose, we modified the Android OS to log in-

7The Wi-Fi MAC address is hashed (SHA-1) before being
sent over the network in clear-text.

teresting method calls in a local SQLite database. We mod-
ified several methods in WifiManager and WifiInfo classes
along with network (both in clear and with SSL) and data
modification (encryption and hash) related methods. The
rest of the OS remains unmodified. This SQLite database is
later analyzed to know if a particular application is accessing
some information and leaks it over the network.

Table 4 presents the list of servers to which PII obtained
with the ACCESS_WIFI_STATE permission was sent. A num-
ber of third-parties present inside these applications are col-
lecting the Wi-Fi MAC address and send it to their servers
(sometimes in clear). Accessing Wi-Fi MAC address is re-
ally serious as it is a hardware-tied unique identifier that
remains the same all along the lifespan of the device and
can be used to tie both on-line and physical profile of a user
(see Section 3). Looking at this list of servers in the Table 4
where Wi-Fi MAC address is sent, most of them belong to
A&A companies. This clearly suggests that those actors use
the MAC Address as a unique identifier to track users.

Also, both first (Badoo.com) and third-parties (inmobi.
com) collect the SSID and BSSID of the AP to which the
device is connected. Such a database of users and their Wi-
Fi APs can easily reveal various relationships between users:
a lot of information can be derived on the social relationships
between users based on type of Wi-Fi APs to which users are
connect to. For example, a protected Wi-Fi at home/work
or the time/location at which two users connect to reveal
close connections between them.

We found that Badoo and Foursquare applications send
the list of surrounding Wi-Fi APs (SSIDs, BSSIDs, signal
strength, etc.) to their respective servers. However, both
applications have ACCESS_FINE_LOCATION permission and
can get precise device geolocation from the regular Android
APIs.

We even found some third-parties (e.g., inmobi.com and
fastly.net) sending the list of surrounding Wi-Fi APs to
their servers, and they are present inside various applica-
tions. Focusing on the communication inside various appli-
cations to inmobi.com server, we find that inmobi.com li-
brary works in two modes: if it is included in an application
having ACCESS_FINE_LOCATION, it accesses the fine-grained
geolocation retrieved by the system along with nearby Wi-
Fi APs (possibly to enrich their own database); otherwise,
if the application doesn’t have this permission, it derives
device geolocation by querying their geolocation server with
the list of surrounding Wi-Fi APs. As an example, code from
inmobi.com inside SimSimi (com.ismaker.android.simsimi)
application sends the list of surrounding Wi-Fi APs to its
server to derive device geolocation, because this applica-
tion has neither the ACCESS_FINE_LOCATION nor ACCESS-

_COARSE_LOCATION permissions.
Finally, we didn’t encounter any application sending Wi-

Fi configuration information over the network (which is good

Table 4: Servers where Wi-Fi related information is sent by 88 dynamically analyzed applications.

Info Third-parties First-parties
Apps
affected

MAC Address

appsflyer.com (SSL), revmob.com (SSL), adsmogo.mobi
(plain-text), adsmogo.org (plain-text), vungle.com (plain-text),

supersonicads.com (plain-text), trademob.net (SSL),
sponsorpay.com (SSL), beintoo.com (SSL), adsmogo.com

(plain-text), 115.182.31.2/3/4 (plain-text)7, tapjoyads.com (SSL)

Not found 13

(B)SSID of
connected AP

inmobi.com (SSL), 93.184.219.82 (plain-text) Not found 2

Wi-Fi Scan Info inmobi.com (SSL), fastly.net (SSL)
badoo.com (SSL),

foursquare.com(SSL)
5

for privacy) but this might be the case in near future. Also it
might be possible that our dynamic analysis technique could
not detect PII leakage in case applications employ custom
data modification methods.

5. USER PERCEPTION
Sections 3 and 4 have respectively demonstrated the po-

tential privacy threats and the actual situation today on
Google Play. In this section we study how users perceive
the ACCESS_WIFI_STATE permission. More precisely we con-
ducted an on-line survey involving 156 Android users and
we studied their perception of the privacy risks associated
with this permission. We show that Android permissions
are often misunderstood by users who do not necessarily
understand their privacy implications [7].

5.1 Survey description
Our survey has been performed with Google Docs and

diffused through social media and multiple mailing-lists. It
was composed of 12 questions divided into 3 parts:

• the first part focuses on demographic information such
as age, gender and professional category;

• the second part is about user attitude towards privacy
and user’s experience in using the Android system;

• the third part evaluates user’s perception of the rela-
tive privacy risks associated with several permissions,
and in particular how users understand the implica-
tions of the ACCESS_WIFI_STATE permission.8

The third part of the survey starts with a series of ques-
tions where the respondent must evaluate the privacy risks
associated with 5 selected Android permissions on a scale of
1 to 10. Along with ACCESS_WIFI_STATE permission, we se-
lected CHANGE_WIFI_STATE and ACCESS_NETWORK_STATE per-
missions in the ‘Network Communications’ group to under-
stand how the user differentiates permissions belonging to
the same group but giving access to different type of network-
related data. We also selected ACCESS_FINE_LOCATION that
is the permission explicitly required by applications to get
device geolocation. As a device can also be geolocalized indi-
rectly by applications having the ACCESS_WIFI_STATE per-
mission, the ACCESS_FINE_LOCATION permission is selected
in order to compare how users evaluate the privacy risks of
both permissions. Finally, the READ_CONTACTS permission

8The permission were presented using a screenshot of the
permission’s description (as showed to the user by the An-
droid system).

is selected as a reference since the name clearly indicates the
associated privacy risks.

One might argue that the geolocation information ob-
tained using Wi-Fi APs might not be as accurate as the ge-
olocalization obtained through GPS with the ACCESS_FINE-

_LOCATION permission. However Wi-Fi based geolocation
can be as accurate as GPS in urban scenarios [9, 2]. In ad-
dition, contrary to GPS, the Wi-Fi based geolocation can
be used both indoors and when a user turns the GPS off to
save battery.

5.2 Results of the survey
In total, 190 users completed the survey from February

22 to 27, 2014. We discarded responses from 34 users who
never used an Android device. So the results and analysis
presented below are based on the responses of 156 users who
have some experience with Android.

5.63ACCESS_NETWORK_STATE

6.85CHANGE_WIFI_STATE

5.81ACCESS_WIFI_STATE

7.86ACCESS_FINE_LOCATION

9.16READ_CONTACTS

0 2 4 6 8 10

Figure 3: Average privacy risk rating for the con-
sidered permissions on a scale of 10.

The responses to the questions for each permission allowed
us to have a comparative view of the perceived privacy risks.
The average privacy risk ratings on a scale of 10 is presented
in Figure 3. Overall, ACCESS_FINE_LOCATION and READ-

_CONTACTS are rated the highest for privacy risks whereas
ACCESS_NETWORK_STATE and ACCESS_WIFI_STATE are rated
the lowest. In particular, users rate ACCESS_WIFI_STATE as
less risky than ACCESS_FINE_LOCATION. This is typically an
error: not only geolocalization but also many other PII can
be obtained through it (see Section 3). Therefore the privacy
risks of this permission should have been rated higher than
that of ACCESS_FINE_LOCATION.

The results for the question about the fine understanding
of ACCESS_WIFI_STATE permission are presented in table 5.
The correctness of the answers greatly varies across the ques-
tions. Thus we organized them into three groups, based on
the fraction of correct answers they received.

The first group includes questions correctly answered by
the majority of respondents (more than 75% of correct an-
swers). We find questions about the basic functionalities

Table 5: User understanding of the ACCESS_WIFI_STATE permission. Correct answers are shown in green cells.
With ACCESS_WIFI_STATE permission and an Internet access, an application can ... Responses
Options True False Don’t know

3 Check if the device is connected to the Internet through Wi-Fi 89.74% 5.77% 4.49%
7 Turn the Wi-Fi on or off 6.41% 85.26% 8.33%
7 Get the list of your contacts 6.41% 86.54% 7.05%
3 Get the list of surrounding Wi-Fi networks 75.00% 12.18% 12.82%

3 Get the list of configured Wi-Fi networks 65.38% 16.67% 17.95%
7 Connect the device to a Wi-Fi network 21.79% 67.31% 10.90%

3 Get the device location 48.08% 41.67% 10.26%
3 Get one of the device unique identifiers 46.79% 17.31% 35.90%
3 Get some of the previously visited locations (even before the App is installed) 35.90% 42.95% 21.15%

of the ACCESS_WIFI_STATE permission (e.g., checking In-
ternet connectivity through Wi-Fi and getting the list of
surrounding Wi-Fi networks) as well as privileges that are
not granted by the permission (e.g., turning the Wi-Fi on or
off and getting the list of contacts).

The second group includes questions having received a ma-
jority of correct answers, but fewer than for the first group
(in practice more than 60%). We find questions about the
ability of the application to access the list of configured net-
works and to connect the device to a Wi-Fi network.

Finally, the third group includes questions having received
the lowest rate of correct answers (below 50%). Those ques-
tions concerns the ability of getting current or past geolo-
cation information as well as a device unique identifier. We
remark that these poorly understood capabilities are also
the most privacy invasive. Even though a majority of the
respondents failed to correctly answer the last set of ques-
tions, there is still a significant proportion of respondents
who answered correctly (more than 35% correct answers).

6. CONCLUSION AND POTENTIAL
SOLUTIONS

The paper, first, presented what PII could be directly ob-
tained or indirectly derived from data accessible to appli-
cations thanks to the ACCESS_WIFI_STATE permission. We
showed that a large number of applications request this per-
mission and then, with the help of an online survey, we found
that users often fail to perceive privacy implications associ-
ated with this permission. Our analysis of a representative
set of most popular applications in each category on Google
Play revealed that a number of both first and third-parties
have already started to exploit this permission to access or
derive user PII.

The results of this study call for changes in the Android
permission system. First of all, the access to Wi-Fi scan
results should be protected with location permissions as is
currently the case to access neighboring cell towers infor-
mation. Secondly, the ACCESS_WIFI_STATE permission de-
scription should explicitly state the various PII that can be
directly obtained (e.g., MAC address that can be used for
tracking) or inferred from it (e.g., travel history). Finally,
the ACCESS_WIFI_STATE permission should be placed in the
list of dangerous permissions as it is more privacy-sensitive
than some of the permissions already in the list.

7. REFERENCES
[1] J. P. Achara, M. Cunche, V. Roca, and A. Francillon.

WifiLeaks: Underestimated Privacy Implications of

the ACCESS WIFI STATE Android Permission.
INRIA Research Report N°8539,
http://hal.inria.fr/hal-00994926/en, May 2014.

[2] J. R. Blum, D. G. Greencorn, and J. R. Cooperstock.
Smartphone sensor reliability for augmented reality
applications. In Mobile and Ubiquitous Systems:
Computing, Networking, and Services. Springer, 2013.

[3] T. Book, A. Pridgen, and D. S. Wallach. Longitudinal
analysis of android ad library permissions. arXiv
preprint arXiv:1303.0857, 2013.

[4] J. Cowie and W. Lehnert. Information extraction.
Communications of the ACM, 39(1), 1996.

[5] M. Cunche, M.-A. Kaafar, and R. Boreli. Linking
wireless devices using information contained in wi-fi
probe requests. Pervasive and Mobile Computing,
2013.

[6] C. Daniel and W. Glenn. Snoopy: Distributed tracking
and profiling framework. In 44Con 2012, 2012.

[7] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and
D. Wagner. Android permissions: User attention,
comprehension, and behavior. SOUPS ’12, New York,
NY, USA, 2012. ACM.

[8] B. Greenstein, R. Gummadi, J. Pang, M. Y. Chen,
T. Kohno, S. Seshan, and D. Wetherall. Can Ferris
Bueller still have his day off? protecting privacy in the
wireless era. In USENIX HotOS workshop, 2007.

[9] A. LaMarca, Y. Chawathe, S. Consolvo, J. Hightower,
I. Smith, J. Scott, T. Sohn, J. Howard, J. Hughes,
F. Potter, et al. Place lab: Device positioning using
radio beacons in the wild. In Pervasive computing.
Springer, 2005.

[10] Y. T. Le Nguyen, S. Cho, W. Kwak, S. Parab,
Y. Kim, P. Tague, and J. Zhang. Unlocin:
Unauthorized location inference on smartphones
without being caught.

[11] J. Lindqvist, T. Aura, G. Danezis, T. Koponen,
A. Myllyniemi, J. Mäki, and M. Roe.
Privacy-preserving 802.11 access-point discovery. In
ACM WiSec, 2009.

[12] A. B. M. Musa and J. Eriksson. Tracking unmodified
smartphones using Wi-Fi monitors. In ACM
SenSys’12, 2012.

[13] X. Zhou, S. Demetriou, D. He, M. Naveed, X. Pan,
X. Wang, C. A. Gunter, and K. Nahrstedt. Identity,
location, disease and more: Inferring your secrets from
android public resources. In ACM CCS 2013.

