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ABSTRACT
Prior works have shown that the list of apps installed by a
user reveal a lot about user interests and behavior. These
works rely on the semantics of the installed apps and show
that various user traits could be learnt automatically using
off-the-shelf machine-learning techniques. In this work, we
focus on the re-identifiability issue and thoroughly study the
unicity of smartphone apps on a dataset containing 54,893
Android users collected over a period of 7 months. Our
study finds that any 4 apps installed by a user are enough
(more than 95% times) for the re-identification of the user in
our dataset. As the complete list of installed apps is unique
for 99% of the users in our dataset, it can be easily used
to track/profile the users by a service such as Twitter that
has access to the whole list of installed apps of users. As
our analyzed dataset is small as compared to the total pop-
ulation of Android users, we also study how unicity would
vary with larger datasets. This work emphasizes the need
of better privacy guards against collection, use and release
of the list of installed apps.

Categories and Subject Descriptors: K.4 [Public Policy
Issues]: Privacy

1. INTRODUCTION
People are all unique the way they are or they look. They
can be easily identified from their DNA sequences, finger-
prints, Iris scans, web browsers and so on. Also, a combina-
tion of various attributes, such as their age, address or re-
ligion [14] makes them unique. Recently, some studies have
shown that people are also unique in the way they behave.
For example, de Montjoye et al. illustrated this behavioural
uniqueness by showing that people are unique in the way
they move around [2]. In fact, they show that only four
spatio-temporal positions are enough to uniquely identify a
user 95% of the times in a dataset of one and a half million
users. Similarly, other studies showed that people are unique
in the way they purchase goods online [3] or configure their
browser [4] or browse the web [11].

As smartphones have been widely deployed today all over
the world and the list of installed/running applications
(apps) on them is readily available to be accessed, the threat
in terms of user privacy is huge if this data is collected, used
and released without sufficient diligence in terms of privacy.
This threat comes in two flavors: first, the semantics of the
installed apps can tell a lot about the users’ habits and in-
terests [13], and second, the unicity of installed apps could
make a user re-identifiable if this dataset is released. In
fact, regarding the first privacy threat, [13] showed that user
traits such as religion, relationship status, spoken languages,
countries of interest, and whether or not the user is a parent
of small children, can be easily predicted from the list or
even the categories of the installed apps on smartphones. In
this paper, we focus on the second privacy threat and mea-
sure the unicity of installed apps to be able to measure the
risk of re-identification if app datasets are released in public
or shared between two entities.

It is quite in the news these days 1 that Twitter has started
to collect the list of apps that a user has installed. They
claim to use this information for targeted interest-based ad-
vertising among others. However, it might be a privacy con-
cern if Twitter shares this list of installed apps with an ad-
vertising company, even in pseudo-anonymized form, i.e.,
after removing all direct user identifiers (and even if app
names are replaced with their hashes). This is because the
advertising company might implicitly know a subset, say K,
of installed apps of a user in which their ad library is present.
So if K apps are enough to uniquely identify a user in the
dataset, the advertiser would be able to re-identify the user
in the Twitter dataset, and hence, learn about all the other
installed apps of that user. By knowing this whole list of
installed apps of a user, the advertiser can learn about that
user’s interests and habits (as demonstrated in [13]), and
consequently, might be able to deliver the targeted ads di-
rectly in these apps in which its library is present. We believe
that this is a real privacy threat to smartphone users (both
Android and iOS) today as apps running on these OSs can
access the list of installed/running apps. It is to be noted
that Android apps do not require any permission to access
the whole list of installed apps. On iOS, Apple does not
provide a public API to access the list of installed apps but
apps can get the list of currently running apps at any time.
And if an app makes a frequent scan of currently running
apps over a period of time, the list can converge very fast to
the list of installed apps.

1http://goo.gl/00FbD0

http://goo.gl/00FbD0


Contributions: The main contributions are as follows.

• We show that 99% of the lists of installed applica-
tions of users are unique out of a total of 55 thousands
users. Moreover, as few as two applications are suffi-
cient for an adversary to identify an individual’s appli-
cation list with a probability of 0.75 in our dataset.
The re-identification probability increases to almost
0.95 if the adversary knows 4 apps. We stress that
these results were obtained without considering any
system apps (which are common for all users), and
apps were identified only by the hash of their names.
Incorporating additional information into their iden-
tifiers, such as app version, time of installation, etc.,
would increase these probabilities even more.

• We propose an unbiased estimate of the real unique-
ness of any subset of applications, i.e., the probability
that a randomly selected subset of apps with cardi-
nality K is unique in the dataset. For this purpose,
we use a Markov Chain Monte Carlo method to sam-
ple subsets of applications from a dataset uniformly
at random. We prove that this chain is generally fast-
mixing with most practical datasets, i.e., has a running
time complexity which is roughly linear in the dataset
size and K. This result might be of independent in-
terest, as this technique can be used to sample subsets
with arbitrary cardinality from any set-valued dataset.

• We attempt to predict the uniqueness of lists of ap-
plications in larger datasets using standard non-linear
regression analysis. Our learned model performs well
on our limited app dataset as well as on mobility data
with sufficiently large number of users. However, in
case of mobility data, we find that the model is not able
to predict well if it is trained with smaller datasets,
e.g., of the size of our app dataset. Therefore, we con-
clude that our app dataset at hand might probably
be too small to accurately predict the uniqueness in a
larger datasets such as all Android users worldwide.

2. UNICITY AS A MEASURE OF RE-
IDENTIFIABILITY

Let A denote the universe of all apps, where each application
is represented by a unique identifier in A. A dataset D ⊆
2A \{} is the ensemble of all apps of some set of individuals,
where |D| denotes the number of individuals in D. A record
Du, which is a non-empty subset of A, refers to all apps of
an individual u in D. A set of applications with cardinality
K is shortly called K-apps henceforth. The set of all K-apps
over A is denoted as AK .

Definition 1 (Unicity) Let supp(x,D) denote the support
of x ∈ AK in dataset D, i.e., the number of records in D
which contain x. Then,

H1 =
|{x : x ∈ AK ∧ supp(x,D) = 1}|
|{x : x ∈ AK ∧ supp(x,D) ≥ 1}|

is defined as the unicity (or uniqueness) of K-apps in D.

The unicity of K-apps is the relative frequency of K-apps
which are contained by only a single record. In general, rel-

ative abundance distribution (RAD)2 is a relative frequency
histogram H = (H1, H2, . . . , Hn) of K-apps with respect
to a dataset D, where Hi denotes the relative frequency of
K-apps which are contained by exactly i records in D, i.e.,

Hi = |{x:x∈AK∧supp(x,D)=i}|
|{x:x∈AK∧supp(x,D)≥1}| .

Unicity is strongly related to re-identifiability, and we use
it as a measure of privacy in this paper: it is the prob-
ability that an adversary, who only knows K applications
installed on a user’s device, can single out the record of
this user in D. Indeed, any K-apps which is unique in D
can be used as a personal identifiable information (PII) of
its record owner. Specifically, if the adversary knows such
K-apps, it can easily identify the corresponding record and
retrieve all the applications installed by its owner, even if
D is pseudo-anonymized (i.e., does not contain any direct
PII such as device ID or personal name). Therefore, large
unicity usually indicates a serious privacy risk in practice.

3. APPROXIMATING UNICITY WITH
SAMPLING

To compute unicity, and RAD in general, the support of
all different K-apps in D should be calculated. However,
this is usually prohibitively expensive in practice. Therefore,
like previous works [3, 2], we rely on sampling to estimate
unicity. In particular, let ΩK denote the set of all K-apps
which occur in at least one individual’s record, i.e., ΩK =
{x : x ∈ AK ∧ supp(x,D) ≥ 1}. We randomly sample a
set V of K-apps from ΩK , and approximate the real unicity

H1 by the sample unicity Ĥ1 = |{x:x∈V ∧supp(x,D)=1|
|V | , where

V ⊆ ΩK is the sample set, and n = |V | is the sample size.

3.1 Biased vs. unbiased estimation of unicity
How should we sample K-apps from the dataset? A popular
technique, which has been used in several works [3, 2], first
samples a user uniformly at random in D, and then a set
of K applications from this user’s record also uniformly at
random. However, this simple technique provides a biased
estimation of the unicity in Definition 1, if the estimator re-
mains the sample mean Ĥ1, since E[Ĥ1] 6= H1. In fact, K-
apps which occur in more records of D become more likely to
be selected by this approach (assuming records have similar
sizes). As a result, this sampling method is biased towards
more popular K-apps, and the measured unicity is an under-
estimation of the real unicity H1 what one would get with
an unbiased estimator of H1. Such an unbiased estimator
can be the sample unicity Ĥ1 of K-apps which are sampled
truly uniformly at random from D. This is also illustrated
in Figure 4, where the sample unicity of biased and unbiased
(i.e., uniform) samples are reported.

Before describing our unbiased estimation of unicity H1, we
shed some light on the privacy semantics behind the two
sampling approaches. The biased technique approximates
the success probability of an adversary who is more likely to
know popular K-apps from the application set of any user.
For instance, continuing the the case of the advertiser from
Section 1, the advertiser’s library should be more likely to

2This term is often used in the field of ecology to describe
the relationship between the number of observed species as
a function of their observed abundance.



be used by popular apps (such as Facebook, Twitter, etc.),
which are installed on many devices, rather than by other
less popular apps. However, this is not necessarily true and
in general, an advertiser’s library can be included in any K-
apps of a user. In the rest of the paper, we assume that the
adversary can learn any K-apps of any users in D with equal
probability, which is the most general assumption in prac-
tice. Therefore, we are interested in an unbiased estimator
of H1.

3.2 Uniform sampling of K-apps
A unbiased estimation of H1 is obtained, if Ĥ1 is computed
over a sample set where each K-apps can appear with equal
probability. Hence, our task is to sample an element from
ΩK uniformly at random for any K. A first (naive) ap-
proach could be to use rejection sampling, i.e., sample a
candidate K-apps from AK uniformly at random, and then
accept this candidate as a valid sample only if it also oc-
curs in D. Otherwise, repeat the process until a candidate
is accepted. Although sampling a candidate from AK is
straightforward, it is very likely to be non-existent in D (es-
pecially if K is large), and hence, its running complexity is
O(|A|K) in the worst case. An alternative approach could be
to enumerate ΩK , and choosing one element directly from
ΩK uniformly at random. However, the complexity of this
approach is still O(|D|(maxu |Du|)K/K!). Unfortunately,
these naive methods provide acceptable performance only if
K is small. As Table 1 shows, in our dataset, |A| = 92210,
maxu |Du| = 541, |D| = 54893, and we wish to estimate the
unicity when 1 ≤ K ≤ 10.

We instead propose a sampling technique based on the
Metropolis-Hastings algorithm [10, 1], which is a Markov
Chain Monte Carlo (MCMC) method. Our proposal has
a worst-case complexity of only O(K|D|/H∗1 ), where H∗1 is
roughly the unicity ofK-apps inD. As the unicity ofK-apps
is large, especially if K is large, the complexity is approxi-
mately O(K|D|) in practice. Hence, our sampling technique
remains reasonably fast even for larger values of K.

In particular, we construct an ergodic Markov chain, de-
noted by M, such that its stationary distribution π is ex-
actly the distribution that we want to sample from, that is,
the uniform distribution over ΩK . Each K-apps in ΩK cor-
responds to a state of M, and we simulate M until it gets
close to π, at which point the current state of M can be
considered as a sample from π. M is detailed in Algorithm
1. At each state transition, M picks a candidate next state
C independently of the current state S (in Line 6-7). In Line
8, the candidate is either accepted (and M moves to C) or
rejected with certain probability (in which case the candi-
date state is discarded, and M stays at S). The main idea
is that, at each state, we use the fast but biased sampling
technique, which is described in Section 3.1, to propose a
candidate C (in Line 6-7). We correct this bias by adjust-
ing the acceptance/rejection probability (in Line 8) accord-
ingly;M is more likely to accept such K-apps which are less
likely to be proposed in Line 6-7. Indeed, as π(S) = π(C),

the probability of acceptance is min
(

1, Pr[“S is proposed”]
Pr[“C is proposed”]

)
=

min

(
1,

∑
∀u:Uu⊇S 1/(|Uu|

K )∑
∀u:Uu⊇C 1/(|Uu|

K )

)
= min (1, q(S)/q(C)). A more

formal analysis is described in Appendix A. The proofs of

all the theorems in this paper can be found in Appendix A.

Algorithm 1 MCMC sampling (M)

1: Input: Dataset D, K, # of iterations t
2: Output: A sample S ∈ ΩK

3: Let U := {Du : |Du| ≥ K ∧Du ∈ D}
4: Let S be an arbitrary K-apps in ΩK

5: for k = 1 to t do
6: Select an individual u ∈ [1, |U |] uniformly at random
7: Select a subset C ⊆ Uu uniformly at random such that

|C| = K
8: Let S := C with probability min (1, q(S)/q(C)), where

q(x) =
∑
∀u:Du⊇x

∏K
i=1

1
|Uu|−K+i

9: return S

Theorem 1 M in Algorithm 1 is an ergodic Markov chain
whose unique stationary distribution is the uniform distri-
bution over ΩK for any K.

Convergence ofM. How to adjust t in Algorithm 1? We
prove that a “good” uniform sample from ΩK can be ob-
tained roughly after O(|D|) iterations in most practical
cases. The time that M takes to converge to its station-
ary distribution π is known as the mixing time of M, and
is measured in terms of the total variation distance between
the distribution at time t and π.

Definition 2 (Mixing time) For ξ > 0, the mixing time
τM(ξ) of Markov chain M is

τM(ξ) = min{t′ : ||P tM − π||tv ≤ ξ,∀t ≥ t′}

where ||P tM − π||tv = maxx∈ΩK
1
2

∑
y∈ΩK |P tM(x, y) − π(y)|

defines the total variation distance. P tM(x, y) denote the t-
step probability of going from state x to y, and P tM denote
the t-step probability distribution over all states.

The next theorem shows that M’s mixing time is
O(|D| log(1/ξ)/H∗1 ), where |D| is the dataset size and H∗1
is the unicity of K-apps from the largest record of D. As
the unicity of K-apps is usually large in practice, especially
if K is large,M is fast-mixing in general. In our dataset D,
0.6 ≤ H∗1 ≤ 0.999 for 2 ≤ K ≤ 9 3.

Theorem 2 (Mixing time of M) Let H∗1 denote the
probability that a randomly selected set of K items from the
largest record (i.e., having the most apps) in D is unique.
Then, τM(ξ) ≤ |D| ln(1/ξ)/H∗1 for any K.

We emphasize that the bound in Theorem 2 is a worst-case
bound, and the real convergence time can be much smaller
depending on the dataset D as well as the starting state of
the chain. As we show next,M indeed exhibits much smaller
convergence time than its theoretical worst-case bound for
our dataset. We detected the convergence of M using the
Geweke diagnostic [5]; if Xt denotes a Bernoulli random

3The unicity of K-apps from a single record can easily be
approximated with Inequality 2 using uniform samples over
all K-apps from the record. Likewise the biased sampling
in Section 3.1, this sampling is easy to implement (e.g., by
choosing K items individually from the record without re-
placement).
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(c) K = 7

Figure 1: Convergence of our Markov chain M. The z-score, depending on the number of iterations t, of 20 independent
chains are plotted.

variable describing whether the current state ofM at time t
is unique, and Xt = (X1, X2, . . . , Xt), then we compute the

z-score z = E[Xa]−E[Xb]√
Var(Xa)+Var(Xb)

, where Xa is the prefix of Xt

(first 10%), and Xb is the suffix of Xt (last 50%). We declare
convergence when the z-score falls within [−1, 1]. Indeed, if
Xa and Xb become identically distributed (i.e., Xa and Xb

appear to be uncorrelated), the z values become normally
distributed with mean 0 and variance 1 according to the law
of large numbers. We simulated 20 instances of M each
starting at different states, and plotted the z-score of each
chain depending on the number of iterations t in Figure 1.
This shows that convergence is detected roughly after 3000
steps in all chains with different values of K. When this
happens, the current state can be taken as a valid sample.
Hence, in the sequel, we run M with t = 3000 to obtain a
uniform sample from ΩK .

We note that q in Algorithm 1 can be computed rapidly
in practice by precomputing another dataset T , where each
record corresponds to an application in D, and record i con-
tains the sorted list of all users who have application i in
their record. Hence, the set of users who have a common
specific K-apps can be computed easily by taking the inter-
section of the corresponding records in T . The complexity of
this operation is O(K|imax|), where |imax| is the maximum
record size in T , i.e., the number of users of the most popular
application in D. Fast implementations of the intersection
of sorted integers are described in [7].

3.3 Computing the sample size
In order to compute the sample size, we use the Chernoff-
Hoeffding inequality [6] on the tail distribution of the sum
of independent (but not necessarily identically distributed)
Bernoulli random variables. In particular, if Xi denotes a
Bernoulli random variable describing the event that the ith
sampled K-apps is unique in D, then the deviation of the
estimator Ĥ1 =

∑n
i=1 Xi/n from E[Ĥ1] = H1 is given by

Pr
[∣∣∣Ĥ1 −H1

∣∣∣ ≥ ε] ≤ 2e−2nε2 , or equivalently,

Pr
[∣∣∣Ĥ1 −H1

∣∣∣ < ε
]
≥ 1− 2e−2nε2 (1)

where ε is the sampling error and σ = 1 − 2e−2nε2 is the
confidence. Hence, we obtain that

n ≥ 1

2ε2
ln

(
2

1− σ

)
(2)

For example, if ε = 0.01 and σ = 0.99, we need to sample at
least 26492 K-apps from D (with replacement) to guarantee

that |Ĥ1 − Ĥ1| < 0.01 with probability at least 0.99.

Considering RAD, suppose we aim at approximating the
first k relative frequency values of H, i.e., (H1, H2, . . . , Hk).
Therefore, we wish to simultaneously satisfy Inequality 1 for
each Hi (1 ≤ i ≤ k), where Ĥi =

∑n
j=1 X

′
j/n, and X ′j = 1

if the jth sampled K-apps occurs in exactly i records of D,
otherwise X ′j = 0. Hence,

Pr

[
k∧
i=1

∣∣∣Ĥi −Hi∣∣∣ < ε

]
≥ 1−

k∑
i=1

Pr
[∣∣∣Ĥi −Hi∣∣∣ ≥ ε]

≥ 1− 2ke−2nε2

where δ = 1− 2ke−2nε2 is the confidence. Therefore,

n ≥ 1

2ε2
ln

(
2k

1− σ

)
(3)

For instance, for ε = 0.01, σ = 0.99, and k = 10, we need to
sample at least 38005 K-apps from D (with replacement).

This will guarantee that |Ĥi − Ĥi| < 0.01 for all 1 ≤ i ≤ k
with probability at least 0.99.

4. EVALUATION
4.1 Dataset characteristics
The analyzed dataset comes from the Carat research project
[12]. The dataset includes data from 54, 893 Carat Android
users between March 11, 2013 and October 15, 2013 [15].
During this period, the Carat app4 was collecting the list of
running apps (and not the list of all installed apps) on users’
devices when the battery level changes. As collecting the list
of running apps multiple times over more than 7 months is
likely to sum up to the set of all installed apps of a user,
we consider a record as the set of installed applications in
this paper, even if a record might not be the complete set of
installed apps all the time.

4http://carat.cs.helsinki.fi

http://carat.cs.helsinki.fi
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Figure 2: Cumulative distribution of installed apps
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Figure 3: Probability distribution of number of records con-
taining a particular app

We removed system apps from all records because they are
common to all users. Without system apps, our analyzed
dataset contains 92,210 different applications whereas total
number of apps available on the GooglePlay were around 1
million during this time5. Furthermore, the average number
of apps installed per user in our dataset is 42 with a standard
deviation of 39. Table 1 summarizes the main characteristics
of our dataset D.

Figure 2 depicts the cumulative distribution of the number of
apps installed by a particular user. We note that more than
90% of users have 100 or fewer applications. Probability
distribution of the number of users who installed a particular
app is depicted by Figure 3. Notice that more than half of
the apps are contained by only a single record in D.

Ethical Considerations. The data were collected with the
users’ consent, and they were explicitly informed that their
data could be used and shared for various research projects.
In fact, the Carat privacy policy (available at http://

carat.cs.helsinki.fi) clearly specifies that “Carat is a
research project, so we reserve the right to publish our re-
sults online and in academic publications. We also reserve
the right to release the data sets into the public domain.”
Also, the dataset was shared with us by the Carat team in
a pseudo-anonymised form. In particular, identifiers were
removed, and each application name was replaced with its
SHA1 hash. It contained 54,893 records [15], i.e. one record
per user. Each record is composed of the list of applica-

5http://en.wikipedia.org/wiki/Google_Play

Dataset size |D| 54, 893
# of all apps in D 92, 210
Maximum record size maxu |Du| 541
Minimum record size minu |Du| 1
Average record size 42
Std.dev of record size 39

Table 1: Characteristics of our dataset D

tions installed by the user. Furthermore, the data sharing
agreement that we signed, stipulated that we cannot use the
dataset to deanonymize the users in the dataset.

4.2 Results
We find that 98.93% of users have unique set of installed
apps in D, i.e., there does not exist any other user with
the same set of installed apps. This means that if we know
the list of all the installed apps of a user in the dataset, we
can identify that user in the dataset with a probability of
0.99. As the adversary might not always be aware of all the
installed apps of a user in practice, we measure the unicity
of K-apps for different values of K using our dataset D.
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Figure 4: Uniqueness probability as a function of K for bi-
ased and unbiased sampling

Figure 4 gives the unicity of K-apps with different values of
K (changing from 1 to 10) for the two different types of sam-
pling techniques described in Section 3: the biased sampling
from [2, 3] and our unbiased, uniform sampling described
in Section 3.2. In each case, we computed the sample size
using Inequality 1 with maximum sampling error ε = 0.01
and confidence σ = 0.99. Otherwise stated explicitly, we use
this sample size in the sequel. This results in 26492 samples
for each value of K. As biased sampling favours more pop-
ular K-apps, the sample unicity Ĥ1 is less than with our
unbiased approach. In particular, the difference can be as
large as 0.5 for smaller values of K, while it decreases as K
increases. For the unbiased estimation, the sample unicity
is 0.75 with K = 2, and it reaches 0.99 when K = 6.

Figure 4 shows that the unicity of any K-apps is large and
hence there would be a real privacy threat if such dataset
was released. Moreover, Figure 5 depicts the relative abun-

http://carat.cs.helsinki.fi
http://carat.cs.helsinki.fi
http://en.wikipedia.org/wiki/Google_Play


dance distribution in D, when 1 ≤ K ≤ 8. RAD provides
complementary information about users’ privacy in D. In
particular, even if the adversary cannot single out the record
of the target user in D, it might still learn new information
about him/her. For example, if the known K-apps of the
target user are shared by multiple users in D and all these
users have some identical apps besides the known K-apps,
then the adversary learns that the target user also has these
apps installed on his/her phone. This attack is often re-
ferred to as the homogeneity attack in the literature [9]. We
computed the required sample size using Inequality 3 with
ε = 0.01 and σ = 0.99 for k = 20. This gives 41470 samples
overall, which were taken with our uniform sampler M.
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Figure 5: Relative abundance distribution of apps for differ-
ent sizes of sets of apps

To study the effect of number of users on unicity, we ran-
domly select subsets of users of different sizes from D, and
calculate the sample unicity within these subsets. Figure 6
depicts how unicity changes with the number of users in our
dataset. We find that unicity decreases if the user number
increases. However, this decrease becomes less significant
for larger number of users. This is probably due to the fact
that the number of apps starts to saturate if the user number
increases.

As the size of our dataset is much less than the population
size of all Android users worldwide (which was roughly 1
billion as of 2014 6 with 1.2 million different applications
available on GooglePlay7), we aim at predicting the unicity
in a larger dataset (possibly in the whole population) in the
next section.

5. UNICITY GENERALIZATION FOR
LARGER DATASETS

Information surprisal can be used to measure unique-
ness in the population D [4]. In our case, the pop-
ulation is all the Android users worldwide, to which
we want to generalize our results. As information sur-

6http://www.engadget.com/2014/06/25/google-io-
2014-by-the-numbers/
7http://www.appbrain.com/stats/number-of-android-
apps
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Figure 6: Effect of number of users

prisal of any K-apps {A1, A2, . . . , AK} over D is equal to
− log(Pr[A1, A2, . . . , AK ]), we must need to first measure
the co-occurence probability Pr[A1, A2, . . . , AK ] of these
apps in D. The co-occurence probability can be easily com-
puted if we can assume that apps co-occur independently
in the dataset as Pr[A1, A2, . . . , AK ] ≈

∏K
i=1 Pr[Ai], and

Pr[Ai] (the popularity of app Ai) can be obtained from
the download count of Ai available on Google PlayStore.
However, this is not the case in a real-world scenario as
there exist correlation between apps installed by a user. As
our dataset is very likely to be too limited to capture this
correlation (as our dataset contain only 93K distinct apps
whereas there are more than 1.2 million available apps on
GooglePlay), we cannot take this approach to measure the
uniqueness in the population of Android users. We rather
employ regression analysis on our dataset which does not
rely on this correlation information to predict the unicity in
a larger dataset.

For regression analysis, we randomly create datasets of dif-
ferent sizes from our original dataset and compute the sam-
ple unicity for these datasets of different sizes. This gives
us the tuples (x,y) where x is the number of users in a par-
ticular dataset (independent variable) and y is the calcu-
lated unicity value dependent on x. Here, we assume that
the unicity value y only depends on the number of users
x. We must note that, in reality, unicity depends on many
factors such as the characteristics of the users, how many
(un)popular applications users tend to have, etc. As it is
difficult to take into account all these factors either because
they are unknown or hard to measure, we assume that unic-
ity in general is a “proper” function of only the total number
of users in the dataset. That is, all other dependent factors
are implicitly incorporated into the model, i.e., the general
form of the function.

Once we have these (x,y) tuples, our goal is to select the
best model and its parameters that capture the relation be-
tween x and y. The overall approach is as follows: we divide
our (x,y) tuples in training and test sets. We select the best
model (i.e., a function family) based on the general char-
acteristics of application unicity and then learn its exact

http://www.engadget.com/2014/06/25/google-io-2014-by-the-numbers/
http://www.engadget.com/2014/06/25/google-io-2014-by-the-numbers/
http://www.appbrain.com/stats/number-of-android-apps
http://www.appbrain.com/stats/number-of-android-apps
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Figure 7: Unicity generalization for different values of K, trained all with maximum 37000 users. The learnt models (i.e.,
f(x)) are present in the legend. x-axis corresponds to normalized dataset sizes with a normalization factor of 1/54893, and
y-axis depicts sample unicity.

parameters using our training set. Finally, using the best
model thus obtained, we test its accuracy on the test set.
This model should be able to predict the unicity value for
any dataset of arbitrary size.

Training and Testing. We divide our original dataset in
54 smaller datasets, each of size varying from 1k to 54k.
We take the first 70% of all (x,y) points for training and
the last 30% (corresponding to larger datasets) for testing.
We deliberately take the last points corresponding to larger
datasets for testing set because we aim to evaluate our model
performance on larger datasets, i.e., we want to test how
accurately the learned model could be extrapolated.

As we divided our datasets by randomly selecting users out
of the original dataset, users in the training and testing set
may overlap. However, we found that unicity merely de-
pends on the number of users in the dataset and not specif-
ically on the underlying individuals. For example, we com-
puted the unicity of 50 different sets of 1000 users selected
randomly, and found out that the variance of the measured
sample unicity is very small.

Model selection. To select our model, we first tried linear
regression with non-linear basis functions (polynomials of
various orders) with and without regularization. However,
they provided very inaccurate predictions of unicity. Finally,
we selected the following exponential model describing an
exponential decay of unicity:

f(x) = a · exp(−b
√
x) + c (4)

The rationale behind choosing this model is as follows. Fig-
ure 8 shows that if additional users were added to our
dataset, the number of apps would reach the maximum num-
ber of apps in the population early as there are fewer apps
on GooglePlay than total number of Android users. This
suggests that, after a certain point, additional users would
not bring many new apps but still, they would bring new
combinations of already existing apps. The addition of new
combinations of apps should lead to the increase in unicity.
However, the newly added users can lead to the decrease in
unicity as well due to the fact that they can also have many
already existing combinations of apps. As these two effects
of adding new users to the dataset run opposite to each
other, we suppose that unicity converges to a value greater
than zero which is denoted by c in Equation 4. Indeed, as
Figure 6 shows, although unicity decreases with the increase
in the user number, the amount of this decrease tends to de-
crease as well. A similar observation was made in [2]. Also,
we used square root of x in the exponent in Equation 4 be-
cause taking square root is variance-stabilizing8. In fact, we
tried other powers of x in the exponent but square root lead
to the best results.

The goal of the regression is to compute parameters a,b and
c in Equation 4 from the training set (x,y) tuples. In fact,
these parameters might be computed employing either stan-
dard non-linear regression directly or by first transforming
Equation 4 into linear form and then applying linear regres-
sion. We use standard non-linear regression because it ex-
plicitly computes the lower bound on the unicity value (i.e.,

8https://en.wikipedia.org/wiki/Variance-
stabilizing_transformation

https://en.wikipedia.org/wiki/Variance-stabilizing_transformation
https://en.wikipedia.org/wiki/Variance-stabilizing_transformation
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Figure 8: No of distinct apps installed by users

c in Formula 4). The value of x is normalized9 by dividing
x with the maximum size of the dataset for which we want
to predict the unicity value.

Results. As an error metric, we measure the average abso-
lute error denoted by δ, i.e.,

δ = (1/n)

n∑
i

|yi − f(xi)|

where n is the number of predicted points, yi is the real
unicity value, and f(xi) is the predicted value.

Figure 7 presents how our exponential model performs on
the test set for different values of K. Although our model
can predict the trend of the unicity for large number of users,
it slightly overestimates the real unicity in the test set. Nev-
ertheless, the average error δ on the test set is only around
0.01. As our app dataset is very small as compared to the
whole Android population, we cannot evaluate performance
of our model for large number of users, e.g., a few million, or
the whole Android population. Therefore, we cannot claim
that our model will be able to accurately predict the unicity
for datasets having large number of users even if it performs
reasonably well on our test data.

Model validation on a different dataset. To further
demonstrate that our model is a meaningful approach to
predict unicity in large populations, we test it on a large
mobility dataset provided by a telecom operator in Europe.
This dataset contains the Call Data Records (CDR) of 1
million users from a large european city over 6 weeks. Each
record in the dataset corresponds to a user and contains the
set of his/her visited cell towers, where the total number of
different cell towers is 1303. From this dataset, we created
smaller datasets of different sizes (x ranging from 1000 to
1 million users). Then, we trained our model on the first 6
points (i.e., until the dataset size of 50, 000). Figure 9 shows
that the model does not predict accurately the unicity for
large datasets and the error can be as large as 0.6. Next,
we trained the model on the first 7 points (i.e., until the
dataset size of 75, 000). In this case, we find that the model
performs significantly better than in the previous case with
an error of 0.13 on average. Finally, we trained the model on

9https://en.wikipedia.org/wiki/Feature_scaling

the first 8 points (i.e., until the dataset size of 100, 000). In
this case, we find that the model have accurate predictions
for larger datasets, e.g., for a test dataset of size 1 million
(10 times more than the maximum size of the dataset used
in the training phase), and the error is 0.05 on average.

We find that a mobility dataset of 0.1 million users is suf-
ficient to learn an accurate model and predict the unicity
values for a larger mobility dataset. However, as we saw
earlier, the model is not able to predict well the unicity of a
large population if it is trained on a dataset of only 50, 000
users. This may suggest that 50, 000 users might be too
small in general to learn an accurate model and therefore,
our app dataset of 50, 000 users might not be sufficient to
learn the model. On the other hand, even if this model per-
forms well on a mobility dataset with 1 million users, it does
not necessarily imply its good performance on large appli-
cation datasets due to the different data and user character-
istics. Nevertheless, these two experiments together show
that our exponential model can be a meaningful approach
to predict unicity in large populations.

6. CONCLUSION
The paper shows that the list of installed applications is
quite unique. This result has few implications on user’s pri-
vacy. First, since this metadata is unique, it could easily be
used to profile users, e.g., based on the category of installed
apps. This is what Twitter is doing to provide interest-
based targeted ads to users. Second, as a combination of
even small number of installed apps is quite unique, this
information could be used to re-identify users in a dataset.
For example, if Twitter decided to publish the list of apps
installed by its users on their smartphones, it would be easy
for anyone, who knows 4 or 5 apps of a given user, to re-
identify him and discover other apps that are also installed
on his smartphone. This makes anonymization of this infor-
mation challenging, and this is part of our future work.

In general, mobile users reveal many pieces of information
that, when combined together, provide a lot of information
about users and can be used to build personalized profiles.
Since people are unique in many different known and un-
known ways, preserving the privacy of mobile users is very
challenging. New protection measures need to be devised.
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APPENDIX
A. PROOF OF THEOREM 1

Metropolis-Hastings algorithm. Consider an ergodic
Markov chain G with transition graph G(Λ, E) and tran-
sition matrix PG , where Λ is the finite state space. For
each x ∈ Λ, let κ : Λ × Λ → [0, 1] denote a (not neces-
sarily symmetric) proposal probability distribution function
such that for all x ∈ Λ, κ(x, x) +

∑
y 6=x κ(x, y) = 1. The

transitions of G are defined according to the Metropolis-
Hastings rule as follows. From any state x ∈ Λ, first se-
lect an y ∈ Λ such that (x, y) ∈ E with probability κ(x, y).
Then, “accept” the transition from x to y with probabil-

ity min
(

1, π(y)κ(y,x)
π(x)κ(x,y)

)
, otherwise stay at x. It is not diffi-

cult to show [8] that such a Markov chain G is reversible,
i.e., π(x)PG(x, y) = π(y)PG(y, x) and therefore its station-
ary distribution π is unique [8]. Consequently, after suffi-
ciently many transitions, the distribution of states will be
very close to π. Notice that there is no need to compute
the normalization constant of π, even if |Ω| is very large
(i.e., an exponential function of K in our problem), because
it appears both in the numerator and denominator of the
transition probabilities.

Proof of Theorem 1. In each iteration, M can select
any individual u in D. Hence, at any state,M can visit any
state in ΩK . Therefore,M is connected and aperiodic. Also
notice that

π(C)κ(C, S)

π(S)κ(S,C)
=
κ(C, S)

κ(S,C)

=

∑
∀u:Uu⊇S 1/

(|Uu|
K

)∑
∀u:Uu⊇C 1/

(|Uu|
K

)
=

∑
∀u:Uu⊇S K!/|U |

∏K
i=1

1
|Uu|−K+i∑

∀u:Uu⊇C K!/|U |
∏K
i=1

1
|Uu|−K+i

= q(S)/q(C)

where π is the uniform distribution over ΩK . There-
fore, a candidate next state is accepted with probability

min
(

1, π(C)κ(C,S)
π(S)κ(S,C)

)
= min (1, q(S)/q(C)), which means that

M is reversible and its unique stationary distribution is π
according to the Metropolis-Hastings rule.

B. PROOF OF THEOREM 2
In order to prove M’s mixing time, we use a standard cou-
pling argument which is described below.

Definition 3 (Coupling) A coupling of a Markov chain
M on state space Ω is a Markov chain on Ω×Ω defining a
stochastic process (Xt, Yt)

∞
t=0 such that

• each of the processes (Xt, ·) and (·, Yt), viewed in iso-
lation, is a faithful copy of the Markov chain M (given

initial states X0 = x and Y0 = y); that is, Pr[Xt+1 =
b|Xt = a] = PM(a, b) = Pr[Yt+1 = b|Yt = a]; and

• if Xt = Yt, then Xt+1 = Yt+1.

Condition 1 ensures that each process, viewed in isolation,
is just simulating the original chain M, and the coupling is
designed such that Xt and Yt tend to coalesce (i.e., move
closer to each other according to some notion of distance).
Once they meet, Condition 2 guarantees that they will move
together forward. The time of this coalescence can be used
to upper bound the mixing time which is shown by the next
lemma.

Lemma 1 (Coupling lemma [8]) Let (Xt, Yt)
∞
t=0 be a

coupling of a Markov chain M. For initial states x, y let
T x,y = min{t : Xt = Yt|X0 = x, Y0 = y} denote the random
variable describing the time until Xt and Yt coalesce. Then

||P tM − π||tv ≤ max
x,y∈Ω

Pr[T x,y > t]

Proof of Theorem 2. Define a coupling (Xt, Yt) as fol-
lows. Let Xt and Yt choose the same individual u and subset
C in Line 6 and 7 of Algorithm 1, respectively. This is a valid
coupling according to Definition 3, since both Xt and Yt are
the exact copies of M, and they move together after they
coalesce.

Let p(x) = κ(·, x) denote the probability that x = C is
selected in Line 6 of Algorithm 1. Let X0 = x and Y0 = y,
and, w.l.o.g., p(x) ≤ p(y). Due to the coupling rule, Xt
and Yt can coalesce at any time, since PM(x, y) > 0 for all
x, y ∈ Ω. This happens when both Xt and Yt select a state z
such that p(z) ≤ p(x) ≤ p(y), since q(z) ≤ q(x) ≤ q(y) will
also hold. Let Umax = maxu Uu. For any x, z ∈ Ω, where z
occurs only in Umax, p(z) ≤ p(x). Indeed,

p(x) =
1

|U |
∑

∀u:Uu⊇x

1(|Uu|
K

)
≥ 1

|U |
1(|Umax|
K

)
≥ p(z)

Hence, Xt and Yt coalesce as soon as they select any z ∈ Ω
which occur only in the largest record in D. Therefore,

||P tM − π||tv ≤ max
x,y∈ΩK

Pr[T x,y > t] (by Lemma 1)

≤
∞∑
i=t

(1−H∗1/|U |)
i
H∗1/|U |

≤ (1−H∗1/|U |)t

≤ exp (−tH∗1/|U |)

which proves the theorem.
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