DeSCal–Decentarlized Shared Calendar for P2P and Ad-Hoc Networks

Jagdish Prasad Achara^{Speaker}, Abdessamad Imine, Michael Rusinowitch

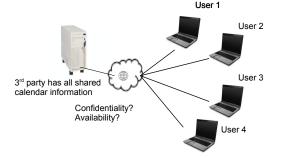
INRIA Nancy

7 July, 2011

Introduction

- 2 Use Case Scenario and Related Work
- 3 Collaboration Model
- DeSCal system
- Implementation on iPhone OS
- 6 Various Scenarios demonstrating application's novelty

Future Work



Introduction

- Decentralized & third party independent shared calendar
- Motivations & Challenges
- 2 Use Case Scenario and Related Work
- 3 Collaboration Model
- DeSCal system
 - Design
 - Architecture
- 5 Implementation on iPhone OS
- O Various Scenarios demonstrating application's novelty
- Future Work

Decentralized & third party independent shared calendar

- Shared Calendar?
- Why decentralized & third party independent?
 - Support for Ad-Hoc networks (802.11 networks).
 - O No single point of failure.
 - Secrecy/confidentiality of shared calendar events.
 - Availability of data.

Motivations

- Design and implementation of a decentralized and third-party independent shared calendar
- Being a user-interactive application, the shared calendar must be-
 - Eventually Consistent and Highly Concurrent
 - Highly Responsive and Scalable
- Challenges
 - It is a standard to be a standard to
 - To provide an access control mechanism on shared calendar events in a decentralized fashion

Introduction

- Decentralized & third party independent shared calendar
- Motivations & Challenges

2 Use Case Scenario and Related Work

Collaboration Model

4 DeSCal system

- Design
- Architecture
- 5 Implementation on iPhone OS
- O Various Scenarios demonstrating application's novelty
- Future Work

- One real world scenario illustrating the usefulness of DeSCal (A reserach team in a research lab)
- Related Work
 - Google Calendar
 - Zimbra platform calendar application

Introduction

- Decentralized & third party independent shared calendar
- Motivations & Challenges
- Use Case Scenario and Related Work
- Collaboration Model

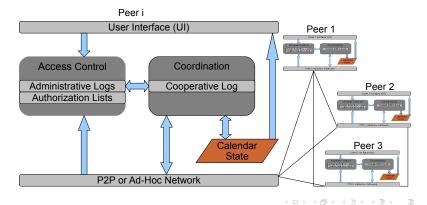
4 DeSCal system

- Design
- Architecture
- 5 Implementation on iPhone OS
- O Various Scenarios demonstrating application's novelty
- Future Work

Collaboration Model

- A user maintains two copies :
 - the shared calendar (cooperative operations)
 - It he access control policy (administrative operations)

- Steps
 - When a user changes his local copy of the shared calendar?
 - When a user modifies his local access control policy?

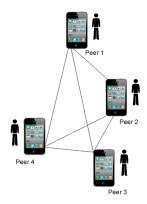

Introduction

- Decentralized & third party independent shared calendar
- Motivations & Challenges
- 2 Use Case Scenario and Related Work
- Collaboration Model
- DeSCal system
 - Design
 - Architecture
- 5 Implementation on iPhone OS
- 6 Various Scenarios demonstrating application's novelty
- Future Work

Design

The design of DeSCal is composed of four well-seperated conceptual modules

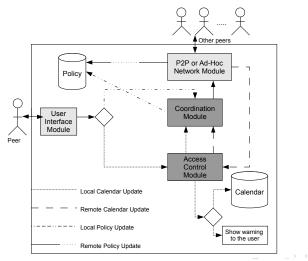
- Coordination Module
- Access Control Module
- P2P/Ad-Hoc Network Module
- User Interface Module



- Responsible for handling the concurrent updates on shared calendar by different users in a decentralized fashion.
- Follows a coordination model proposed by Imine for collaborative editors which is based on Operational Transformation (OT) approach.
- ▶ Directly interacts with the local copy of the shared calendar.
- ▶ Keeps track of both local and remote calendar update requests by storing them in a log called *cooperative log*.

- ► To control access on shared calendar events so that a user is able to access the events for which he is authorized.
- ► Follows an access control model proposed by Imine, Cherif and Rusinowitch, however, it doesn't satisfy all the requirements of DeSCal.
- The actions taken by a user on the shared calendar through user interface has to be passed through access control module.

P2P/Ad-Hoc Network Module


- ► To maintain a local knowledge of the network infrastructure.
- Responsible for providing Peer-to-Peer distributed architecture services to DeSCal for any kind of network.

- Enables a user to take actions on the shared calendar. However, it can't change the state of the shared calendar directly.
- Should be designed in such a way that simplifies the use of DeSCal for the user.

Architecture

How does a user handle the local updates generated by himself and remote updates by other users in the group received through P2P/Ad-Hoc Network module?

Introduction

- Decentralized & third party independent shared calendar
- Motivations & Challenges
- 2 Use Case Scenario and Related Work
- 3 Collaboration Model

4 DeSCal system

- Design
- Architecture

Implementation on iPhone OS

- Various Scenarios demonstrating application's novelty
- Future Work

- Key entities
 - Calendar
 - Event
 - 8 Rule
 - Policy
- Working
 - Inserting a new event
 - Managing Policy
 - Oblige Deleting / Editing an event

<ロト < 団ト < 臣ト < 臣)

Implementation on iPhone OS

FIGURE: Calendar, Event Detail, Policy and Available Peers view

Implementation on iPhone OS

FIGURE: Selection of various attributes to insert a new rule in iPhone OS implementation

イロト イ団ト イモト イモト

Introduction

- Decentralized & third party independent shared calendar
- Motivations & Challenges
- 2 Use Case Scenario and Related Work
- 3 Collaboration Model

DeSCal system

- Design
- Architecture

- 6 Various Scenarios demonstrating application's novelty
 - Future Work

- ▶ No constrain on number of users & dynamic access control
- Eventually, the consistency of replicated copies of shared calendar is achieved in all cases.
- Users leave or join the group independently.

Introduction

- Decentralized & third party independent shared calendar
- Motivations & Challenges
- 2 Use Case Scenario and Related Work
- 3 Collaboration Model

DeSCal system

- Design
- Architecture
- 5 Implementation on iPhone OS
- Various Scenarios demonstrating application's novelty

Future Work

- Future Work
 - Providing confidentiality to replicated shared calendar events.
 - Securing the communication between users.