DeSCal–Decentralized Shared Calendar for P2P and Ad-Hoc Networks

Jagdish Prasad Achara Speaker,
Abdessamad Imine, Michael Rusinowitch

INRIA Nancy

7 July, 2011
Outline

1. Introduction
2. Use Case Scenario and Related Work
3. Collaboration Model
4. DeSCal system
5. Implementation on iPhone OS
6. Various Scenarios demonstrating application’s novelty
7. Future Work
Outline

1. Introduction
 - Decentralized & third party independent shared calendar
 - Motivations & Challenges

2. Use Case Scenario and Related Work

3. Collaboration Model

4. DeSCal system
 - Design
 - Architecture

5. Implementation on iPhone OS

6. Various Scenarios demonstrating application’s novelty

7. Future Work

Jagdish Prasad Achara (LORIA, Nancy, France)
Decentralized & third party independent shared calendar

- Shared Calendar?
- Why decentralized & third party independent?
 2. No single point of failure.
 3. Secrecy/confidentiality of shared calendar events.
 4. Availability of data.
Motivations & Challenges

- Motivations
 1. Design and implementation of a decentralized and third-party independent shared calendar
 2. Being a user-interactive application, the shared calendar must be-
 - Eventually Consistent and Highly Concurrent
 - Highly Responsive and Scalable

- Challenges
 1. To handle the concurrent operations on shared calendar
 2. To provide an access control mechanism on shared calendar events in a decentralized fashion
Outline

1. Introduction
 - Decentralized & third party independent shared calendar
 - Motivations & Challenges

2. Use Case Scenario and Related Work

3. Collaboration Model

4. DeSCal system
 - Design
 - Architecture

5. Implementation on iPhone OS

6. Various Scenarios demonstrating application’s novelty

7. Future Work
User Case Scenario and Related Work

- One real world scenario illustrating the usefulness of DeSCal (A research team in a research lab)

- Related Work
 - Google Calendar
 - Zimbra platform calendar application
Outline

1. Introduction
 - Decentralized & third party independent shared calendar
 - Motivations & Challenges

2. Use Case Scenario and Related Work

3. Collaboration Model

4. DeSCal system
 - Design
 - Architecture

5. Implementation on iPhone OS

6. Various Scenarios demonstrating application’s novelty

7. Future Work

Jagdish Prasad Achara (LORIA, Nancy, France)
Collaboration Model

A user maintains two copies:
1. the shared calendar (cooperative operations)
2. the access control policy (administrative operations)

Steps
1. When a user changes his local copy of the shared calendar?
2. When a user modifies his local access control policy?
Outline

1. Introduction
 - Decentralized & third party independent shared calendar
 - Motivations & Challenges

2. Use Case Scenario and Related Work

3. Collaboration Model

4. DeSCal system
 - Design
 - Architecture

5. Implementation on iPhone OS

6. Various Scenarios demonstrating application’s novelty

7. Future Work
The design of DeSCal is composed of four well-separated conceptual modules:

1. Coordination Module
2. Access Control Module
3. P2P/Ad-Hoc Network Module
4. User Interface Module
Coordination Module

- Responsible for handling the concurrent updates on shared calendar by different users in a decentralized fashion.

- Follows a coordination model proposed by Imine for collaborative editors which is based on Operational Transformation (OT) approach.

- Directly interacts with the local copy of the shared calendar.

- Keeps track of both local and remote calendar update requests by storing them in a log called cooperative log.
To control access on shared calendar events so that a user is able to access the events for which he is authorized.

Follows an access control model proposed by Imine, Cherif and Rusinowitch, however, it doesn’t satisfy all the requirements of DeSCal.

The actions taken by a user on the shared calendar through user interface has to be passed through access control module.
P2P/Ad-Hoc Network Module

- To maintain a local knowledge of the network infrastructure.
- Responsible for providing Peer-to-Peer distributed architecture services to DeSCal for any kind of network.
User-Interface Module

- Enables a user to take actions on the shared calendar. However, it can’t change the state of the shared calendar directly.

- Should be designed in such a way that simplifies the use of DeSCal for the user.
Architecture

How does a user handle the local updates generated by himself and remote updates by other users in the group received through P2P/Ad-Hoc Network module?
Outline

1 Introduction
 • Decentralized & third party independent shared calendar
 • Motivations & Challenges

2 Use Case Scenario and Related Work

3 Collaboration Model

4 DeSCal system
 • Design
 • Architecture

5 Implementation on iPhone OS

6 Various Scenarios demonstrating application’s novelty

7 Future Work
Implementation on iPhone OS

- **Key entities**
 1. Calendar
 2. Event
 3. Rule
 4. Policy

- **Working**
 1. Inserting a new event
 2. Managing Policy
 3. Deleting/Editing an event
Implementation on iPhone OS

Figure: Calendar, Event Detail, Policy and Available Peers view
Figure: Selection of various attributes to insert a new rule in iPhone OS implementation.
Outline

1. Introduction
 - Decentralized & third party independent shared calendar
 - Motivations & Challenges

2. Use Case Scenario and Related Work

3. Collaboration Model

4. DeSCal system
 - Design
 - Architecture

5. Implementation on iPhone OS

6. Various Scenarios demonstrating application’s novelty

7. Future Work

Jagdish Prasad Achara (LORIA, Nancy, France)
Various Scenarios demonstrating application’s novelty

- No constrain on number of users & dynamic access control
- Eventually, the consistency of replicated copies of shared calendar is achieved in all cases.
- Users leave or join the group independently.
Outline

1. Introduction
 - Decentralized & third party independent shared calendar
 - Motivations & Challenges

2. Use Case Scenario and Related Work

3. Collaboration Model

4. DeSCal system
 - Design
 - Architecture

5. Implementation on iPhone OS

6. Various Scenarios demonstrating application’s novelty

7. Future Work
Future Work

- Providing confidentiality to replicated shared calendar events.
- Securing the communication between users.