Probabilistic k^m-anonymity (Efficient Anonymization of Large Setvalued Datasets)

Gergely Acs (INRIA) gergely.acs@inria.fr

Jagdish Achara (INRIA) jagdish.achara@inria.fr

Claude Castelluccia (INRIA) claude.castelluccia@inria.fr

Overview

Motivation

- □ Background: k^m-anonymity
- □ Why k^m-anonymity is impractical?
- □ Relaxation of k^m-anonymity: Probabilistic k^m-anonymity
- □ How to anonymize to have probabilistic k^m-anonymity?
- Performance evaluation
- Conclusions

De-identification

- Personal data is any information relating to an identified or identifiable individual (EU Directive 95/46/EC)
- De-identification breaks links between individuals' identity and their data (records)
- Regulations apply only to personal data!
 De-identified data is non-personal data and hence out of the regulation
- NOTE: de-identification does NOT include the control of (sensitive) attribute inference

Set-valued data

Rec #	Data		Rec #	ltem 1	ltem 2	Item 3	•••	ltem n
1	{Item 2, Item 3}		1	0	1	1	•••	0
2	{Item 1, Item 3, Item n}		2	1	0	1	•••	1
•••	•••							

- No direct Personal ID in the dataset (e.g., phone numbers)
- Each user has a subset of items (e.g., visited locations, watched movies, purchased items, etc.)

High-dimensional and sparse data!

Y.-A. de Montjoye *et al.* **Unique in the crowd**: The privacy bounds of human mobility. Nature, March 2013.

Y.-A. de Montjoye *et al.* **Unique in the shopping mall**: On the reidentifiability of credit card metadata. Science, January 2015.

Privacy test: Location uniqueness

Rec #	Data
1	{Tower 2, Tower 3}
2	{Tower 1, Tower 3, Tower 5}
•••	

- Derived from Call Data Records
- □ 4,427,486 users
- □ 1303 towers (i.e., locations)
- \Box 01/09/2007 15/10/2007
- Mean tower # per user: 11.42 (std.dev: 17.23)
- □ Max. tower # user: 422

Privacy test: Location uniqueness

- 6
- If the adversary knows *m* towers of a user, what is the probability that the user is the only one who have these towers in the dataset?

Similar study:

Y.-A. de Montjoye, C. A. Hidalgo, M. Verleysen, and V. D. Blondel. *Unique in the crowd: The privacy bounds of human mobility.* Scientific Reports, Nature, March 2013.

Background: *k^m*-anonymity

- For ANY *m* items, there are at least *k* users who have these items
 - if *m* equals the maximum item number per user, then k^m is equivalent to k-anonymity
 - However, k-anonymity suffers from the curse of dimensionality^[1]
 (i.e., very bad utility for high-dimensional, sparse data)
- Rationale of k^m-anonymity: adversary is unlikely to know all the items of a user
- Allows larger utility by applying fewer generalizations (aggregations)

[1] C. C. Aggarwal, On K-anonymity and the Curse of Dimensionality, VLDB, 2005

Example: k vs. k^m-anonymity

	-	
	-	

$\operatorname{Rec}\#$	Original Items
1	{LA}
2	{LA, Seattle}
3	{New York, Boston}
4	{New York, Boston}
5	{LA, Seattle, New York}
6	{LA, Seattle, New York}
7	{LA, Seattle, New York, Boston}

$\operatorname{Rec}\#$	2-anonymity
1	$\{\text{East US}\}$
2	$\{\text{East US}\}$
3	{West US}
4	{West US}
5	$\{LA, Seattle, West US\}$
6	$\{LA, Seattle, West US\}$
7	$\{LA, Seattle, West US\}$

Rec#	2^2 -anonymity
1	$\{LA\}$
2	$\{LA, Seattle\}$
3	$\{\text{West US}\}$
4	$\{$ West US $\}$
5	$\{LA, Seattle, West US\}$
6	$\{LA, Seattle, West US\}$
7	$\{LA, Seattle, West US\}$

Problem of k^m-anonymity

9

- Verifying k^m -anonymity can have exponential complexity in $m^{[1]}$
 - → impractical if *m* is large (typically when $m \ge 5$)
- The exact speed depends on the structure of the generalization hierarchy and the dataset itself^[1]

→ DOES NOT WORK FOR MANY REAL-WORLD DATASETS!

[1] M. Terrovitis, N. Mamoulis, P.Kalnis, *Privacy-preserving anonymization of setvalued data*, VLDB, 2008

Probabilistic k^m-anonymity

For ANY *m* items, there are at least *k* users who have these items with probability at least *p*

where p > 0.9, and typically should be around 0.99 or 0.999

- Intuition: instead of checking all possible *m* items, we select randomly some of them from the dataset, and check *k*anonymity of only these samples!
 - → we have k-anonymity for ANY randomly selected *m* items with large probability (based on sampling theorems)!
- □ How to sample these *m* items?

10

How many samples are needed?

How to sample *m*-itemsets?

□ Naïve approach:

- 1. Sample a record
- 2. Sample *m* items from this record

Biased towards selecting more popular itemsets! (e.g., popular places in location data)

- However, adversary may learn unpopular items easily e.g., home address is not necessarily popular...
- Our approach is more general:
 Select among *all m*-itemsets uniformly at random using a fastmixing Markov chain

Adversary can learn any m-itemset with equal probability!

How many samples?

12

From the Chernoff-Hoeffding bound:

$$N = O\left((1-p)^{-2}\ln\left(\frac{1}{1-p}\right)\right)$$

to have k^m-anonymity with probability p

Independent from m, the dataset size, and the number of all items!

p	Ν
0.99	≈ 60 K
0.999	\approx 5 M
1	∞

Anonymization

13

INPUT: *p* – probability, *k*,*m* – privacy parameters, *D* – dataset

- SAMPLING: Pick (uniformly at random) a single *m*-itemset from D using MCMC sampling
- IF the sample does NOT satisfy k-anonymity
 GENERALIZE an item in the sample such that generalization error is minimized (e.g., average cell size in location data)
- **3. REPEAT** the above steps until $O\left((1-p)^{-2}\ln\left(\frac{1}{1-p}\right)\right)$ consecutive samples satisfy k-anonymity

AMPLIFY UTILITY: Execute the above algorithm multiple times and select the one which has the least generalization error

Running complexity

14

□ The required number of samples which must satisfy k-anon. is

$$N = O\left((1-p)^{-2}\ln\left(\frac{1}{1-p}\right)\right)$$

- $\hfill\square$ For each sample, the Markov chain sampling runs in $O(m^2|D|)$
- $\hfill\square$ The maximum number of generalizations is the number of possible items which is $O(|\mathbb{I}|)$
- Hence, the total complexity is $O\left(m^2|D||\mathbb{I}|(1-p)^{-2}\ln\left(\frac{1}{1-p}\right)\right)$ → polynomial in the number of records |D|, number of possible items |I|, m, and probability p

Performance evaluation: Privacy guarantee

RECALL: a user has fewer than 11 visited towers on average

We can have different privacy guarantee (i.e., k, p) for different m!

- In the evaluation:
 - when $m \le 4$: k is 10 or 20, p = 1 (rationale: too easy to learn fewer than 4 locations)
 - when m ≥ 5: k is 10 or 20, p is 0.99 or 0.999 or 0 (no guarantee)
- Execution time: couple of hours in all cases (dominated by p = 1)

Performance evaluation

Privacy GOAL 1:

- if $1 \le m \le 4$: 20^m-anonymity with prob. 1
- if m = 5, 20^m-anonymity with prob. p
- if $m \ge 5$, p = 0 (no guarantee)

Original:

p=.99

p=.999

Performance evaluation

Privacy GOAL 2:

- if $1 \le m \le 4$: 20^m-anonymity with prob. 1
- if $5 \le m \le 11$, 20^{m} -anonymity with prob. p

Original:

p=.99

p=.999

Average partition size

18

Average territory of the aggregated cells

Conclusions

□ k^m-anonymity is guaranteed with certain confidence

- Adversarial knowledge is limited to any *m* items
- Probabilistic relaxation improves scalability and utility

Proposed anonymization to achieve this guarantee

- □ Running time is polynomial in *m*, dataset size, and universe size
- □ Is it enough? If so, how to choose *k*, *m*, *p*?
 - Perform Privacy Risk Analysis

Thank You!

20

Q (&A)

MCMC for sampling *m*-itemsets

Start with any existing m-items in the dataset. **REPEAT**

1. PROPOSAL:

1.1 sample a user uniformly at random

1.2 select m items C from this user also uniformly at random

2. PROBABILISTIC ACCEPTANCE:

2.1 accept it (i.e., S=C) with a probability, which is min(1, Pr["S is proposed"]/Pr["C is proposed"])
UNTIL Convergence

European Data Protection law

- personal data is any information relating to an identified or identifiable individual
 - □ can be used to identify him or her, and to know his/her habits
 - account must be taken of all the means available [...] to determine whether a person is identifiable
- any processing of any personal data must be (1) transparent (to the individual), (2) for specified explicit purpose(s), (3) relevant and not excessive in relation to these purposes
- Legally nonbinding: all member states have enacted their own data protection legislation
- Anonymized data is considered to be non-personal data, and as such, the directive does not apply to that