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Previous studies

* Visited locations are unique

— Unique in the Crowd: The privacy bounds of
human mobility,

Nature Scientific Report, 2013

* Credit card metadata is unique
— On the Re-identifiability of credit card metadata,
Science, 2015



Why we are interested in Unicity?



Release of pseudo-anonymized dataset

1 {ltem 2, Item 3, Item 8, ..., tem M}

2 {ltem 1, Item 13, ..., ltem N}

What is the risk of Re-identification of users?



Measuring Re-identification risk

Dataset D1 Dataset D2
1 {ltem 2, Item 3, Item 8, Item 6} 1 {ltem 2, Item 3, Item 8, Item 6}
2 {ltem 1, Item 4} 2 {Item 2, Item 3, Item 7, Item 6}
3 {ltem 2, Item 4, Item 6} 3 {ltem 2, Item 3, Item 1}

Unicity(2 items in D1) =8/9 Unicity(2 items in D2) = 6/9

Re-identification risk = Unicity of K-items



How to measure Unicity of K-items?



Unicity Measurement

1 {ltem 2, Item 3, Item 8, ..., tem M}

2 {ltem 1, Item 13, ..., Item N}

# of K-items that appear once
total # of K-items in the dataset

Unicity of K-items =

Prohibitively expensive to calculate,
sampling as rescue.




How to sample?

* Naive technique:
1. Randomly select a user having > K items
2. Randomly select K-items from that user

1 {Item 4, Item 5, Item 8, Item 11}
2 {ltem 8, Item 6, Item 11}

3 {ltem 5, Item 7}

4 {Item 1, Item 11, Item 8}



How to sample?

* Naive technique:
1. Randomly select a user having > K items
2. Randomly select K-items from that user

* Also state-of-the-art technique
— Unique in the Crowd: The privacy bounds of human
mobility,
Nature Scientific Report, 2013
— On the Re-identifiability of credit card metadata,
Science, 2015




How to sample?

Naive technique:
1. Randomly select a user having > K items
2. Randomly select K-items from that user

Biased towards selecting more popular items!
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How to sample?

State-of-the-art technique is biased!
 Example:

1 {ltem 4, Item 5, Item 8§, Item 11}
2 {Item 8, Item 6, Item 11, Item 13}
3 {ltem 5, Item 7, Item 2, Item 3}

4 {ltem 1, Item 11, Item 8, Item 12}

Probability(ltems 8, 11 are selected) = %* V6
Probability(ltems 5, 7 are selected) = v4* V6



How to uniformly sample?

* Nalve approaches are inappropriate
— Rejection sampling
— Enumerate all possible combinations of K-apps
and find their support in the dataset

* Worst-case complexity is exponential in K
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Proposed uniform sampling technique

* Based on Metropolis-Hastings algo
— A Markov Chain Monte Carlo (MCMC) method

* We construct an ergodic Markov chain (M)
— Such that its stationary distribution is uniform

* Every possible K-items represent a state of ‘M
— Simulate ‘M until it gets close to uniform
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Proposed uniform sampling technique

e MCMC sampling algorithm (M):

Start with any existing K-items in the dataset.
REPEAT
1. PROPOSAL:

1.1 sample a user uniformly at random

1.2 select K-apps C from this user also uniformly at random
2. PROBABILISTIC ACCEPTANCE:

2.1 accept it (i.e., S=C) with a probability, which is

min(1, Pr["S is proposed"]/Pr["C is proposed"])

UNTIL Convergence

14



Proposed uniform sampling technique

* Mixing time: roughly the order of dataset size
— Real convergence much smaller for our dataset

« Overall Worst-case complexity O(K‘DVH)

— | D] is dataset size

— H is the unicity of K-apps from the largest record
of D
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Unicity of K-Apps



Dataset

 Comes from Carat research project [1]

* Contains list of installed Apps of users

54,893 Android users

92,210 apps

* Collected over a period of 7 month

[1] http://carat.cs.helsinki.fi
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Results
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* Unique in the Crowd: The privacy bounds of human mobility,
Nature Scientific Report, 2013
* On the Re-identifiability of credit card metadata,

Science, 2015



Parties knowing Installed Apps

AppStore owners
— Know all installed Apps

Installed Apps themselves
— May know all or a subset

Included libraries (Ad, Analytics etc.)
— May know all or a subset

Friends/relatives
— May know a subset



Installed Apps are Quite Revealing
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Reference:
* Predicting User Traits from a Snapshot of Apps Installed on a Smartphone,
ACM SIGMOBILE Mobile Computing and Communications Review, 2014
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Unicity generalization



Regression analysis

* Created datasets of varying sizes and
computed the sample Unicity

* Assumed Unicity a proper function of dataset
Size



Model selection for regression analysis
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_ bz where x is the dataset size
f(m) — ac + and f(x) is unicity value
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Non-linear regression

e Datais divided into 50 parts (size 1K to 50K)
— For training: first 70%
— For testing: last 30%

* Training data to learn a, b and c in the model

f(z) = ae®® 4 ¢



Unicity Generalization: App Dataset
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Conclusions

* Proposed a method for uniform sampling of K-
items

* Addressed how Unicity would vary with
dataset size

* |Installed Apps are quite unique
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Recommendations

e Access to the list of installed apps should be
protected on Android

— This is already the case with iOS 9

* Extreme care must be taken before releasing
pseudo-anonymized installed Apps dataset
— Adversaries do exist



Thanks for your attention!
Questions?



Backup slides



Unicity Generalization: CDR data

1.0
Fitted Function:
oy =0.944e73255V7 4 0,053
0.8 — Predicted values |

0.4

043 0.2 04

(f) K = 3, trained with max |D| =

100000, § = 0.089

0.6 0.3

1.0

1.0 .
Fitted Function:
0.9 Y =0.673e 32V 4+ 0.301 [
— Predicted values
0.8}

0.7

0.6}

0.4F

0-8.0 0.2 0.4

(c) K = 4, trained with max |D| =

100000, 6 = 0.031

0 is average absolute error

0.6 0.8

30



