On the Unicity of Smartphone Applications

Jagdish Prasad Achara Speaker
Gergely Acs
Claude Castelluccia

INRIA, France

Previous studies

- Visited locations are unique
 - Unique in the Crowd: The privacy bounds of human mobility,

Nature Scientific Report, 2013

- Credit card metadata is unique
 - On the Re-identifiability of credit card metadata,Science, 2015

Why we are interested in Unicity?

Release of pseudo-anonymized dataset

Rec#	Data
1	{Item 2, Item 3, Item 8,, Item M}
2	{Item 1, Item 13,, Item N}

What is the risk of Re-identification of users?

Measuring Re-identification risk

Dataset D1

Rec#

1

2

3

Dataset D2

Data	Rec#	Data
{Item 2, Item 3, Item 8, Item 6}	1	{Item 2, Item 3, Item 8, Item 6}
{Item 1, Item 4}	2	{Item 2, Item 3, Item 7, Item 6}
{Item 2, Item 4, Item 6}	3	{Item 2, Item 3, Item 1}

Unicity(2 items in D1) = 8/9

Unicity(2 items in D2) = 6/9

Re-identification risk ≈ Unicity of K-items

How to measure Unicity of K-items?

Unicity Measurement

Rec#	Data
1	{Item 2, Item 3, Item 8,, Item M}
2	{Item 1, Item 13,, Item N}

$$Unicity \ of \ K-items = \frac{\# \ of \ K-items \ that \ appear \ once}{total \ \# \ of \ K-items \ in \ the \ dataset}$$

Prohibitively expensive to calculate, sampling as rescue.

- Naïve technique:
 - 1. Randomly select a user having ≥ K items
 - 2. Randomly select K-items from that user

Rec#	Data
1	{Item 4, Item 5, Item 8, Item 11}
2	{Item 8, Item 6, Item 11}
3	{Item 5, Item 7}
4	{Item 1, Item 11, Item 8}

Naïve technique:

- Randomly select a user having ≥ K items
- 2. Randomly select K-items from that user

Also state-of-the-art technique

 Unique in the Crowd: The privacy bounds of human mobility,

Nature Scientific Report, 2013

On the Re-identifiability of credit card metadata,
 Science, 2015

- Naïve technique:
 - 1. Randomly select a user having ≥ K items
 - 2. Randomly select K-items from that user

Biased towards selecting more popular items!

State-of-the-art technique is biased!

Example:

Rec#	Data
1	{Item 4, Item 5, Item 8, Item 11}
2	{Item 8, Item 6, Item 11, Item 13}
3	{Item 5, Item 7, Item 2, Item 3}
4	{Item 1, Item 11, Item 8, Item 12}

Probability(Items 8, 11 are selected) = $\frac{3}{4}*\frac{1}{6}$ Probability(Items 5, 7 are selected) = $\frac{1}{4}*\frac{1}{6}$

How to uniformly sample?

- Naïve approaches are inappropriate
 - Rejection sampling
 - Enumerate all possible combinations of K-apps and find their support in the dataset

Worst-case complexity is exponential in K

Proposed uniform sampling technique

- Based on Metropolis-Hastings algo
 - A Markov Chain Monte Carlo (MCMC) method
- We construct an ergodic Markov chain (M)
 - Such that its stationary distribution is uniform

- Every possible K-items represent a state of ${\mathcal M}$
 - Simulate \mathcal{M} until it gets close to uniform

Proposed uniform sampling technique

• MCMC sampling algorithm (\mathcal{M}):

Start with any existing K-items in the dataset. REPEAT

- 1. PROPOSAL:
 - 1.1 sample a user uniformly at random
 - 1.2 select K-apps C from this user also uniformly at random
- 2. PROBABILISTIC ACCEPTANCE:
 - 2.1 accept it (i.e., S=C) with a probability, which is min(1, Pr["S is proposed"]/Pr["C is proposed"])

UNTIL Convergence

Proposed uniform sampling technique

- Mixing time: roughly the order of dataset size
 - Real convergence much smaller for our dataset

- Overall Worst-case complexity O(K|D|/H)
 - -|D| is dataset size
 - H is the unicity of K-apps from the largest record of D

Unicity of K-Apps

Dataset

- Comes from Carat research project [1]
- Contains list of installed Apps of users
- 54,893 Android users
- 92,210 apps

Collected over a period of 7 month

Results

- Unique in the Crowd: The privacy bounds of human mobility,
 Nature Scientific Report, 2013
- On the Re-identifiability of credit card metadata,
 Science, 2015

Parties knowing Installed Apps

- AppStore owners
 - Know all installed Apps
- Installed Apps themselves
 - May know all or a subset
- Included libraries (Ad, Analytics etc.)
 - May know all or a subset
- Friends/relatives
 - May know a subset

Installed Apps are Quite Revealing

Reference:

Predicting User Traits from a Snapshot of Apps Installed on a Smartphone,
 ACM SIGMOBILE Mobile Computing and Communications Review, 2014

Unicity generalization

Regression analysis

 Created datasets of varying sizes and computed the sample Unicity

Assumed Unicity a proper function of dataset size

Model selection for regression analysis

$$f(x) = ae^{-b\sqrt{x}} + c \quad \text{where x is the dataset size and f(x) is unicity value}$$

Non-linear regression

- Data is divided into 50 parts (size 1K to 50K)
 - For training: first 70%
 - For testing: last 30%

Training data to learn a, b and c in the model

$$f(x) = ae^{-b\sqrt{x}} + c$$

Unicity Generalization: App Dataset

 δ is the avg. absolute error

Conclusions

 Proposed a method for uniform sampling of Kitems

Addressed how Unicity would vary with dataset size

Installed Apps are quite unique

Recommendations

- Access to the list of installed apps should be protected on Android
 - This is already the case with iOS 9

- Extreme care must be taken before releasing pseudo-anonymized installed Apps dataset
 - Adversaries do exist

Thanks for your attention! Questions?

Backup slides

Unicity Generalization: CDR data

(f) K = 3, trained with max |D| = 100000, $\delta = 0.089$

(c) K=4, trained with max |D|=100000, $\delta=0.031$

 δ is average absolute error