
Draft of September 24, 2014

Dynamic Programming (I)
Amrit Kumar
amrit.kumar@inria.fr

1 Recap and Beyond

In the previous lecture, we studied two naive recursive procedures namely:
Fibonacci and Binomial. The former allowed us to compute the nth number in
the Fibonacci sequence, while the later computes (n

k). These procedures entail a
time complexity of Θ(2n). The reason behind this exponential cost is the fact that
many subproblems are solved multiple times, which is apparently visible from
the recursion tree.

The general approach towards reducing the complexity of these procedures is
called Memoization. The principle idea is to store or memorize the result of each
subproblem, and if a previously solved subproblem is encountered later in the
recursive calls, instead of solving the subproblem again, the previously stored
result is retrieved and returned. This storage can be achieved using multiple
means, in particular using an array or a hash table allowing the storage and
retrieval in constant time.

Unlike Fibonacci and Binomial which inherently have a recursive definition,
this lecture goes a step further and looks at optimization problems. At the first
glance, these problems might not appear to have any recursive structure, but the
motivation is that some of these optimization problems indeed have a recursive
formulation. We see this through a couple of examples and study a generic
approach called Dynamic Programming to solve some of these problems.

2 Optimization Problems

An optimization problem typically consists of an objective function f : Xn → X,
and some constraints gi : Xn → X called inequality constraints and hi : Xn → X

mailto:amrit.kumar@inria.fr

referred to as equality constraints. Typically we would suppose that the space X
is the set of real numbers R or the set of integers Z. The goal of the problem
is to find the optimal value (maximum or minimum) of f under the presented
constraints. The optimal value is achieved with respect to an optimal solution
i.e. x. Evidently, several optimal solutions might corresponding to the unique
optimal value.

optimize
x

f (x) (1)

subject to gi(x) ≤ ci, i = 1, . . . , m (2)

hi(x) = di, i = 1, . . . , p (3)

In the following sections, we study a couple of algorithmic problems which
can be expressed as optimization problems.

3 Binary (0/1) Knapsack Problem

Informally, the problem is described using n items {x1, . . . , xn}. Each item xi
has a value vi units, and a weight wi units associated with it. We further suppose
that we have a knapsack with a capacity C, i.e. it can bear a maximum weight of
C units. The goal of the problem is to choose the items to be put in the knapsack
in a way that maximizes the total value and that the total weight of the chosen
items respects the capacity of the knapsack.

The binary knapsack enforces the restriction where one can either take the
item (1) or leave it (0). The items are hence indivisible and taking multiple copies
of an item is not allowed.

3.1 Formal Description

Consider vectors v and w of length n, representing the value and the weight
of n items respectively. The couple (vi, wi) represents the value and the weight
of the ith item for 1 ≤ i ≤ n. Consider a binary vector s ∈ {0, 1}n to denote the
choices of the items. Hence the binary knapsack problem refers to the following

2

optimization problem:

maximize
s

s · v (4)

subject to x ·w ≤ C (5)

The operator · denotes the scalar product of two vectors.

3.2 Solving Knapsack

The first algorithm that pops up to solve the binary knapsack problem is the
brute force search. The total number of possible choices for the items is 2n i.e. the
number of distinct vectors s. The brute force algorithm would try each of the 2n

choices and find the optimal i.e. s that maximizes the total value. This leads to
an algorithm of complexity Θ(2n).

Another possible algorithm would be to use a greedy approach. Greedy pro-
gramming techniques are used in optimization problems and typically use some
heuristic or common sense knowledge to generate a sequence of sub-optimum
that hopefully converges to an optimum value. Possible greedy strategies to the
(0/1) Knapsack problem could be to:

— Choose the item that has the maximum value from the remaining items;
this increases the value of the knapsack as quickly as possible.

— Choose the lightest item from the remaining items which uses up the capac-
ity as slowly as possible allowing more items to be stuffed in the knapsack.

— Choose the items with as high a value per weight as possible.
However, using counterexamples, it can be easily shown that for each of the

possible strategy, one can find an instance of binary knapsack on which the strat-
egy does not yield and optimal solution.

Complexity theory view point. We know that binary knapsack is NP-complete.
Hence, there should not exist any generic algorithm in P (unless P = NP) to
solve all binary knapsack instances. We hence would not search for a polynomial
time algorithm for binary knapsack (unlike we did for Fibonacci and Binomial),
and would content ourselves by doing any better than brute force.

3

3.3 Recursive Approach

The goal of recursive algorithms as in Divide-and-Conquer partitions the start-
ing problem into subproblems, then solves the subproblems recursively and fi-
nally combines the solutions to solve the original problem. If the subproblems
overlap i.e. subproblems share subsubproblems, then a divide and conquer al-
gorithm repeatedly solves the common subproblems. Hence, it does more work
than necessary. A better solution is provided by Dynamic Programming.

Dynamic programming, like the divide-and-conquer method, solves prob-
lems by combining the solutions to subproblems. (“Programming” in this con-
text refers to the British interpretation of programs i.e. optimization using ta-
bles). In contrast to the divide-and-conquer approach, where subproblems are dis-
joint, dynamic programming applies when the subproblems overlap. A dynamic-
programming algorithm solves each subsubproblem just once and then saves its
answer in a table, thereby avoiding the work of recomputing the answer every
time it solves each subsubproblem. We would look more precisely on the con-
ditions that an optimization problem must satisfy in order to apply dynamic
programming later in the course.

3.3.1 Identifying Recursion in Binary Knapsack

It might be difficult at the first glance to imagine the knapsack problem to
have a recursive formulation. But, indeed the problem does consist of solving
subproblems, and the solution to these subproblems can be combined to form
the solution to the initial problem. We would say that the knapsack problem
exhibits optimal substructure: an optimal solution to the problem contains within
it the optimal solutions to subproblems.

Defining the problem. To start with, we define the following problem that for-
mulates the binary knapsack problem: Knapsack(n, C, v, w). It represents the
problem of determining the optimal value for a knapsack of capacity C, for the
first n items. The vector v, w corresponds to the value vector and the weight vec-
tor respectively. For instance, given a C′, Knapsack(2, C′, v, w) defines a knapsack
problem for a capacity C′ and considers the first two items only. Clearly, if C′ ≤ C,
then Knapsack(2, C′, v, w) is a subproblem of Knapsack(n ≥ 2, C, v, w).

4

Guessing. In order to identify the recursion and hence the dependence of a knap-
sack problem on subproblems, we guess a part of an optimal solution yielding the
optimal value. Despite the fact that many optimal solutions may correspond to
the unique optimal value. Our goal is to find only one of these optimal solutions.
Hence, the solution we are looking for would be considered as “the” solution and
not “a” solution.

A possible guess would be that i0th item for 1 ≤ i0 ≤ n is in the optimal solu-
tion (we are looking) for the problem Knapsack(n, C, v, w). For example, given the
problem Knapsack(5, 50, v, w), we may guess that the 2nd item is in the optimal
solution. However, a better and more constructive guess would be to consider the
last item instead of just any item. We would see why in the sequel. Hence our
guess would be that the nth item (also the last item) of the problem instance
Knapsack(n, C, v, w) is in the optimal solution.

From problem to subproblem. Since not everyone of us would be lucky in his guess,
we might end up in one of the following two situations:

1. Our guess were right. If our guess that the nth item (also the last item)
of the problem instance Knapsack(n, C, v, w) is in the optimal solution,
were right, we would have reduced the initial problem to the subproblem
Knapsack(n− 1, C− wn, v, w) which satisfies the following relation:

Knapsack(n, C, v, w) = vn + Knapsack(n− 1, C− wn, v, w)

This follows from the observation that, if our guess were right, the optimal
solution contains the nth item. We hence are left with the remaining first
n − 1 items and the capacity of the knapsack has now reduced to C −
wn, since it now contains the nth item. Moreover, adding this item to the
knapsack gives us the value vn.

2. Our guess were not right. If our guess were not right, which means that
the nth item was not in the optimal solution to Knapsack(n, C, v, w) , we
still have reduced the initial problem to the subproblem Knapsack(n −
1, C, v, w), which satisfies:

Knapsack(n, C, v, w) = Knapsack(n− 1, C, v, w)

5

This immediately ensues from the fact that, if the optimal solution does
not contain the last item, we are only required to consider the first n− 1
items with the same knapsack capacity.

We notice than choosing the last item instead of choosing any arbitrary item
has the benefit that the new problems generated have the same form as that of
the original problem.

Recursion. Well, since we are not GOD, we do not know before hand whether
our guess would be right or wrong, hence we have to consider both the cases.
Thus to obtain the optimal value and the optimal solution we would solve both
the subproblems and choose the option that maximizes the total value. Hence we
have for ∀n st C− wn > 0:

Knapsack(n, C, v, w) = max (vn + Knapsack(n− 1, C− wn, v, w), Knapsack(n− 1, C, v, w))
(6)

The readers are cautioned to be slightly careful with Equation (6). If at any in-
stance C − wn < 0, the max should return the second value i.e. Knapsack(n −
1, C, v, w). This is because in this case, we would not be able to put the nth item.
Hence, it would be an unintelligent guess to suppose that nth item is in the opti-
mal solution.

The base case for the recursion would be:

Knapsack(0, C, v, w) = Knapsack(n, 0, v, w) = 0 (7)

The base cases refer to the condition that, when we have no items or when the
knapsack is full, then the optimal value that we can obtain is 0.

Exercise 0: Neatly develop the full recurrence, with all the conditions.
Exercise 1: Exploiting (6) and (7), write a procedure in pseudocode to compute

the optimal value for a knapsack instance.
Solution: Procedure 1 implements the above recursion. The procedure does

nothing fancy and is direct translation of the recursion found in the previous
exercise.

Exercise 2: Prove that the procedure found in Exercise 1 runs in exponential
time. Present the recursion tree and comment.

Solution : Clearly, the procedure checks for every i satisfying n ≥ i ≥ 1
whether or not the ith item which is the last item of the subproblem knapsack(i, C, v, w)
is included in the optimal solution. Hence, the total search cost is Θ(2n).

6

Procedure knapsack(n, C, v, w)
1 if n ≤ 0 then

return 0
end

2 if C < wn then
withLastItem← −1

end
3 else
4 withLastItem← vn+knapsack(n− 1, C− wn, v, w)

end
5 withoutLastItem← knapsack(n− 1, C, v, w)
6 return max(withLastItem, withoutLastItem)

Algorithm 1: (0/1) Knapsack naive approach.

Exercise 3: Modify the algorithm to exploit the observation made on the re-
cursion tree in Exercise 2. This modification should use memoization.

Solution: Procedure 2 is a memoized version of the previous procedure. This
requires us to declare an array memo[1..n][1..C], to store the optimal values for
the subproblems. Clearly, the problem knapsack has two parameters n and C,
hence in total there are nC subproblems and hence the size of the memo ta-
ble. We highlight that, memo[i][C’] stores the optimal value for the subproblem
Knapsack(i, C′, v, w) where 1 ≤ i ≤ n and 1 ≤ C′ ≤ C.

Exercise 4: Estimate the cost of the procedure obtained in Exercise 3 in terms
of space and time.

Solution: Cost in terms of space is Θ(nC), i.e. the cost of storing the matrix.
To estimate the cost in terms of time, we distinguish two different costs incurred
by the procedure:

1. Non-memoized calls: There are O(nC) calls which is the cost of filling
the memo table. Filling the table only requires O(1) cost for addition and
finding the maximum.

2. Memoized calls: These calls only require consulting the memo array and
are made as recursive calls of the first type. Since each recursive call makes
O(1) of such memoized calls. The total cost of memoized calls over all
recursive calls is O(nC).

7

memo[1..n][1..C]={−∞};
Procedure knapsack_memo(n, C, v, w)

1 if n ≤ 0 then
return 0

end
2 if memo[n][C]! = −∞ then

return memo[n][C]
end

3 if C < wn then
withLastItem← −1

end
4 else
5 withLastItem← vn+knapsack_memo(n− 1, C− wn, v, w)

end
6 withoutLastItem← knapsack_memo(n− 1, C, v, w)
7 memo[n][C]← max(withLastItem, withoutLastItem)
8 return memo[n][C]
Algorithm 2: Obtains the optimal value for (0/1) Knapsack using memoization.

Hence, the total cost is O(nC).
Exercise 5: The procedure described in Exercise 3 only computes the optimal

value. Modify the algorithm in order to obtain the optimal solution i.e. the choice
of the items in order to obtain the optimal value.

Solution: Procedure 3 stores the optimal choice for each subproblem. We
note that once we have computed the max of the two arguments for a prob-
lem Knapsack(n− 1, C, v, w), we know whether we have to consider the nth item
(i.e the last one) for the subproblem. The array opt_choice stores this result
for each subproblem. Hence, opt_choice[i][C’] stores 1, if for the subproblem
Knapsack(i, C′, v, w) where 1 ≤ i ≤ n and 1 ≤ C′ ≤ C, the ith item is in the
optimal solution for the given subproblem.

Procedure 4 uses the afore-obtained table opt_choice[1..n][1..C] to obtain the
optimal solution. The idea is that our initial problem was Knapsack(n, C, v, w). So,
we first check whether the last item for this problem is in the optimal solution,
this is obtained from the entry opt_choice[n][C] in the array. If the entry at this

8

memo[1..n][1..C]={−∞};
opt_choice[1..n][1..C]={0};
Procedure knapsack_memo(n, C, v, w)

1 if n ≤ 0 then
return 0

end
2 if memo[n][C]! = −∞ then

return memo[n][C]
end

3 if C < wn then
withLastItem← −1

end
4 else
5 withLastItem← vn+knapsack_memo(n− 1, C− wn, v, w)

end
6 withoutLastItem← knapsack_memo(n− 1, C, v, w)
7 memo[n][C]← max(withLastItem, withoutLastItem)
8 if memo[n][c]==withLastItem then

opt_choice[n][C]← 1
end

9 return memo[n][C]
Algorithm 3: Storing the optimal choices for the nth item for each subproblem.

position is 1, then the nth item is in the optimal solution for this problem. Hence
the table opt_choice[n]=1. Now, in the next step, we have the following subprob-
lem if the entry found in the opt_choice is 1: Knapsack(n− 1, C−wn, v, w), hence
we now see whether the n− 1th item is in the optimal solution for this subprob-
lem problem, the place to look for is opt_choice[n-1][C-wn]. We continue this way
to fill the opt_sol array incrementally.

Exercise 6: Estimate the cost of the two procedures in terms of space and time.
Solution: Space and Time: O(nC) for the first one storing the optimal choices,

while O(n) in terms of space and time for the second procedure.

9

opt_sol[1..n]={0};
Procedure knapsack_optimalsol(opt_choice[1..n][1..C], C, w)

for i← n to 1 do
1 if opt_choice[n][C]==1 then
2 opt_sol[i]=1
3 C = C− wi

end
end

Algorithm 4: Finding an optimal solution.

4 Elements of Dynamic Programming

Dynamic programming(DP) approach to an optimization problem can be con-
sidered to be an “intelligent brute force”. It basically consists in making a choice
or a guess of a part of the optimal solution, this choice reduces the problem to
solving another subproblem, which eventually leads to an optimal solution. How-
ever, there are two basic properties that the optimization problem should have in
order for dynamic programming to be applied, namely:

Optimal substructure. An optimal solution to the original problem must incor-
porate optimal solution to the subproblems. As we have seen in the previous
example of knapsack, a solution to the problem consists of making a choice i.e.
which item to choose from the given set of items. Making this choice leaves one or
more subproblems to be solved. We hence guess or choose a part of the optimal
solution. Given this choice, we determine which subproblems ensue and how to
best characterize the resulting space of subproblems. We should then verify that
the solutions to the subproblems used within an optimal solution to the problem
are themselves optimal.

Greedy approach also requires this property, however the returned solution is
not guaranteed to be optimal in all cases.

Overlapping subproblems. When a recursive algorithm calls the same problem re-
peatedly, we say that the optimization problem has overlapping subproblems. In
contrast, a problem for which a divide-and-conquer approach is suitable usu-

10

ally generates brand-new problems at each step of the recursion. Dynamic-
programming algorithms typically take advantage of overlapping subproblems
by leveraging on memoization.

The afore-described properties and the examples that we have seen so far
leads us to characterize dynamic programming to be consisting of the following
steps. These steps sometimes are very dependent in the sense that one step might
already include the next one.

Step 1. Characterizing an optimal solution.
Implicitly requires to find a recursion. The idea to guess a part of the
optimal solution. This often gives a recursion and leads to subproblems,
which can be verified to exhibit the optimal substructure property.

Step 2. Solve the recursion to obtain optimal value using either memoization
and recursion (top-to-down) or using iteration (bottom-to-up). This relies
on the fact that subproblems overlap.

Step 3. Remembering the optimal choices.

Step 4. Reconstructing a solution.

5 Application: Selling Strawberries

We consider another optimization problem where a farmer or a distributor
has n crates of strawberries and wishes to distribute them among k shops. The
profit that a shop can make depends on the number of crates sold. Unfortunately,
the profit made is not linear in the number of crates sold. Let bj(i) denote the
profit made by the shop j by selling i crates (1 ≤ i ≤ n and 1 ≤ j ≤ k).

A simple instance is as follows for n = 6 and k = 3:

i b1(i) b2(i) b3(i)
0 0 0 0
1 3 6 5
2 7 12 10
3 12 16 15
4 17 20 20
5 26 22 25
6 35 24 30

11

We also define the marginal gain function for the jth shop as bj(i) = bj(i)−
bj(i− 1), with bj(0) = 0.

The goal of the problem is to find a vector q = {q1, . . . , qk} ∈ Nk, where qi
for 1 ≤ i ≤ k denotes the number of crates distributed to the kth shop which
maximizes the total benefit:

maximize
q

k

∑
j=1

bj(qj) (8)

subject to
k

∑
j=1

qj = n (9)

5.1 Initial Approaches

To start with, the first naive solution could be to perform exhaustive search. In
Exercise 7, we show that such an approach would certainly lead to an exponential-
time algorithm.

Exercise 7: Find the total number of possible solutions.
Solution: The number of possible solutions is equal to the number of ways one

can create k packets out of n items. This would require to place k− 1 separators
among the n items. Consider the case when n = 3, k = 2.

♣ ♣ |♣ ♣ ♣ |♣ ♣ ♣

Hence, the total number of possible ways is the number of ways to choose the
position of k− 1 separators among n + k− 1 total items. This is equal to (n+k−1

k−1).
As seen in the previous lecture, this is exponential in n for large enough k.

As in the case of binary knapsack, one may also be tempted to employ greedy
approach. Exercise 8,9 asks to prove that one of the possible strategies does work
for certain instances, however they do not return optimal value in the generic
case.

Exercise 8: Let us suppose that for each shop j, the marginal gain function gj
is decreasing. Propose an algorithm which finds the optimal distribution.

Solution: Greedy Algorithm is indeed optimal (Prove !). It consists in dis-
tributing the crates one by one. The ith crate is given to the shop j with the
maximum marginal gain gj(i) considering the number of crates it already has.

12

Exercise 9: Give a counter example to show that the above algorithm does not
work in the general case.

Solution: Consider the following scenario with n = k = 2 with the follow
profit table:

i b1(i) b2(i)
0 0 0
1 4 5
2 11 10

In this scenario, g1(1) = 4, g1(2) = 7 and g2(1) = g2(2) = 5. The greedy algo-
rithm gives both of the crates to the 2nd shop to obtain a profit of 10, while, if we
give both the crates to the first shop, we obtain a benefit of 11.

5.2 A DP solution

Defining the problem. Let us suppose that maxprofit(n,k) denotes the optimal
profit obtained for n crates to be distributed among the first k shops. As in the
knapsack problem, we may also look for subproblems to the above problem. For
instance, given n’, maxprofit(n’,2) is a problem and if n’≤ n, maxprofit(n’,2)
is a subproblem to maxprofit(n,k≥2).

Guessing. As earlier, we guess a part of the optimal solution we are looking for.
Different possible guesses could be made, for instance how many crates does the
i0th shop gets in the optimal solution to the problem instance maxprofit(n,k),
where 1 ≤ i0 ≤ k. As earlier, for the sake of the format of the problem, let us
guess the number of crates given to the kth shop (the last shop) in the problem
maxprofit(n,k). We guess that in an optimal solution x crates of strawberry is
distributed to the kth shop.

From problem to subproblem. If our guess were right, we reduce the initial problem
maxprofit(n,k) to the subproblem maxprofit(n-x, k-1) using the following re-
cursive relation:

maxprofit(n,k) = bk(x) + maxprofit(n-x, k-1)

13

We highlight that, if our guess were correct, x crates out of n are given to the
last i.e. kth shop. Hence, we are left with n − x crates and the remaining first
k− 1 shops. This leads to the subproblem maxprofit(n-x,k). Moreover, giving x
crates to the kth shop yields bk(x) benefit.

Recursion. Again, we are not GOD, hence we do not know beforehand the value
of x. The solution is to try all possible values and find the x that maximizes the
profit for the problem maxprofit(n,k). Hence, the recurrence relation would be :

maxprofit(n,k) = max
0≤0≤n

(bk(x) + maxprofit(n-x, k-1)) (10)

The base case would be:

maxprofit(n,1) = b1(n) (11)

Exercise 10: Prove that maxprofit(n,k) satisfies the optimal substructure
property.

Solution: Left as an exercise.
Exercise 11: Write a procedure for selling strawberries using (10) and (11).
Solution: Procedure 5 implements the recursive functionality.

Procedure maxprofit(n, k)
1 if k==1 then

return b1(n)
end

2 q← −∞
3 for i← 0 to n do
4 q← max (q, bk(i) + maxprofit(n-i, k-1))

end
5 return q

Algorithm 5: Solves the strawberry selling problem.

Exercise 12: Prove that the procedure in Exercise 11 entails an exponential
time for computing the optimal value.

Solution: Left as an exercise.

14

Exercise 12 bis: With the help of the recursion tree, convince yourself that
redundant computations are performed. Conclude that, sacrificing space for time
would lead to a better algorithm.

Solution: Left as an exercise.
Exercise 13: Transform the procedure obtained in Exercise 11 to obtain a DP

algorithm that computes the optimal benefit.
Solution: Procedure 7 presents the required DP algorithm.

memo[0..n][1..k]={−∞};
Procedure DPmaxprofit(n, k)

1 if k == 1 then
return b1(n)

end
2 if memo[n][k]! = −∞ then

return memo[n][k]
end

3 q← −∞
4 for i← 0 to n do
5 q← max (q, bk(i) + DPmaxprofit(n-i, k-1))

end
6 memo[n][k]← q
7 return memo[n][k]

Algorithm 6: DP algorithm to solve the strawberry selling problem.

Exercise 14: Compute the cost in terms of time and space of the procedure
presented in Exercise 13.

Solution: Clearly, the procedure consumes O(nk) space. For the cost in terms
of time, we distinguish two different costs incurred:

1. Non-memoized calls: There are at most O(nk) such calls required to fill
the table. Each such call requires the computation of the maximum of n
values. Hence the cost is O(n2k).

2. Memoized-calls: Such calls are made by calls of the previous type. Once
these calls are made, the maximum of the values is computed. Since there
are O(nk) calls of the previous type. The total cost in terms of time is
O(n2k).

15

Exercise 15: Modify the DP procedure to obtain the optimal solution.
Solution: Procedure 7 stores the optimal choice for each subproblem and

Procedure 8 find an optimal solution.

memo[0..n][1..k]={−∞};
opt_choice[0..n][1..k]={0};
Procedure DPmaxprofit(n, k)

1 if k == 1 then
return b1(n)

end
2 if memo[n][k]! = −∞ then

return memo[n][k]
end

3 q← −∞
4 for i← 0 to n do
5 q← max (q, bk(i) + DPmaxprofit(n-i, k-1))

end
6 memo[n][k]← q
7 opt_choice[n][k]← iopt // i for which max is obtained
8 return memo[n][k].
Algorithm 7: DP algorithm to store the optimal choices for the strawberry sell-
ing problem.

opt_sol[1..k]={0};
Procedure DPmaxprofit_optsol(opt_choice[0..n][1..k], n)

for i← k to 1 do
1 opt_sol[i]← opt_choice[n][k]
2 n← n−opt_choice[n][k]

end
Algorithm 8: Finding the optimal solution.

16

	Recap and Beyond
	Optimization Problems
	Binary (0/1) Knapsack Problem
	Formal Description
	Solving Knapsack
	Recursive Approach
	Identifying Recursion in Binary Knapsack

	Elements of Dynamic Programming
	Selling Strawberries
	Initial Approaches
	A DP solution

