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Exercise 1
Give the security properties that an international airport should guarantee.

Exercise 2
Suppose a certain drug test is 99% accurate, that is, the test will correctly identify a drug user
as testing positive 99% of the time, and will correctly identify a non-user as testing negative
99% of the time. Let’s assume a corporation decides to test its employees for opium use, and
0.5% of the employees use the drug.

We want to know the probability that, given a positive drug test, an employee is actually
a drug user.

Exercise 3
Prove that for real random variables X and Y , and real number a, we have E[X + Y ] =
E[X] + E[Y ] and E[aX] = aE[X]. And if X and Y are independent real random variables,
then E[XY ] = E[X]E[Y ]

Exercise 4
Let X be a real random variable, and let a and b be real numbers. Prove that:

(i) V ar[X] = E[X2]− (E[X])2

(ii) V ar[aX] = a2V ar[X]

(iii) V ar[X + b] = V ar[X]

Exercise 5
Prove Markov’s inequality: Let X be a random variable that takes only non-negative real

values. Then for any t > 0, we have P [X ≥ t] ≤ E[X]
t .

Exercise 6
Prove Chebyshev’s inequality: Let X be a real random variable. Then for any t > 0, we have:

P [|X − E[X]| ≥ t] ≤ V ar[X]
t2

.

Exercise 7
Prove Chernoff bound: Let X1, ..., Xn be mutually independent random variables, such that
each Xi is 1 with probability p and 0 with probability q := 1 − p. Assume that 0 < p < 1.
Also, let X be the sample mean of X1, ..., Xn. Then for any ε > 0, we have:

1



(i)P [X − p ≥ ε] ≤ e−nε2/2q

(ii)P [X − p ≤ −ε] ≤ e−nε2/2p

(iii)P [|X − p| ≥ ε] ≤ 2e−nε
2/2

Exercise 8
Generalization of BirthDay Paradox:

The setting is that we have q balls. View them as numbered, 1, . . . , q. We also have N
bins, where N ≥ q. We throw the balls at random into the bins, one by one, beginning with
ball 1. At random means that each ball is equally likely to land in any of the N bins, and the
probabilities for all the balls are independent. A collision is said to occur if some bin ends
up containing at least two balls. We are interested in C(N, q), the probability of a collision.
The birthday paradox is the case where N = 365. We are asking what is the chance that,
in a group of q people, there are two people with the same birthday, assuming birthdays are
randomly and independently distributed over the days of the year.

Let C(N, q) denote the probability of at least one collision when we throw q ≥ 1 balls at
random into N ≥ q buckets. Then

C(N, q) ≤ q(q − 1)

2N

C(N, q) ≥ 1− eq(q−1)/2N

Also if 1 ≤ q ≤
√

2N then C(N, q) ≥
(
1− 1

e

)
· q(q−1)N . Hint: first prove the inequality

(1− 1/e).x ≤ 1− e−x ≤ x

Exercise 9
At the beginning of a party, each person shakes the hand of a certain number of the other
guests. Show that there exist at least 2 people who will shake the hand of exactly the same
number of people.

Exercise 10
In a group of six people, there will always be three people that are mutual friends or mutual
strangers. Assume that friend is symmetric-if x is a friend of y, then y is a friend of x, and
that stranger is the opposite of friend

Exercise 11
Let f and g be two negligible functions, then

1. f.g is negligible.

2. For any k > 0, fk is negligible.

3. For any λ, µ ∈ R, λ, µ > 0, λf + µg is negligible.

Exercise 12
Prove or disprove:

a) The function f(n) := (12)n is negligible.
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b) The function f(n) := 2−
√
n is negligible.

c) The function f(n) := n−logn is negligible.

Exercise 13
Prove or disprove the following statements:

1. If both f, g ≥ 0 are noticeable, then f · g and f + g are noticeable.

2. If both f, g ≥ 0 are not noticeable, then f · g is not noticeable.

3. If both f, g ≥ 0 are not noticeable, then f + g is not noticeable.

4. If f ≥ 0 is noticeable, and g ≥ 0 is negligible, then f · g is negligible.

5. If both f, g > 0 are negligible, then f/g is noticeable.

Exercise 14
Prove that

AdvInd
S,A(η) = Pr[b′

R← Ind1(A) : b′ = 1]− Pr[b′ R← Ind0(A) : b′ = 1]

= 2Pr[b′
R← Indb(A) : b′ = b]− 1

where given an encryption scheme S = (K, E ,D). An adversary is a pair A = (A1,A2)
of polynomial-time probabilistic algorithms, b ∈ {0, 1}. Let Indb(A) be the following al-

gorithm: Generate (pk, sk)
R← K(η); (s,m0,m1)

R← A1(η, pk); Sample b
R← {0, 1}; b′ R←

A2(η, pk, s, E(pk,mb)); return b′

Exercise 15
Suppose that the message space is {0, 1}, keys are {A,B} and we know P (0) = 1/4, P (1) =
3/4, P (A) = 1/4, P (B) = 3/4. The encryption is defined by: EA(0) = a,EA(1) = b, EB(0) =
b, EB(1) = a. Is this encryption perfectly secure?

Exercise 16
Prove that OTP is perfectly secure according Shannon’s definition.

Exercise 17
Suppose that Enc : K×M →M is a perfectly secure encryption scheme, with corresponding
decryption algorithm Dec. Show that we must have |K| ≥ |M |.

Exercise 18
Prove the following equivalence:

independance+H(m|c) = H(m)⇔ Pr(m = m′|c = c′) = Pr(m = m′)

Exercise 19
Prove that X and Y are independent if and only if for all values x taken by X with non-
zero probability, the conditional distribution of Y given the event X = x is the same as the
distribution of Y .
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Exercise 20
Consider the algorithm D2 that outputs 1 iff the input string contains more zeros than ones.
If D2 can be implemented in polynomial time, then prove that X and Y are polynomial-time-
indistinguishable, it means that Pr[D2(X) = 1]−Pr[D2(Y ) = 1] is negligible. (Assume that
the two inputs have the same size) Knowing that X = {Xn} and Y = {Yn} are 2 ensembles.

Exercise 21
Let X := {Xn}n∈N, Y := {Yn}n∈N and Z := {Zn}n∈N three ensembles. If X and Y are
indistinguishable in polynomial time, Y and Z are indistinguishable in polynomial time then
X and Z are indistinguishable in polynomial time.

Exercise 22
Recall that the distributions D0, D1 are said to be ε-indistinguishable if

|Pr[A(x0) = 1]− Pr[A(x1) = 1]| ≤ ε

holds for all adversaries A running in time at most t, where the random variable x0 is
distributed according to D0 and x1 is distributed like D1. Now, let’s call the distributions
D0, D1 inseparable just if

1

2
− ε

2
≤ Pr[A(xb) = b] ≤ 1

2
+
ε

2

holds for all adversaries A running in time at most t, where the random variable b is a
uniformly random bit and where the random variable x is distributed according to Db. This
is a very natural notion, because it talks about our chances of guessing correctly which
distribution x came from, and whether we can do much better than simply flipping a coin.
Prove: D0, D1 are indistinguishable if and only if they are inseparable. (Hence the notion of
inseparability is redundant.)
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