
On the (In)security of Google Safe Browsing

Thomas Gerbet1, Amrit Kumar2, and Cédric Lauradoux2

1 Université Joseph Fourier, France
thomas.gerbet@e.ujf-grenoble.fr

2 INRIA, France
{amrit.kumar,cedric.lauradoux}@inria.fr

Abstract. Phishing and malware websites are still duping unwary tar-
gets by infecting private computers or by committing cybercrimes. In
order to safeguard users against these threats, Google provides the
Safe Browsing service, which identifies unsafe websites and notifies users
in real-time of any potential harm of visiting a URL. In this work, we
study the Google Safe Browsing architecture through a security point
of view. We propose several denial-of-service attacks that increase the
traffic between Safe Browsing servers and their clients. Our attacks lever-
age the false positive probability of the data structure deployed to store
the blacklists on the client’s side and the possibility for an adversary to
generate (second) pre-images for a 32-bit digest. As a consequence of the
attacks, an adversary is able to considerably increase the frequency with
which the distant server is contacted and the amount of data sent by the
servers to its clients.

Keywords: Safe Browsing, Phishing, Malware, Hashing, Security

1 Introduction

Internet users often become victims of phishing and malware attacks, where
dangerously convincing websites either attempt to steal personal information or
install harmful piece of software. Phishing and web-based malwares have become
popular among attackers to a large degree since it has become easier to setup
and deploy websites, and inject malicious code through JavaScript and iFrames.

In order to safeguard users from these malicious URLs, Google has put in
place a service-oriented architecture called Safe Browsing [11] at the HTTP pro-
tocol level. Google Safe Browsing enables browsers to check a URL against a
phishing or malware pages’ database. Essentially, a browser computes a crypto-
graphic digest of the provided URL and checks if the 32-bit prefix of this digest
matches a local database. If there is a match, a server is queried to eliminate any
ambiguity. Browsers can then warn users about the potential danger of visiting
the page.

Browsers including Chrome, Chromium, Firefox, Opera and Safari (repre-
senting 65% of all the browsers in use3) have included Google Safe Browsing

3 Source: statcounter.com

statcounter.com

as a feature, while Yandex.Browser, Maxthon and Orbitum rely on an identical
service provided by Yandex. Several other services such as Twitter, Facebook,
Bitly and Mail.ru have also integrated these mechanisms to filter malicious links.
Google further claims more than a billion Safe Browsing clients until date [12].

Considering the high impact of Google Safe Browsing and its siblings, we
provide an in-depth assessment of the underlying security issues. To the best of
our knowledge, this is the first work that analyzes Safe Browsing services in an
adversarial context. In this paper, we describe several attacks against Google
Safe Browsing. Conceptually, our goal is to increase the traffic towards Google
Safe Browsing servers and its clients in the form of a Denial-of-Service (DoS).

Our attacks leverage the data representation employed on the client’s side.
The current representation stores 32-bit prefixes of malicious URLs in a compact
data structure: it entails a false positive probability. In order to mount our
attacks, the adversary needs to forge URLs with malicious content corresponding
to certain 32-bit prefixes. This is highly feasible, because the computation of a
pre-image or second pre-image for a 32-bit digest is very fast. We propose two
classes of attacks.

Our false positive flooding attacks aim to increase the load of Google Safe
Browsing servers. The adversary forces the service to contact the servers even
for a benign URL. Consequently, every time a user visits this URL, he is forced
to send a request to the server to resolve any ambiguity. If several popular web
pages are targeted, then the Safe Browsing service can be brought to its knees.

Our boomerang attacks target the traffic from Google Safe Browsing servers
to its clients. The adversary creates many malicious webpages sharing the same
32-bit prefix digest. After being discovered by Google, they will be included in
Google Safe Browsing servers and their prefix included in the local database
of all the clients. Each time, a client makes a request for this particular prefix,
he receives the full digests of all the URLs created by the adversary.

The paper is organized as follows. Section 2 presents the related work. An
overview of all prevalent Safe Browsing like services is given in Section 3. In Sec-
tion 4, we focus on the Google Safe Browsing architecture. We present the
data structures used and a simplified finite state machine for the behavior of the
client. Section 5 is the main contribution of the paper and elucidates our attacks.
Section 6 discusses the feasibility of the attacks. Finally, Section 7 presents the
different countermeasures to prevent our attacks, namely, randomization and
prefix lengthening.

2 Related Work

To the best of our knowledge, no prior work has studied Google Safe Brows-
ing service. However, several other web-malware detection systems, such as Vir-
tual Machine client honeypots, Browser Emulator client honeypots, Classification
based on domain reputation and Anti-Virus engines have been extensively stud-
ied in the past. The VM-based systems [18, 19, 26] typically detect exploitation
of web browsers by monitoring changes to the OS, such as the creation of new

2

processes, or modification of the file system or registries. A browser emulator
such as [8,21] creates a browser-type environment and uses dynamic analysis to
extract features from web pages that indicate malicious behavior. In the absence
of malicious payloads, it is also possible to take a content-agnostic approach to
classify web pages based on the reputation of the hosting infrastructure. Some
of these techniques [1,10] leverage DNS properties to predict new malicious do-
mains based on an initial seed. Finally, Anti-Virus systems operate by scanning
payloads for known indicators of maliciousness. These indicators are identified
by signatures, which must be continuously updated to identify new threats.

Our DoS attacks retain some flavor of algorithmic complexity attacks, which
were first introduced in [23] and formally described by Crosby and Wallach in [9].
The goal of such attacks is to force an algorithm to run in the worst-case execu-
tion time instead of running in the average time. It has been employed against
hash tables [2, 3, 9], quick-sort [14], packet analyzers [22] and file-systems [6].
For instance, in [9], hash tables are attacked to make the target run in linear
time instead in the average constant time. This entails significant consumption
of computational resources, which eventually leads to DoS.

Our work on Google Safe Browsing distinguishes itself from previous works
on algorithmic complexity attacks in two aspects. First, the verification algo-
rithm that we attack is distributed over the client and the server. While in the
previous works, the target algorithm was run solely on the server side. Second,
the data representations used by these Safe Browsing services do not have differ-
ent worst-case and average case complexities. Instead, these data representations
entail false positives. Increasing the false positive probability implies increasing
the number of requests towards the Safe Browsing servers made by honest users:
Safe Browsing will be unavailable.

3 Safe Browsing: An Overview

The essential goal of any Safe Browsing (SB) mechanism is to warn and dis-
suade an end user from accessing malicious URLs. All the existing SB services
filter malicious links by relying either on a dynamic blacklist of malicious URLs,
domains and IP addresses or on a whitelist of safe-to-navigate websites. The
blacklist is dynamic in nature and hence incorporates the fluctuating behavior
of malicious domains. Indeed, many of these malicious traits are short-lived in
the sense that a safe-to-navigate domain often transforms into a malicious one
and vice versa. A safe-to-navigate website may turn into a malicious one when
hackers inject malicious codes into it. Conversely, a domain owner may clean his
malicious web page which eventually can be reconsidered as non-malicious. SB
features are often included in browsers and hence the service has been carefully
implemented to remain robust and keep browsers’ usability intact. The robust-
ness of the service relies on fast lookup data structures which may generate false
positives: a non-malicious URL getting detected as a malicious one.

In addition to providing the basic warnings to users, the SB services often
provide webmaster tools. These tools allow a user to report malicious links un-

3

known to the service. The submitted link upon analysis may get included in
the blacklists. Symmetrically, an administrator may explicitly ask the service to
remove the malicious flag from an administered domain.

Google started its SB service in 2008, and has since proposed three dif-
ferent APIs. Since the inception of the Google Safe Browsing architecture,
other prominent web service providers have proposed similar solutions to de-
tect malicious websites and inform users about them. This includes Yandex
Safe Browsing [28], Microsoft SmartScreen URL Filter [16], Web of Trust
(WOT) [27], Norton Safe Web [25] and McAfee SiteAdvisor [13]. Apart from
Google and Yandex Safe Browsing, the remaining services employ a simple
and direct look-up in a database of potentially malicious links. This requires a
client to send each URL in clear to the server and obtain a response. In this
paper, we focus on Google and Yandex Safe Browsing since these entail an
intrinsic false positive probability which can be modified and exploited by an
adversary to mount DoS attacks. We further note that the remaining services
are not affected by our attacks since they employ a direct lookup in the database.

4 Google Safe Browsing

Google Safe Browsing (GSB) [11] aims to provide a comprehensive and timely
detection of new threats on the Internet. We highlight that the GSB service
is not restricted to search, but it also extends to adds. It has further opened
paths for new services such as instantaneous phishing and download protection,
i.e., protection against malicious drive-by-downloads, chrome extension for mal-
ware scanning and Android application protection. According to a 2012 report4,
Google detects over 9500 new malicious websites everyday and provides warn-
ings for about 300 thousand downloads per day.

Web

CrawlersGSBClient

find malicious

URLs

transmit

malicious URLs

check URL

response

Fig. 1: High level overview of Google Safe Browsing.

Fig. 1 shows a simplified architecture of the service. Google crawlers contin-
uously harvest malicious URLs available on the web and then transmit them to
the SB server. Clients can then consult the server to check if a link is malicious.

GSB essentially provides two blacklists: malware and phishing. The number
of entries per list is given in Table 1. The lists contain SHA-256 digests of

4 http://googleonlinesecurity.blogspot.fr/2012/06/safe-browsing-

protecting-web-users-for.html

4

http://googleonlinesecurity.blogspot.fr/2012/06/safe-browsing-protecting-web-users-for.html
http://googleonlinesecurity.blogspot.fr/2012/06/safe-browsing-protecting-web-users-for.html

malicious URLs and can either be downloaded partially to only update the local
copy by adding new hashes and removing old ones or can be downloaded in its
entirety. The lists can be accessed by clients using two different APIs, software
developers choose the one they prefer according to the constraints they have. In
the following, we describe these APIs.

Table 1: Lists provided by the Google Safe Browsing API as on 10/04/2015.
List name Description #prefixes

goog-malware-shavar malware 317,807

googpub-phish-shavar phishing 312,621

goog-regtest-shavar test file 29,667

goog-whitedomain-shavar unused 1

4.1 Lookup API

Google Lookup API is a quite simple interface to query the state of a URL.
Clients send URLs they need to check using HTTP GET or POST requests and
the server’s response contains a direct answer for each URL. The response is
generated by looking up in the malicious lists stored on the distant server. This
is straightforward and easy to implement for developers, but has drawbacks in
terms of privacy and performance. Indeed, URLs are sent in clear to Google
servers and each request implies latency due to a network round-trip. To solve
the privacy and bandwidth issues, Google offers another API: Google Safe
Browsing API described below.

4.2 Safe Browsing API

The Google Safe Browsing API (version 3) is now the reference API to use GSB.
The previous version 2.2 is now deprecated and has been replaced by version 3,
while keeping the same architecture. In this work, we focus on version 3, but our
attacks remain backward compatible.

Google Safe Browsing API has been positively received by the community
as a major improvement for privacy. The API is however more complex than the
Lookup API and implements a distributed verification algorithm. Moreover, the
client now does not handle a URL directly. Instead, the URL is canonicalized
following the specifications [4] and hashed with SHA-256 [20]. The digest is
then checked against a locally stored database which contains 32-bit prefixes of
the malicious URL digests. If the prefix is not found to be present in the local
database, then the URL can be considered safe. However, if there is a match, the
queried URL is suspicious, but may not necessarily be malicious (it may be a
false positive). The client then must query the remote Google server to get all
the full digests of malicious URLs corresponding to the given prefix. Finally, if

5

the full digest of the client’s URL is not present in the list returned by the server,
the URL could be considered safe. We note that most of the malicious links are
short-lived and hence the lists and the local database are regularly updated to
incorporate this dynamic behavior. Fig. 2 summarizes a request to the Google
Safe Browsing API from a client’s point of view.

Start
client

Update
needed?

Update local
database

URL

Canonicalize
and compute

digests

Found
prefixes?

Get full
digests

Found
digest?

Malicious URL

Non-malicious
URL

yes

no

yes

no

yes

no

Fig. 2: Google Safe Browsing API: Client’s behavior flow chart.

More precisely, the verification requires the client to test several URLs corre-
sponding to a given URL. This is necessary since the complete URL might not
have been included in the blacklists. For instance, in order to check whether the
URL: http://a.b.c/1/2.html?param=1 is malicious, the client will lookup for
the following 8 strings:

a.b.c/1/2. html?param=1

a.b.c/1/2. html

a.b.c/

a.b.c/1/

b.c/1/2. html?param=1

b.c/1/2. html

b.c/

b.c/1/

If any of the above URLs creates a hit in the local database, then the initial
link is considered as suspicious and the prefix can be forwarded to the Google
servers for a confirmation. If there are more than 1 hits, then all the correspond-
ing prefixes are sent. In response, all the full digests corresponding to each prefix
is sent by the server to the client. Table 2 presents the statistics on the number
of prefixes and the number of full digests matching them. 36 prefixes in the mal-
ware list do not have any corresponding full hash, this also holds for 123 prefixes
in the phishing list. This may be due to the delay in the file downloads. This
comparison reveals that in the worst case, the response contains two SHA-256
digests.

After receiving the full digests corresponding to the suspected prefixes, they
are locally stored until an update discards them. Storing the full digests prevents

6

http://a.b.c/1/2.html?param=1

Table 2: Distribution of the reply size in the number of full hashes per prefix for
malware and phishing blacklists.

full hashes/prefix Malwares Phishing

0 36 123

1 317759 312494

2 12 4

the network from slowing down due to frequent requests. In oder to maintain
the quality of service and limiting the amount of resources needed to run the
API, Google has defined for each type of requests (malware or phishing) the
frequency of queries that the clients must restrain to. Behavior of clients when
errors are encountered is also fully described (for details refer to [11]).

4.3 Local Data Structures

The choice of the data structure to store the prefixes is constrained by two
factors: fast query time and low memory footprint. Google has deployed two
different data structures until now: Bloom filters [5] and Delta-coded tables [17].

In early versions of Chromium (discontinued since September 2012), a Bloom
filter was used to store the prefixes’ database on the client’s side. Bloom filters
provide an elegant and succinct representation allowing membership queries.
This solution was however abandoned, since the Bloom filters come with false
positives. The Chromium development team has now switched to another data
structure in the more recent releases. Unlike the classical Bloom filter, this data
structure called delta-coded table is dynamic and yet incurs a low memory foot-
print. Indeed, memory usage is a critical point for web browsers, especially when
they are used in memory constrained mobile environments. Furthermore, unlike
the Bloom filters, the current data structure, does not have any “intrinsic” false
positive probability. However, its query time is slower than that of the Bloom
filters. The balance between the query time and the memory usage seems suit-
able with the operational constraints. At this point, it is worth mentioning that
even though the delta-coded table does not have any “intrinsic” false positives,
its use to store 32-bit prefixes indeed leads to a false positive probability. False
positives arise since several URLs may share the same 32-bit prefix.

We have implemented all the data structures to understand why Bloom filters
were abandoned and why Google has chosen 32-bit prefixes. The results are
shown in Table 3. If 32-bit prefixes are stored, the raw data requires 2.5 MB of
space. Storing these prefixes using a delta-coded table would only require 1.3 MB
of memory, hence Google achieves a compression ratio of 1.9. For the same raw
data, a Bloom filter would require 3 MB of space. However, starting from 64-bit
prefixes, Bloom filter outperforms delta-coded table. This justifies Google’s
choice of delta-coded tables over Bloom filters and the choice of 32-bit prefixes.

7

Table 3: Client cache for different prefix sizes.
Data structure (MB)

Delta-coded table Bloom filter

Prefix size (bits) Raw data (MB) size comp. ratio size comp. ratio

32 2.5 1.3 1.9 0.8
64 5.1 3.9 1.3 1.7
80 6.4 5.1 1.2 3 2.1
128 10.2 8.9 1.1 3.4
256 20.3 19.1 1.06 6.7

5 Attacks on GSB

In this section, we present our attacks on Google Safe Browsing. Since, Yandex
Safe Browsing employs an identical architecture, we later conclude that our
attacks trivially extend to the service proposed by Yandex. In the following, we
first describe our threat model and then in the sequel, we develop our attacks.
For the attacks, we first discuss the attack routine, i.e., the steps followed by the
adversary and then we develop them.

5.1 Threat Model

There are three possible adversarial goals: increase the traffic towards SB servers,
or increase the traffic towards the clients or both. A considerable increase in
the traffic towards the server leads to DoS: the Safe Browsing service will be
unavailable for honest users. Symmetrically, an increase in the traffic towards a
client might quickly consume its bandwidth quota.

An adversary against GSB has the following capabilities. She can create and
publish malware and phishing websites with URLs of her choice and can submit
them to Google. This is equivalent of being capable of inserting prefixes in the
local database of each client.

5.2 Attack Routine

Our attacks follow a three-phase procedure (see Fig. 3): forging malicious URLs,
including these URLs in GSB, and updating the local database. In the following,
we discuss these phases in detail.

(i) Forging malicious URLs: The first step of the attack aims to generate
malicious URLs corresponding to prefixes that are not currently included
in GSB. This requires an adversary to find unregistered domain names
and URL paths on which malicious content could be later uploaded. These
canonical URLs are so chosen such that their digests yield the desired
prefixes. Hence, in general our attacks are either pre-image or second pre-
image attacks on the underlying hash function but restricted to truncated

8

Web

Adversary

CrawlerLocal dump

Remote database

Google Safe
Browsing ServerClient

(3) transmit URLs

(6) send update

(5) connect

(7) update
local dump

(2) find malicious

URLs

(4) update database

(1) forge and release
malicious pre-images

Fig. 3: The attack routine: An adversary forges malicious URLs and diffuses
them. These URLs then get detected and indexed by the Google crawlers and
eventually reach the clients through the database update.

32-bit digests. We defer the discussion on the feasibility of generating these
URLs till Section 6. We note that rendering these URLs malicious simply
requires to upload malicious content by including malicious links to other
websites.

(ii) Including URLs in GSB: After forging malicious URLs and adding
malicious content, the second step of our attack consists in including the
newly forged URLs in GSB. There are three ways to do so. Either these
pages get detected by the Google crawlers themselves, or we explicitly ask
Google to crawl our URL5 which eventually would detect it as malicious,
or we use the Safe Browsing API to report these URLs as malicious using
the following interfaces:

Malware: google.com/safebrowsing/report_badware/
Phishing: google.com/safebrowsing/report_phish/

Finally, in order to increase the visibility of these URLs, an attacker may
also submit these URLs to Google’s sources such as phishtank.com and
stopbadware.org. We note this is the only step that the adversary cannot
control and hence she has to wait until Google flags the newly found URL
as malicious.

(iii) Local database update: Once these malicious URLs reach the GSB
server, it diffuses them by sending an updated local database to clients

5 https://support.google.com/webmasters/answer/1352276?hl=en

9

google.com/safebrowsing/report_badware/
google.com/safebrowsing/report_phish/
phishtank.com
stopbadware.org
https://support.google.com/webmasters/answer/1352276?hl=en

in order to incorporate them. In this way, the adversary has established a
data flow with all the end users through Google.

At the end of the afore-described phases, there are several new malicious
links on the web and the local database copy of each user has been accordingly
updated. We highlight that the vulnerability in GSB comes from the fact that the
local data structure has a false positive probability. With the current prefix size
of 32-bits, an adversary can increase the false positive probability by inserting
certain prefixes corresponding to malicious URLs. In the remaining part of this
section, we explain how to judiciously create URLs in order to pollute GSB.

5.3 False Positive Flooding Attacks

An adversary using pre-images or second pre-images may force the GSB client
to send queries to the distant server more frequently than required. The actual
attack depends on whether pre-images or second pre-images are found in the
first phase of the attack routine. We describe below these two attacks.

Pre-image Attacks. A pre-image for a chosen prefix not currently in the local
database is a malicious URL that yields this prefix when SHA-256 function is
applied on it. Pre-image attacks on GSB consists in generating pre-images in
the first phase of the attack routine. In case of a delta-coded table, this results
in an increased false positive probability. This is because at the end of the third
phase, the table represents a much larger set of prefixes. In fact, the false positive
probability of a delta-coded table is #prefixes

232 . Hence, the false positive probability
linearly increases with the number of new prefixes added to the local database
at the end of the third phase of the attack routine.

As a result of the increased false positive probability, many URLs will be
declared to be potentially malicious by the local verification. Eventually, the
traffic towards the SB server would be increased, since the server would be
contacted more frequently than necessary for a confirmation of a true positive. In
other words, the attack challenges the fundamental design rationale of reducing
the number of requests to the remote server.

Second pre-image Attacks. This attack consists in generating second pre-images
in the first phase of the attack routine. While this attack is in principle the same
as the afore-described pre-image attack, the impact of second pre-image attacks
can however be much more severe. In order to exemplify this, let us consider
a non-malicious pre-existing URL, say the RAID 2015 conference web page:
http://www.raid2015.org/ and its 32-bit prefix 0x07fe319d, an adversary
would exhaustively search for a second pre-image of the 32-bit prefix in the first
phase of the attack routine. An illustrative example is http://www.malicious-
raid2015.org/115124774. Such a URL (with malicious content) is then released
on the Internet in the second phase. Google crawlers eventually detect the URL
as malicious and add it to its database. The prefix dump on the client side is
accordingly updated to incorporate the newly found URL. Now, whenever a user

10

http://www.raid2015.org/
http://www.malicious-raid2015.org/115124774
http://www.malicious-raid2015.org/115124774

visits the actual conference web page, the corresponding prefix creates a hit in
the local database. Consequently, the browser is forced to request the server to
get full digests for the concerned prefix. The threat towards the servers is further
exacerbated when an adversary can insert prefixes corresponding to popular web
pages. Since these web pages are frequently visited, the probability that a client
creates a hit in the local database is high. Consequently, the number of queries
can grow quickly and would consume the network bandwidth.

5.4 “Boomerang” Attacks

An adversary may further magnify the amount of bandwidth she can target at
SB clients by mounting what we refer to as “boomerang” attacks. The term
“boomerang” attack is borrowed from [24].

Boomerang attacks come into effect when a client sends a small packet that
elicits a full hash for a certain prefix. In reply, a large response packet is returned
to the client by the SB server. We note that a few such requests can significantly
contribute in the consumption of the allowed bandwidth to a client.

In order to mount boomerang attacks, the adversary generates t (second) pre-
images (in the form of URLs) of a target prefix in the first phase of the attack
routine. At the end of the third phase, the SB server includes the common prefix
in the clients’ local database. Now, whenever a client accesses one of these URLs,
the corresponding prefix creates a hit in the local database, and hence the client
sends the prefix to the server eliciting the corresponding full hashes. In reply, the
client receives at least t full hashes, symmetrically forcing the GSB servers to
send this data. Consequently, network bandwidth on both sides is increased. We
highlight that boomerang attacks are particularly interesting in the case where
prefixes corresponding to popular web pages are targeted. Since these pages
are frequently visited, a request for the full hashes would quickly consume the
allowed bandwidth to a client. Furthermore, since the client has to store these
full hashes until an update discards them, these full hashes also consume the
browser’s cache.

5.5 Impact

Measuring the Increase in Traffic. We have seen that in case of boomerang
attacks, the increase in traffic towards clients can be measured by the number
of pre-images found. After a week of computation (see Section 6), we obtained
an average of 100 second pre-images per prefix. These prefixes correspond to
popular web pages. Considering that Google servers currently send at most
2 full digests per prefix (see Table 2), it is possible to achieve an amplification
factor of 50 in the average case. The maximum number of second pre-images
that we found at the end of one week was 165. This leads to an amplification
factor of 82 in the best case for an adversary.

In order to precisely determine the size of the request and response, we have
used Mozilla Firefox as the client together with OWASP ZAP proxy6 and Plug-

6 https://github.com/zaproxy/zap-core-help/wiki

11

https://github.com/zaproxy/zap-core-help/wiki

n-Hack, a Firefox plugin. Firefox with the plugin enabled allows the proxy to
intercept each communication between the client and the SB server. As mea-
sured, the actual request size is 21 Bytes, while a response with at least 1 full
digest has a size of 315 Bytes. Hence, if an adversary is able to generate 100
(second) pre-images for a prefix, then the server would send a response of size
30KB. The size of the response received by the client linearly increases with the
number of pre-images found. With only 104 pre-images the adversary can force
the server to send 3MB of data to the client. For the sake of comparison, the
local database updates sent to a client during a period of 24 hours was measured
to be around 400KB.

Impact on Other Services. It is worth noticing that our attacks on GSB have a
wide reach (see Fig. 4). In the first place, our proposed attacks directly affect the
usability of the browsers. All popular browsers including Chrome, Chromium,
Firefox, Safari and Opera include GSB as a feature. Even worse, several big
companies such as Facebook and Twitter import GSB in their social networking
services. These services have billions of users and the user activity on these
websites is extremely high.

GSB WOT YSB

Twitter Bitly
Firefox

Chrome

Chromium
Opera Safari

Facebook Mail.ru

DuckDuckGo TRUSTe Yandex.Browser

Orbitum

Maxthon

Fig. 4: Impact of our attacks: All popular browsers and social networking services
are affected.

The impact of our attacks is even more severe because the client code is
available as open-source, hence any external service can use it together with the
Safe Browsing API to build its own SB solution. For instance, Yandex provides
the Yandex Safe Browsing (YSB) API [28]. This API is a verbatim copy of
the Google Safe Browsing API with the only difference being that in addition
to the phishing and malware lists proposed by Google, the API also includes
17 other blacklists. Each of these blacklists contains malicious or unsafe links
of a given category. Since, the client side implementation of GSB and YSB is
identical, all our attacks on GSB trivially extend to YSB.

6 Feasibility of Our Attacks

In this section we empirically study the feasibility of our attacks. More precisely,
we consider the feasibility of generating polluting URLs. We highlight that the
URL generation is the only attack step with a considerable overhead.

12

It is believed that for a cryptographic hash function h producing `-bit digests,
the basic complexities for finding pre-images and second pre-images is 2`. Hence,
if ` is large, (second) pre-image attacks are not feasible. However, in case of GSB,
the adversary exploits the fact that the SHA-256 digests of malicious URLs are
truncated to 32-bits. The truncation allows the adversary to obtain pre-images
and second pre-images in reasonable time, i.e., only 232 brute-force operations.
We hence employ a brute-force search in our attacks. Since, finding a pre-image
or a second pre-image through brute-force entails the same cost, we do not
distinguish them in the sequel unless it is required.

6.1 Generating Domain Names and URLs

We note that a pre-image for a 32-bit prefix can be computed using brute-force
search in a few hours on any desktop machine. Relying on this fact, we have
written an attack-specific pre-image search engine in Python implementing a
brute-force search. It was built with a specific goal of searching multiple second
pre-images for 1 million popular web pages in the Alexa list7. The ensuing results
therefore determine the feasibility of mounting a second pre-image based attack
on a target benign URL in the Alexa list. Moreover, the engine also allows to
generate pre-images required for a pre-image based false positive flooding.

Since a brute-force search is highly parallelizable, we exploit the module
Parallel Python8. In fact, two levels of parallelization can be achieved. At a
higher level, the search for multiple pre-images can be parallelized. Consequently,
two pre-images can be obtained in roughly the same time as the search for one
pre-image. At a lower level, the generation of a single pre-image can also be
parallelized by dividing the interval of search, [0, 232) into sub-intervals.

We also check the availability of the domain name corresponding to each
URL. This is necessary since the adversary should own the domain name to be
able to upload malicious content on it. This verification is performed using the
python module pywhois: a wrapper for the Linux whois command. Finally, to
ensure that the URLs are human readable, we have employed the Fake-factory9

(version 0.2), a python package to generate fake but human readable URLs.
All our experiments were performed on a cluster with CPython 2.6.6 inter-

preter. The cluster runs a 64-bit processor powered by an Intel QEMU Virtual
CPU (cpu64-rhel6), with 32 cores running at 2199 MHz. The machine has 4 MB
cache and is running Centos Linux 2.6.32.

Fig. 5 presents the results obtained by our search engine at the end of 1 week.
The total number of second pre-images found was 111, 027, 928, i.e., over 111
million. Since the Alexa list contains 1 million entries, as expected the number of
second pre-images found per URL is highly concentrated around 100. For around
38, 000 URLs in the Alexa list, we found 110 second pre-images per URL. The
tail corresponds to the URLs for which we found the largest number of second
pre-images. A summary of the results for the tail is presented in Table 4.

7 http://www.alexa.com/
8 http://www.parallelpython.com/
9 https://pypi.python.org/pypi/fake-factory/0.2

13

http://www.alexa.com/
http://www.parallelpython.com/
https://pypi.python.org/pypi/fake-factory/0.2

0 20 40 60 80 100120140160
#second pre-images found

0

5

10

15

20

25

30

35

40

#
U

R
L

s
o
f

A
le

x
a

li
st

(×
1
0
3
)

Fig. 5: Number of second pre-images found per URL in the Alexa list of 1M
URLs.

Table 4: Prefixes and the domains in the Alexa list for which most second pre-
images were found. A sample second pre-image is also provided. The search gave
160 second pre-images for 2 websites.

Prefix # Second pre-images Alexa Site Sample second pre-image

0xd8b4483f 165 http://getontheweb.com/ http://9064606pearliefeil.com/

0xbbb9a6be 163 http://exqifm.be/ http://ransomlemke.com/id15926896

0x0f0eb30e 162 http://rustysoffroad.com/ http://62574314ginalittle.org/

0x13041709 161 http://meetingsfocus.com/ http://chloekub.biz/id9352871

0xff42c50e 160 http://js118114.com/ http://easteremmerich.com/id12229774

0xd932f4c1 160 http://cavenergie.nl/ http://41551460janaewolff.com/

6.2 Cost-Efficient Strategies

The afore-presented results show that the generation of multiple pre-images of
a 32-bit digest is time-efficient. However, for an attack to be successful, it is also
extremely important that the attack be cost efficient. As described earlier, an
adversary upon finding an available pre-image has to purchase the domain name.
The cost of each is typically $6-10 for a .com top-level domain. As boomerang
attacks require an adversary to generate multiple (second) pre-images, the final
cost of an attack might become prohibitive. A more cost-efficient solution is
to purchase one single domain to cover several prefixes. Let us say that the
chosen domain is deadly-domain.com. The adversary then simply requires to
create several malicious and non-malicious links on the domain. To this end,
two strategies can be employed. We describe below these strategies. In order to
exemplify these, let us consider for instance that the adversary wishes to use
deadly-domain.com to cover three prefixes: prefix1, prefix2 and prefix3.

1. Same Depth Strategy: Search for malicious tags at the same depth, such
as maltag1, maltag2 and maltag3 such that:

14

prefix(SHA-256(deadly-domain.com/maltag1)) = prefix1,
prefix(SHA-256(deadly-domain.com/maltag2)) = prefix2,
prefix(SHA-256(deadly-domain.com/maltag3)) = prefix3.

These tags may correspond to name of files, such as .html, .php, etc. Once
these tags are found, these pages or files are then linked to malicious content.
Table 5 presents sample second pre-images for popular web pages generated
using the same depth strategy.

Table 5: Same depth strategy: Sample second pre-images for popular web pages.

malicious URL popular domain prefix

deadly-domain.com/4294269150 google.com 0xd4c9d902

deadly-domain.com/21398036320 facebook.com 0x31193328

deadly-domain.com/5211346150 youtube.com 0x4dc3a769

2. Increasing Depth Strategy: Search for malicious tags at increasing depth,
such as maltag1, maltag2 and maltag3 such that:

prefix(SHA-256(deadly-domain.com/maltag1)) = prefix1,
prefix(SHA-256(deadly-domain.com/maltag1/maltag2)) = prefix2,
prefix(SHA-256(deadly-domain.com/maltag1/maltag2/maltag3)) = prefix3.

These tags correspond to the name of directories. Once these tags are found,
malicious files are uploaded in these directories. Table 6 presents sample sec-
ond pre-images for popular web pages generated using the increasing depth
strategy.

Table 6: Increasing depth strategy: Sample second pre-images for popular web
pages.

malicious URL popular domain prefix

deadly-domain.com/4294269150/ google.com 0xd4c9d902

deadly-domain.com/4294269150/3263653134/ facebook.com 0x31193328

deadly-domain.com/4294269150/3263653134/2329141652/ youtube.com 0x4dc3a769

The malicious tags are randomly generated using the previous search engine.
Once all the tags are found, the malicious URLs found can be released on the
web. If GSB considers all these URLs as malicious, then it will include all the
three prefixes in their blacklists. Hence, only one domain suffices to cover three
prefixes. The same strategy can be used for second pre-images based attacks,
where popular websites are targeted. In this case, the prefixes correspond to the

15

domains in the Alexa list. Last but not least, this also allows to generate multiple
pre-images: it suffices to fix a prefix and search for several malicious tags.

However, there is a small caveat in the above strategies. Considering that
several URLs on the same domain host malicious content, the GSB servers may
decide to blacklist the entire domain by adding only the digest prefix of the
domain name in their lists. This results in the degenerate case, where only one
prefix gets included in the blacklist. In order to circumvent this issue, the ad-
versary would need to create intermediary malicious pages on the domain which
correspond to useful or safe to browse content. Without these pages, there is a
chance that only the initial domain name is flagged as malicious.

6.3 Comparing of Domain Generation Strategies

As described in the previous sections, three strategies are possible for generating
a malicious domain and the corresponding URLs: the naive strategy of gener-
ating one domain name per prefix, the same depth strategy and the increasing
depth strategy. The final topologies of the domains obtained through these are
schematically presented in Fig. 6.

(a) (b) (c)

Fig. 6: Three possible topologies of the domains generated by an adversary are
depicted. The lowest node in the graphs represent the root domain, while the
other nodes correspond to the files or the directories created on the root domains.
The topology (a) represents the case where a new domain is created for each
prefix, (b) represents the domains generated by the same depth strategy, and
(c) corresponds to those corresponding to the increasing depth strategy.

We reiterate that while the naive strategy is highly parallelizable, it may
be cost prohibitive. The same depth strategy however assures the same level of
parallelization while remaining cost efficient. Compared to these strategies, the
increasing depth strategy is relatively less parallelizable since the malicious tag
generation is sequential. Indeed, the adversary has to wait for the first malicious
tag to be able to generate the next one. While search for multiple pre-images
cannot be parallelized, yet the search for a single pre-image is parallelizable.

Despite its disadvantages, the increasing depth strategy greatly impacts the
size of the full hash request and that of the corresponding response. In order to
understand this, let us suppose that all the corresponding malicious URLs get
included in the blacklists. If a client visits the final URL, he first decomposes the

16

URL into smaller URLs and checks if their corresponding prefixes are in the local
database. Since, these decompositions correspond exactly to the URLs generated
by the attacker, all these prefixes create hit in the local database. Consequently
all the prefixes are sent to the server. The exact number of prefixes sent to the
server is equal to the depth of the tree (as in Fig. 6). In case only the URLs up
to a depth d are blacklisted by the SB service, then the number of prefixes sent
is exactly d. Symmetrically, the server in response has to send back all the full
hashes corresponding to all the received prefixes. In this sense, the final URL
is the deadliest URL. We conclude this section by summarizing the comparison
between these strategies in Table 7.

Table 7: Comparative summary of the different strategies for generating mali-
cious domains. The comparison is relative to a scenario without any attack on
the service. φ denotes that no change could be obtained by the strategy. Ad-
versary’s complexity inversely relates to the level of parallelization that she can
achieve.

Client’s request Server’s response

Strategy size frequency size frequency Adversary’s complexity

Naive φ + + + +

Same depth φ + + + +

Increasing depth ++ + ++ + ++

7 Countermeasures

The design of a good countermeasure to our DoS attacks must be easy to deploy,
ensure compatibility with the current API and entail acceptable cost in terms
of time and memory at the client and the server side. We investigate two coun-
termeasures to our attacks. The first and the obvious one is to increase the size
of the prefix. The second solution consists in randomizing the system with keys.

7.1 Lengthening the Prefixes

The core of our attacks is the computation of pre-images and second pre-images.
As empirically shown in the previous section, 32-bit prefixes are not enough to
prevent those attacks and thus increasing their length is the obvious choice. Un-
fortunately, it has some effect on the size of the data structure at the client side.
Furthermore, the designers of Safe Browsing want to keep this size below 2MB.
From Table 3, we observe that delta-coded tables do not scale well if we increase
the prefix length. For 64-bit prefixes, the size of the data structure gets tripled.
The size of the Bloom filter remains immune to the change in the prefix size,
but unlike the delta-coded table, the data structure would no longer be dynamic
which is critical in the context of Safe Browsing. It can be argued that storing

17

the 20.3MB of all the full digests at the browser side is not a big issue. Un-
fortunately, publishing the full digests has very dangerous side effects. Indeed,
the URLs included in GSB may correspond to legitimate websites that have
been hacked. With the full digests, hackers can use GSB to identify weak web-
sites and increase the problem for the corresponding administrators. Recovering
URLs from full cryptographic digests was demonstrated to be possible when the
MD5 digests of the URLs censored in Germany were published and inverted (see
bpjmleak.neocities.org).

7.2 Probabilistic Solutions

Since our attacks retain some flavor of algorithmic complexity attacks, we explore
existing solutions to prevent such attacks. The first countermeasure proposed to
defeat algorithmic complexity attacks was to use universal hash functions [7] or
message authentication codes (MAC) [15]. Such methods work well for problems
in which the targeted data structure is on the server side. The server chooses a
universal hash function or a key for the MAC and uses it to insert/check elements
submitted by clients. The function or the key is chosen from a large set so that it
is computationally infeasible for an adversary to either guess the function/key or
pre-compute the URLs for all the possible values. We further highlight that all
the operations made on the data structure can only be computed by the trusted
server.

For GSB, the situation is different. The data are provided by Google and
inserted in the data structure by the client. It implies that all the prefixes and
any keys can not be kept secret to the client and are therefore known by an
adversary. With the knowledge of 32-bit prefixes, the adversary can mount false-
positive flooding attacks or boomerang attacks.

The first solution is to use a MAC directly on the URL prefixes. A key is
chosen by Google for each client and then shared. The prefixes received are
unique to each client. An adversary can mount a second pre-image attack on
a given user if she knows his key. But it can not be extended to other users
without the knowledge of their key. This solution defeats both pre-image and
second pre-image based attacks. However, it requires that Google recomputes
the prefixes for each client. It does not scale well but it can be used by Google
to protect important clients such as Facebook or Twitter (see Fig. 4).

Another solution could be that all the clients share the same function/key,
but this key is renewed by Google every week or month. The key is used
to compute the prefixes as in the previous solution. An adversary can pollute
Google Safe Browsing only for a short period of time. In this strategy, all
the prefixes must be re-computed on a regular basis by Google servers with
a different function or key and diffused to all the clients. However, this may
represent a high communication cost once per week/month.

18

bpjmleak.neocities.org

8 Conclusion

We have described several vulnerabilities in Google Safe Browsing and its
siblings which allow an adversary to mount several DoS attacks. The attacks
allow an adversary to either increase the false positive probability or force the
service to believe that a target benign URL is possibly malicious, hence leading
to a DoS. The situation is further exacerbated through our described boomerang
attacks. The current Safe Browsing architecture further permits the adversary to
simultaneously affect all the users of the service. In Google Safe Browsing, the
back-end service attempts to implement a cache at the client side to reduce their
servers’ load. The design of this cache leads to the use of potentially insecure
data structures. In fact, the digests stored are too short to prevent brute-force
attacks. Increasing the digest length is a secure countermeasure, but the current
data structure does not scale well with this modification and it can amplify the
security issues by increasing the number of attacks on vulnerable websites.

References

1. Antonakakis, M., Perdisci, R., Dagon, D., Lee, W., Feamster, N.: Building a Dy-
namic Reputation System for DNS. In: 19th USENIX Security Symposium, Wash-
ington, DC, USA, August 11-13, 2010, Proceedings. pp. 273–290 (2010)

2. Bar-Yosef, N., Wool, A.: Remote Algorithmic Complexity Attacks against Ran-
domized Hash Tables. In: Filipe, J., Obaidat, M. (eds.) E-business and Telecom-
munications, Communications in Computer and Information Science, vol. 23, pp.
162–174. Springer Berlin Heidelberg (2009)

3. Ben-Porat, U., Bremler-Barr, A., Levy, H., Plattner, B.: On the Vulnerability of
Hardware Hash Tables to Sophisticated Attacks. In: Networking (1). Lecture Notes
in Computer Science, vol. 7289, pp. 135–148. Springer (2012)

4. Berners-Lee, T., Fielding, R., Masinter, L.: Uniform Resource Identifier (URI):
Generic Syntax. RFC 3986 (INTERNET STANDARD) (Jan 2005), http://www.
ietf.org/rfc/rfc3986.txt, updated by RFCs 6874, 7320

5. Bloom, B.H.: Space/Time Trade-offs in Hash Coding with Allowable Errors. Com-
mun. ACM 13(7), 422–426 (1970)

6. Cai, X., Gui, Y., Johnson, R.: Exploiting Unix File-System Races via Algorithmic
Complexity Attacks. In: IEEE Symposium on Security and Privacy (S&P 2009.
pp. 27–41. IEEE Computer Society, Oakland, California, USA (2009)

7. Carter, L., Wegman, M.N.: Universal Classes of Hash Functions (Extended Ab-
stract). In: ACM Symposium on Theory of Computing - STOC. pp. 106–112.
ACM, Boulder, CO, USA (May 1977)

8. Cova, M., Kruegel, C., Vigna, G.: Detection and Analysis of Drive-by-download
Attacks and Malicious JavaScript Code. In: Proceedings of the 19th International
Conference on World Wide Web. pp. 281–290. WWW ’10, ACM, New York, NY,
USA (2010)

9. Crosby, S.A., Wallach, D.S.: Denial of Service via Algorithmic Complexity Attacks.
In: USENIX Security Symposium. pp. 3–3. Lecture Notes in Computer Science
7668, USENIX Association, Washington, USA (December 2003)

10. Félegyházi, M., Kreibich, C., Paxson, V.: On the Potential of Proactive Domain
Blacklisting. In: LEET (2010)

19

http://www.ietf.org/rfc/rfc3986.txt
http://www.ietf.org/rfc/rfc3986.txt

11. Inc., G.: Safe Browsing API. https://developers.google.com/safe-browsing/
12. Inc., G.: Google Transparency Report. Tech. rep., Google (June 2014), http://

bit.ly/11ar4Sw

13. McAfee: McAfee Site Advisor. http://www.siteadvisor.com/
14. McIlroy, M.D.: A Killer Adversary for Quicksort. Softw. Pract. Exper. 29(4), 341–

344 (Apr 1999)
15. Menezes, A.J., Vanstone, S.A., Oorschot, P.C.V.: Handbook of Applied Cryptog-

raphy. CRC Press, Inc., 1st edn. (1996)
16. Microsoft: Windows SmartScreen Filter. http://windows.microsoft.com/en-us/

windows/smartscreen-filter-faq#1TC=windows-7

17. Mogul, J., Krishnamurthy, B., Douglis, F., Feldmann, A., Goland, Y., van Hoff, A.,
Hellerstein, D.: Delta encoding in HTTP. RFC 3229, RFC Editor (January 2002),
http://tools.ietf.org/html/rfc3229

18. Moshchuk, A., Bragin, T., Deville, D., Gribble, S.D., Levy, H.M.: SpyProxy:
Execution-based Detection of Malicious Web Content. In: Proceedings of the 16th
USENIX Security Symposium, Boston, MA, USA, August 6-10, 2007 (2007)

19. Moshchuk, A., Bragin, T., Gribble, S.D., Levy, H.M.: A Crawler-based Study of
Spyware in the Web. In: Proceedings of the Network and Distributed System Se-
curity Symposium, NDSS 2006, San Diego, California, USA (2006)

20. National institute of standards and technology: Secure Hash Standard (SHS). Tech.
Rep. FIPS PUB 180-4, National Institute of Standards & Technology (march 2012)

21. Nazario, J.: PhoneyC: A Virtual Client Honeypot. In: Proceedings of the 2Nd
USENIX Conference on Large-scale Exploits and Emergent Threats: Botnets,
Spyware, Worms, and More. LEET’09, USENIX Association, Berkeley, CA, USA
(2009)

22. Papadogiannakis, A., Polychronakis, M., Markatos, E.P.: Tolerating Overload At-
tacks Against Packet Capturing Systems. In: USENIX Annual Technical Confer-
ence. pp. 197–202. USENIX Association, Boston, MA, USA (June 2012)

23. Peslyak, A.: Designing and Attacking Port Scan Detection Tools. Phrack Magazine
8(453), 13 (July 1998), http://phrack.org/issues/53/13.html#article

24. Schultz, E.E.: Denial-of-Service Attack. In: Bigdoli, H. (ed.) Handbook of Infor-
mation Security, vol. 3. Wiley (December 2005)

25. Symantec: Norton Safe Web. https://safeweb.norton.com/
26. Wang, Y.M., Beck, D., Jiang, X., Roussev, R., Verbowski, C., Chen, S., King,

S.T.: Automated Web Patrol with Strider HoneyMonkeys: Finding Web Sites That
Exploit Browser Vulnerabilities. In: NDSS (2006)

27. WOT Services, L.: Web of Trust. https://www.mywot.com
28. Yandex: Yandex Safe Browsing. http://api.yandex.com/safebrowsing/

20

https://developers.google.com/safe-browsing/
http://bit.ly/11ar4Sw
http://bit.ly/11ar4Sw
http://www.siteadvisor.com/
http://windows.microsoft.com/en-us/windows/smartscreen-filter-faq#1TC=windows-7
http://windows.microsoft.com/en-us/windows/smartscreen-filter-faq#1TC=windows-7
http://tools.ietf.org/html/rfc3229
http://phrack.org/issues/53/13.html#article
https://safeweb.norton.com/
https://www.mywot.com
http://api.yandex.com/safebrowsing/

	On the (In)security of Google Safe Browsing

