
On the (Im)possibility of Aggregate Message Authentication Codes

Aldar C-F. Chan
National University of Singapore

Claude Castelluccia
INRIA

Abstract—In data aggregation, multiple source nodes send
their data to a sink along a concast tree with aggregation done
en route so that the sink can obtain the aggregate (which could
be the sum, average, etc.) of all these data. End-to-end privacy
and aggregate integrity are the two main goals of secure data
aggregation. While the privacy goal has been widely studied,
providing end-to-end aggregate integrity in the presence of
possibly compromised aggregating nodes remains largely anopen
problem. Message Authentication Codes (MAC) are commonly
used to provide end-to-end data integrity in two party settings.
Natural extensions of MAC for the data aggregation scenario
are considered. It is shown that a straightforward and intuitive
refinement of the MAC security model (for the data aggregation
setting) is not achievable. A weaker security notion is proposed;
whether this notion is achievable remains unclear.

I. I NTRODUCTION

Due to the constraint on power consumption (for wire-
less transmission), data aggregation emerges as the de facto
paradigm for performing aggregate queries over a wireless
sensor network. In this actively studied paradigm, a concast
tree rooted at a sink to connect all the reporting sensor nodes
is usually formed for each query and aggregation is performed
en route, that is, each sensor node aggregates all results
from its child nodes in the concast tree and only passes the
resulting aggregate to its parent upstream. End-to-end privacy
and aggregate integrity/authenticity are the two main security
goals for such a data aggregation paradigm. In brief, privacy
(regardless of the information leakage due to the correlation
among sensor measurements) ensures that nobody other than
the sink could learn considerable information about the final
aggregate even if he might control any subset of sensor nodes
while aggregate authentication assures that any manipulation
of the final aggregate by an adversary beyond what is achiev-
able through direct injection of data at compromised nodes
under his control will be detected at the sink.

End-to-end privacy of data aggregation has been widely
studied in a variant called concealed data aggregation (CDA)
[1], [4], [7], [12]. Chan and Castelluccia [5] extend the security
model for semantic security, a standard notion of privacy
for encryption schemes (both symmetric and asymmetric), to
cover the CDA setting. It is natural to ask whether the common
notions of integrity or authenticity in cryptography can be
extended for the data aggregation scenario in a similar fashion
as in CDA. There are a number of constructions to protect
aggregate integrity in data aggregation [6], [9], [11], [13]
but all these schemes cannot provide end-to-end integrity or
only a single layer of aggregation is considered. All proposed
schemes for aggregate integrity protection in hierarchical data
aggregation require a call-back (by the sink or intermediate

aggregating nodes or both) to the downstream sensor nodes
(which have performed aggregation) in order to verify the
integrity of the aggregate. It is fair to say providing end-to-
end aggregate integrity in data aggregation with a multi-level
tree remains an open problem. This paper investigates whether
such a goal of end-to-end aggregate integrity is achievable.

End-to-end integrity in one-to-one communication is usually
provided through the use of Message Authentication Codes
(MAC) such as [2], [10]. That is, the two users in communica-
tion share a common secret key; each message sent is attached
with a tag which is computed using the secret key and the
message as input; the integrity of a received message is verified
by re-computing the tag based on the received message and the
secret key. It is natural to ask whether such a MAC primitive
can be extended to cover the data aggregation scenario so as
to provide end-to-end aggregate integrity/authentication. This
paper studies possible extensions of the MAC security model,
collectively called Aggregate Message Authentication Code
(AMAC) in this paper.

This paper shows that a straightforward extension of MAC
for the aggregation scenario could not be achievable, that is, no
secure primitive could be constructed to achieve this AMAC
security notion. Then a weaker security notion is proposed.
This weakened notion guarantees that what a compromised
node can best achieve in deviating the final aggregate is
through injecting data using the captured secret keys at com-
promised nodes. Nevertheless, whether this weakened security
notion is achievable remains unclear. This paper shows thatif
an AMAC primitive achieving this notion exists, it can be used
to construct a kind ofIND-CCA2-secure CDA; however, no
construction of the latter has been proposed in the literature
so far. If this type ofIND-CCA2-secure CDA does not exist,
then the weakened AMAC notion is not achievable either.

A. Aggregate Authentication vs. Aggregatable Authentication

It should be noted that the problem of aggregate authenti-
cation considered in this paper is different from the problem
considered in aggregate signatures [3]; more precisely, the
latter should be called aggregatable signatures instead. In
aggregate authentication (considered in this paper), it isthe
messages themselves being aggregated and hence the original
messages are not available for verification, whereas, in ag-
gregate signatures, the signatures for different messagesare
aggregated and all the signed messages have to be distinct
and available to the verification algorithm in order to verify
the validity of an aggregate signature.

In fact, constructing aggregatable MAC which supports tag
aggregation is trivial. We can simply take exclusive-OR on all

the MAC tags as in [6]. The idea is as follows: suppose there
are l senders each sharing a secret keyki with a receiver and
having a messagemi to be sent to the receiver; to ensure the
integrity of their messages, each sender can generate a MAC
tagti onmi using the secret keyki and send out(mi, ti); let⊕
denote bitwise exclusive OR; at the receiver, the aggregated
tag T = t1 ⊕ t2 ⊕ ... ⊕ tl is sufficient (that is, as good as
having all theti’s) to guarantee the integrity of each message
in the series:m1, m2, ..., ml. Note that along withT andki’s,
the messagem1, m2, ..., ml are still needed at the receiver for
verification. It can be shown that this construction achieves
existential unforgeability against chosen message attack.

B. Our Contributions

The main contribution of this paper is two-fold: First,
we give a security model for end-to-end aggregate integrity
(which may be achievable) in secure data aggregation. It is
the first formal treatment to end-to-end integrity in secure
data aggregation. Second, we relate this notion for end-to-end
integrity in data aggregation with that for end-to-end privacy.

II. D EFINITIONS

A separation of the privacy and the aggregate integrity goals
is adopted through two primitives, namely, CDA and AMAC.

Notations. We denote byz ← A(x, y, . . .) the experiment of
running a probabilistic algorithmA on inputsx, y . . ., gener-
ating outputz. We denote by{A(x, y, . . .)} the probability
distribution induced by the output ofA. As usual, PPT denote
probabilistic poly-time. An empty set is always denoted byφ.

A. CDA Syntax

A typical CDA scheme includes a sinkR and a setU
of n source nodes (which are usually sensor nodes) where
U = {si : 1 ≤ i ≤ n}. Denote the set of source
identities byID; in the simplest case,ID = [1, n]. In the
following discussion,hdr ⊆ ID is a header indicating the
source nodes contributing to an encrypted aggregate. Givena
security parameterλ, a CDA scheme consists of the following
polynomial time algorithms.

Key Generation (KG). Let KG(1λ, n) →
(dk, ek1, ek2, . . . , ekn) be a probabilistic algorithm.
Then, eki (with 1 ≤ i ≤ n) is the encryption
key assigned to source nodesi and dk is the
corresponding decryption key given to the sinkR.

Encryption (E). Eeki
(mi) → (hdri, ci) is a probabilistic

encryption algorithm taking a plaintextmi and an
encryption keyeki as input to generate a ciphertext
ci and a headerhdri ⊂ ID. Herehdri indicates the
identity of the source node performing the encryp-
tion; if the identity isi, thenhdri = {i}. We some-
times denote the encryption function byEeki

(mi; r)
to explicitly show by a stringr the random coins
used in the encryption process.

Decryption (D). Given an encrypted aggregatec and its
headerhdr ⊆ ID (which indicates the source nodes
included in the aggregation),Ddk(hdr, c)→ m/ ⊥ is

a deterministic algorithm which takes the decryption
key dk, hdr andc as input and returns the plaintext
aggregatem or possibly⊥ if c is an invalid cipher-
text.

Aggregation (Agg). With a specified aggregation
function f , the aggregation algorithm
Aggf (hdri, hdrj , ci, cj) → (hdrl, cl) aggregates
two encrypted aggregatesci and cj with headers
hdri andhdrj respectively (wherehdri∩hdrj = φ)
to create a combined aggregatecl and a new
header hdrl = hdri ∪ hdrj . Supposeci and
cj are the ciphertexts for plaintext aggregates
mi and mj respectively. The outputcl is
the ciphertext for the aggregatef(mi, mj),
namely,Ddk(hdrl, cl) → f(mi, mj). Note that the
aggregation algorithm does not need the decryption
key dk or any of the encryption keyseki as input;
it is a public algorithm.

Depending on constructions, the aggregation functionf
could be any associative function, for instance,f could be
the sum, multiplicative product, max, etc.. Leveraging on the
associativity property, we abuse the notation in this paper: we
denote the composition of multiple copies off simply by
f(m1, m2, . . . , mi) irrespective of the order of aggregation
and call it thef -aggregate onm1, m2, . . . , mi; to be precise,
it should be written asf(f(f(m1, m2), . . .), mi) with a certain
aggregation order. Many aggregation functions of practical
interest, such as sum and multiplicative product, satisfy the
reversibility property defined as follows.

Definition 1: An aggregation functionf is reversible if given
x andf(x, y), the other inputy can be uniquely and efficiently
determined.

It is intentional to include the description of the header
hdr in the above definition so as to make the CDA security
model as general as possible. Nonetheless, generating headers
or including headers as input to algorithms should not be
treated as a requirement in the actual construction of CDA
algorithms. For constructions which do not need headers, all
hdr’s can simply be treated as the empty setφ in the security
model and the discussions in this paper still apply.

We do not pose restrictions on whether global or local
random coins should be used for encryption. If each source
generates its random coins individually, the random coins are
said to be local; if the random coins are chosen by the sink and
broadcast to all source nodes, they are global. Global random
coins are usually public. When global random coins are used,
we do not pose restriction on the reuse of randomness despite
that, in practice, each global random coin is treated as nonce,
that is, used once only.

B. AMAC Syntax

Before describing the syntax of AMAC, we briefly describe
that for a normal two-party MAC. A typical MAC scheme is a
two-tuple(MAC, V ER) whereMAC takes the secret keyk
(shared between the communicating parties) and messagem as

input and returns a tagt = MACk(m). V ERk(m, t), taking
the keyk, the messagem and the tagt as input, returns either
1 (if t is a valid tag form) or 0 (otherwise). For correctness,
V ERk(m, MACk(m)) = 1.

The setting for AMAC is the same as that for CDA, with
one sinkR and a setU of n source nodes. As before, let
U = {si : 1 ≤ i ≤ n} and the set of source identities
ID = [1, n]. Same as in CDA,hdr ⊆ ID is a header
indicating the source nodes contributing to an aggregate. Note
that in AMAC, the aggregation is done in the plaintext domain
(compared to the encrypted domain aggregation in CDA) as
the aggregate integrity goal is isolated from the privacy goal
in the consideration of AMAC. Without loss of generality, the
aggregation functionf(·) is assumed to be associative. For a
security parameterλ, an AMAC consists of three polynomial
time algorithms as follows.

Key Generation (KG). Let KG(1λ, n) → (k1, k2, . . . , kn)
be a probabilistic algorithm. Then,ki (with 1 ≤ i ≤
n) is the secret key used to generate a verification
tag by nodei. The sink possesses allki’s used for
tag verification.

Tag Generation (MAC). MACki
(mi) → tagi takes a secret

key ki and a messagemi as input to generate a
verification tagtagi for mi. The message sent out
from nodei is a 3-tuple({i}, mi, tagi).

Tag Verification (Ver). Let m be an f -aggregate
of messages m1, m2, ..., mi, ... and hdr be
the set of all contributing identities. Then
Verk1,k2,...,ki,...(m, tag1, tag2, ..., tagi, ...) → 0/1
takes the aggregatem and the tagtagi and secret
key ki for each i ∈ hdr and outputs1 if m is a
correct aggregate (i.e.m = f(m1, m2, ..., mi, ...))
and0 otherwise.

Note that no aggregation algorithm is specified in AMAC;
the aggregation is done in plaintext, just the same as in
usual aggregation. When an aggregating node with identity
k receives two measurement values and their tags from down-
stream, say,({i}, mi, tagi) and({j}, mj, tagj.), it would pass
({i, j, k}, f(mi, mj , mk), tagi, tagj, tagk) as the aggregation
result to its parent wheremk is its own measurement. Aggre-
gation of verification tags is not considered here. So all the
tags are needed in the verification. Letm = f(m1, ..., mi, ...),
then the correctness requirement of AMAC is as follows:

Verk1,...,ki,...(m, MACk1
(m1), ..., MACki

(mi), ...) = 1.

Typical AMAC Operation. In the initialization phase, the
sink generatesn secret keyski’s and giveski to nodei. To
respond to a query, each reporting nodesi ∈ S ⊆ U sends
in a data-tag pair(mi, tagi) wheretagi = MACki

(mi). That
is, tagi is supposed to be a verification tag for messagemi

generated by nodei. As these pairs go upstream along the
concast tree, aggregation is performed onmi leaving tagi

intact. Hence, eventually the sink would receivem and all the
tags in{tagi = MACki

(mi) : si ∈ S} wherem is supposed to
be thef -aggregate of all the messages in{mi : si ∈ S}. The

sink runs the verification algorithmVer to check the validity
of m.

III. PRIVACY NOTIONS OFCDA

Two types of oracle queries (adversary interaction with
the system) are allowed in the security model, namely, the
encryption oracleOE and the decryption oracleOD.

Encryption OracleOE(i, m). For fixed encryption and de-
cryption keys, on input an encryption query〈i, m〉,
the encryption oracle retrievessi’s encryption key
eki and runs the encryption algorithm onm and
replies with the ciphertextEeki

(m; r) and its header
hdr. In case global random coins are used, the
random coinsr are part of the query input toOE .

Decryption OracleOD(hdr, c). For fixed encryption and
decryption keys, on input a decryption query〈hdr, c〉
(wherehdr ⊆ ID), the decryption oracle retrieves
the decryption keydk and runs the decryption algo-
rithm D and replies with the resultDdk(hdr, c).

To define security (more precisely, indistinguishability)
against adaptive chosen ciphertext attacks (IND-CCA2), we
use the following game between a challenger and an adversary,
assuming there is a setU of n source nodes. If no PPT
adversary, even in collusion with at mostt compromised node
(with t < n), can win the game with non-negligible advantage
(as defined below), we say the CDA scheme ist-secure.1

Definition 2: A CDA scheme ist-secure (indistinguishable)
against adaptive chosen ciphertext attacks if the advantage
of winning the following game is negligible in the security
parameterλ for all PPT adversaries.

Collusion Choice.The adversary chooses to corruptt source
nodes. Denote the set of theset corrupted nodes and
the set of their identities byS′ andI ′ respectively.

Setup. The challenger runsKG to generate a decryption key
dk and n encryption keys{eki : 1 ≤ i ≤ n}, and
gives the subset oft encryption keys{ekj : sj ∈ S′}
to the adversary but keeps the decryption keydk and
the other(n− t) encryption keys{ekj : sj ∈ U\S′}.

Query 1. The adversary can issue to the challenger two
types of queries:2

• Encryption Query〈ij , mj〉. The challenger re-
sponds withEeij

(mj).
• Decryption Query〈hdrj , cj〉. The challenger re-

sponds withDdk(hdrj , cj).

Challenge. Once the adversary decides that the first query
phase is over, it selects a subsetS of d source
nodes (whose identities are in the setI) such that
|S ∩ S′| = 0, and outputs two different sets of
plaintextsM0 = {m0k : k ∈ I} and M1 = {m1k :
k ∈ I} to be challenged. The only constraint is

1The adversary is allowed to freely choose parametersn and t.
2In case global random coins are used, the adversary is allowed to choose

and submit his choices of random coins for both encryption and decryption
queries. Depending on whether the encryption keys are kept secret, the
encryption queries may or may not be needed.

that the two resulting plaintext aggregatesx0 and
x1 are not equal wherex0 = f(. . . , m0k, . . .) and
x1 = f(. . . , m1k, . . .).
The challenger flips a coinb ∈ {0, 1} to select
betweenx0 and x1. The challenger then encrypts
eachmbk ∈ Mb with ekk and aggregates the re-
sulting ciphertexts in the set{Eekk

(mbk) : k ∈ I}
to form the ciphertextC of the aggregate, that is,
Ddk(I, C) = xb, and gives(I, C) as a challenge to
the adversary. In case global random coins are used
for encryption, the challenger chooses and passes
them to the adversary. If anonceis used, the global
random coins should be chosen different from those
used in the Query 1 phase and no encryption query
on them should be allowed in the Query 2 phase.

Query 2. The adversary is allowed to make more queries
(both encryption and decryption) as previously done
in Query 1 phase but for decryption queries,hdrj ⊆
S and no decryption query can be made on the
challenged ciphertextC if hdrj = S.

Guess. Finally, the adversary outputs a guessb′ ∈ {0, 1}
for b.

Result. The adversary wins the game ifb′ = b. The
advantage of the adversary is defined as:AdvA =
∣

∣Pr[b′ = b]− 1

2

∣

∣.

Note that in CDA what the adversary is interested in is
the information about the final aggregate. Consequently, in
the above game, the adversary is asked to distinguish between
the ciphertexts of twodifferent aggregatesx0 and x1 as the
challenge, rather than to distinguish two different sets of
plaintextsM0 andM1. By picking elements forM0 andM1,
the adversary is essentially free to choosex0 andx1. Allowing
the adversary to choose the two setsM0, M1 is to give him
more flexibility in launching attacks.

The above definition of security againstCCA2 attacks is a
weaker version of the original notion defined in [5] in the sense
that, in the Query 2 phase, the adversary is more restricted in
making decryption queries now. Originally, the adversary can
submit a decryption query with a header such thatS is a
subset of it; this type of query is not allowed now. The reason
for such a modification is that the original security notion
could not be achieved normally when compromised nodes
exist3 due to the following attack: an adversary can choose
a choice ofS such that it can add in the contribution from a
compromised node not inS to ask for a decryption query in
Query 2 phase; through this query result, the adversary can
determine which of the two aggregates he is being challenged
with; this is possible as long as,f(x0, a) 6= f(x1, a) wherea is
the newly added contribution. This attack is achieved through
the manipulation of the aggregation functionality. Due to the
same attack, a straightforward extension of MAC for AMAC
cannot be achieved (Section IV).

3The CMT scheme and its variant [4], [5] can achieve this notion of
indistinguishability againstCCA2 attacks when employing stateful decryption
to ensure the same reply for each nonce in decryption queries.

It should be noted that even for this weakened notion of
CCA2 security, no scheme has been constructed to achieve it
so far. Existing constructions in the literature [12], [4],[5] are
insecure in this security model. It is fair to say constructing
schemes to achieve this privacy notion remains open.

IV. SECURITY NOTIONS OFAMAC

Two types of oracle queries are allowed in the AMAC
security model, namely, the tag generation oracleOT and the
tag verification oracleOV . Their details are as follows:

Tag Generation OracleOT (i, m). For fixed secret keys, on
input a tag generation query〈i, m〉, the tag genera-
tion oracle retrieves keyki to run the tag generation
algorithm onm and replies with the tagMACki

(m).
Tag Verification OracleOV (hdr, m, T = {tagi : i ∈ hdr}).

For fixed secret keys, on input a tag verification query
〈hdr, m, T 〉 (wherehdr ⊆ ID andT = {tagi : i ∈
hdr}), the tag verification oracle retrieves the keys
{ki : i ∈ hdr} and runs the tag verification algorithm
Ver and replies with the resultVer{ki:i∈hdr}(m, T).

We adopt a notion of existential unforgeability against
chosen message attacks for AMAC security.

Definition 3: An AMAC scheme ist-secure (unforgeability)
against chosen message attacks if the advantage of winning
the following game is negligible in the security parameterλ
for all PPT adversaries.

Collusion Choice.The adversary chooses to corruptt source
nodes. Denote the set of theset corrupted nodes and
the set of their identities byS′ andI ′ respectively.

Setup. The challenger runsKG to generaten secret keys
{ki : 1 ≤ i ≤ n}, and gives the subset oft keys
{kj : sj ∈ S′} to the adversary but keeps the other
n− t keys{kj : sj ∈ U\S′}.

Query. The adversary can issue two types of queries:

• Tag Generation Query〈ij , mj〉. The challenger
responds by returning the tagMACkij

(mj).
• Tag Verification Query〈hdrj , mj, Tj〉. The chal-

lenger responds by returning the verification
resultVer{kl:l∈hdrj}(mj , Tj).

The adversary can issue queries of both types until he
decides to make a guess. Denote the set of tag gen-
eration queries made so far byTQ = {〈ij , mj〉}. Let
MQ = {f(mj1 , ..., mjx

, mjy
, ...,) : 〈ijx

, mjx
〉 ∈

TQ, 〈ijy
, mjy

〉 ∈ TQ; ijx
6= ijy

, ∀x, ∀y)}. That is,
MQ denote the set of all possible aggregates which
can be obtained from aggregating messages in the
tag generation queries.

Guess. Finally, the adversary outputs an aggregate and
the associated verification tags, that is, a tuple
〈hdr, m, T = {tagi : i ∈ hdr}〉 wherehdr ⊆ U\S′

andm 6∈ MQ.
Result. The adversary wins the game if

Ver{kl:l∈hdr}(m, T) = 1. The advantage of
the adversary is defined as the probability that the
adversary wins the game.

A MAC scheme is normally considered as a symmetric
key counterpart of digital signatures. The security requirement
for MAC schemes is in essence the same as that for digital
signatures, namely, unforgeability against chosen message
attacks [2], [8]. In details, the secret keyk is kept secret from
an adversary. The adversary is allowed to query tagstj for
messagesmj of his choice, which can be done adaptively. Let
M denote the set ofmj ’s made in the tag generation query.
The adversary breaks the scheme if he is able to find a message
m 6∈ M and a valid tagt = MACk(m).

In the Guess phase in the simulation game above, we require
that |hdr ∩ S′| = 0 (as can be implied fromhdr ⊆ U\S′).
Compared with the security notion for MAC, it is natural to
ask whether this requirement is necessary as the requirement
m 6∈ MQ seems enough and is a natural refinement of
the security model for MAC. In particular, this additional
requirement leads to a weaker security model, namely, a more
difficult task for the adversary is assumed. Without imposing
the requirement thathdr ⊆ U\S′, it can be shown that
when compromised nodes exist, all constructions would be
insecure4 in the AMAC security model due to the aggregation
functionality, in particular when no stateful tag generation is
assumed. In practice, this requirement means that an adversary
cannot deviate the final aggregate beyond what can be achieved
by injecting contributions directly into the aggregate through
compromised nodes. In other words, an adversary can only
aggregate messages and inject its contributions as what a
honest node does, and he cannot modify the contributions (in
the aggregate) from honest nodes downstream in the concast
tree without being detected by the sink. Nevertheless, whether
this security notion for AMAC can be achieved remains
unknown. The knowledge about this AMAC security notion
is summarized by the following claim.

Claim. Assuming the existence of one-way functions, if an
AMAC construction secure in the sense of Definition 3 exists,
an IND-CCA2-secure CDA construction as defined in Defi-
nition 2 exists for any reversible aggregation functionf (as
defined in Definition 1).
Proof Sketch (Informal). Assume there exists a secure con-
struction of AMAC. We can use this AMAC primitive and any
semantic-secure CDA schemeE to construct anIND-CCA2-
secure CDA scheme. The construction is intuitive: to encrypt a
messagem, we generate a random coinr and useE to encrypt
r andf(r, m); then two AMAC tags, onr andf(r, m) respec-
tively, are attached to the two ciphertexts. While the ciphertexts
are aggregated, no aggregation on the AMAC tags is done.
In decryption, we decrypt the two ciphertext aggregates and
verify that the aggregates and the corresponding AMAC tags
match usingVer. If the result is1, we output the decrypted
message, otherwise, we output⊥ (a decryption failure). The
resulting scheme could resistCCA2 attacks in Definition
2 mainly because, if an adversary modifies the challenged

4This AMAC security notion cannot be achieved by any constructions.
If such an AMAC scheme exists, it can help to construct a CDA scheme
achieving theIND-CCA2 security in strong sense as defined in [5] which
may not be achievable.

ciphertext to make a decryption query, with high probability it
will be caught and gain no useful information from⊥. Since
f is reversible, we can determine the message aggregate from
the two final aggregates,f(..., ri, ...) and f(..., ri + mi, ...).
The technique in [4], [5] can be used to construct a semantic-
secure CDA forf from a pseudorandom function (which in
turn can be constructed from a one-way function).

Since no CDA construction in the literature achieves
IND-CCA2 security, it may be that such CDA constructions
do not exist. If it is the case, then the AMAC security defined
in Definition 3 cannot be achieved.

V. CONCLUSIONS

End-to-end privacy and integrity/authenticity are the two
main goals of secure data aggregation. We give security
models for both privacy and aggregate integrity and derive
relations between them.

ACKNOWLEDGMENT

The first author would like to acknowledge the financial
support provided by the Ministry of Education, Singapore
through the Lee Kuan Yew Postdoctoral Fellowship and AcRF
research grant R-252-000-331-112.

REFERENCES

[1] M. Acharya, J. Girao, and D. Westhoff. Secure comparisonof encrypted
data in wireless sensor networks. Inthe Proceedings of WiOpt 2005,
April 2005.

[2] M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for
message authentication. InAdvances in Cryptology — CRYPTO 1996,
Springer-Verlag LNCS vol. 1109, pages 1–15, 1996.

[3] D. Boneh, D. Gentry, B. Lynn, and H. Shacham. Aggregate and
verifiably encrypted signatures from bilinear map. InAdvances in
Cryptology — EUROCRYPT 2003, Springer-Verlag LNCS vol. 2656,
pages 272–293, 2003.

[4] C. Castelluccia, E. Mykletun, and G. Tsudik. Efficient aggregation
of encrypted data in wireless sensor networks. Inthe Proceedings of
MobiQuitous’05, pages 1–9, July 2005.

[5] Aldar C-F. Chan and Claude Castelluccia. On the privacy of concealed
data aggregation. InESORICS 2007, Springer-Verlag LNCS vol. 4734,
September 2007.

[6] Haowen Chan, Adrian Perrig, and Dawn Song. Secure hierarchical
in-network aggregation in sensor networks. InACM Conference on
Computer and Communication Security (CCS 06, October 2006.

[7] J. Girao, D. Westhoff, and M. Schneider. CDA: Concealed data
aggregation in wireless sensor networks. Inthe Proceedings of IEEE
International Conference on Communication(ICC’05), May 2005.

[8] S. Goldwasser, S. Micali, and R. Rivest. A secure signature scheme
secure against adaptive chosen-message attacks.SIAM Journal on
Computing, 17(2):281–308, 1988.

[9] L. Hu and D. Evans. Secure aggregation for wireless networks. In
Workshop on Security and Assurance in Ad hoc Networks, 2003.

[10] T. Iwata and K. Kurosawa. OMAC: One-key CBC MAC. InFast
Software Encryption (FSE 2003), Springer-Verlag LNCS vol.2887,
pages 129–153, 2003.

[11] B. Przydatek, D. Song, and A. Perrig. SIA: Secure information
aggregation in sensor networks. Inthe Proceedings of 1st International
Conference on Embedded Networked Sensor Systems, 2003.

[12] D. Westhoff, J. Girao, and M. Acharya. Concealed data aggregation for
reverse multicast traffic in sensor networks: Encryption, key distribu-
tion, and routing adaption.IEEE Transactions on Mobile Computing,
5(10):1417–1431, 2006.

[13] Y. Yang, X. Wang, S. Zhu, and G. Cao. SDAP: A secure hop-by-hop data
aggregation protocol for sensor networks. Inthe Proceedings of ACM
Internation Symposium on Mobile Ad Hoc Networking and Computing
(MobiHoc) 2006, 2006.

