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Abstract. A multicast communication source often needs to securely
verify which multicast group members have received a message, but veri-
fication of individually signed acknowledgments from each member would
impose a significant computation and communication cost. As pointed
out by Nicolosi and Mazieres [NM04], such cost is minimized if the in-
termediate nodes along the multicast distribution tree aggregate the in-
dividual signatures generated by the multicast receivers into a single
multisignature.
While the solution of [NM04], based on a multisignature scheme of
Boldyreva [Bol03], relied on so-called “Gap Diffie-Hellman” groups, we
propose a solution using a multisignature scheme which is secure un-
der just the discrete logarithm assumption. However, unlike the previ-
ously known discrete-log based multisignature scheme of Micali et al.
[MOR01a], our multisignature scheme is robust, which allows for an ef-
ficient multisignature generation even in the presence of (possibly mali-
cious) node and communication failures.

1 Introduction

Multicast (or one-to-many) communication is widespread in a variety of settings.
Popular examples include IP Multicast, p2p content sharing, digital cable TV
transmission, mobile ad hoc networks and application-layer replication proto-
cols. Multicast security has been the subject of much attention in the research
literature. Most of the relevant work has been in the context of key management,
multicast/broadcast encryption and efficient content authentication. One of the
related issues that has not been sufficiently considered is the problem of secure
(authenticated) acknowledgments. After sending out a multicast message, the
source is often interested in establishing which group members have received the
message.

In this paper we propose several new techniques for efficient authentication
of acknowledgments generated in response to a multicast message. We are inter-
ested in schemes which are efficient, scalable, robust with respect to failures and
malicious participants, and provably secure under long-standing cryptographic
assumptions like the hardness of computing discrete logarithms.
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Importance of Multicast Acknowledgment Aggregation. We assume that the pack-
ets are sent from the source to the members along a delivery tree. This tree is
rooted at the source and the members are represented as leaves and, possibly,
also as intermediate nodes. The delivery tree is no necessarily binary, i.e., a node
can have more than two children. This model is general enough to cover the stan-
dard client-server and peer-to-peer multicast flavors. In the former, the group
members are the leaves, whereas, in the latter, intermediate nodes can also be
group members. However, for the sake of simplicity in the presentation, we will
assume that the group members are leaves of a binary multicast tree rooted at
the source.

After multicasting a message M to the group, the source needs to make sure
that all members have received it. One simple solution is to ask each member to
send an authenticated acknowledgment back to the source. However, this solu-
tion is not scalable as it results in the acknowledgment implosion problem, i.e.
the individual acknowledgments take up too much bandwidth, which in many
application will be a scarce resource. While the computational cost of verify-
ing the individual acknowledgments can be sped up by various batch signature
verification techniques, such techniques do not address the need to save the
communication resources as well.

Prior Art: Acknowledgment Aggregation using Multisignatures based on GDH
Groups. Nicolosi and Mazieres [NM04] recently proposed to reduce the

verification by aggregating the acknowledgments using a multisignature
scheme of Boldyreva [Bol03]. A multisignature scheme is a generalization of
the standard notion of a signature to messages signed by groups of users. It was
formally defined only recently by Micali et al. in [MOR01a],3 a long time after
the (less formal) introduction of this concept by Itakura and Nakamura [IN83],
and after several such schemes were proposed and a few were shown to have
serious security vulnerabilities. In a multisignature scheme s is called a multisig-
nature on message M issued by a group of players G if (s, M) passes certain
verification equation involving the set of all public keys in group G. If the mul-
tisignature scheme is secure, this happens only (except for negligible probability)
if all players in group G indeed signed M .4

It is easy to illustrate multisignatures using the multisignature scheme of
Boldyreva [Bol03], which is a generalization of a regular signature scheme pro-
posed by Boneh et al. [BLS01]. Assuming that an element g is a generator of such
a group, in a BLS signature the user’s private key is x, the public key is a group
element y = gx, the signature on a (hashed) message M is s = Mx, and signa-
ture verification consists of checking that (g, y, M, s) is a Diffie-Hellman tuple.
Boldyreva’s multisignature scheme generalizes the BLS signatures by defining
string s as a multisignature on M issued by a group of players G if (g, y, M, s)

3 A full version of this paper is available as [MOR01b].
4 Thus multisignatures, referred to as “accountable subgroup multisignatures” by Mi-

cali et al., are a special case of so-called “aggregate signatures” [BGLS03] which
enable aggregation of signatures by multiple signers on possibly different messages.
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is a DDH tuple for y =
∏

i∈G yi. Note that if each si is a BLS signature issued
by player i on M , then s =

∏
i∈G si is a multisignature on M issued by players

in G. Both schemes are secure in the Random Oracle Model under the so-called
“Gap Diffie-Hellman” (GDH) group assumption, which requires that even if it
is easy to decide whether a tuple of four group elements (g, y, z, w) is a Diffie-
Hellman tuple, i.e. whether DLg(y) = DLz(w), still computing a DH function
Fx(z) = (z)x on a random group element z is intractable without the knowledge
of x. GDH is assumed to hold for certain elliptic curve groups with Weil pairings,
where decisional Diffie-Hellman can be efficiently computed via the pairing, but
where computational Diffie-Hellman still appears to be hard [Jou02, Gag02].

Since the aggregation of BLS signatures into a multisignature does not require
participation of the signers, this multisignature scheme enables robust aggrega-
tion of acknowledgments by the intermediate nodes on the multicast delivery tree:
Each intermediate node can verify, given the (combined) public keys of the nodes
below him, whether the (aggregated) acknowledgments he receives are correct,
and then aggregate them further for the node above. Together with an aggrega-
tion of the valid multisignatures he receives, each node also passes up identities of
members involved in this multisignature. In this way the source receives the final
multisignature and the identities of members whose signatures are aggregated in
it. Note that the scheme uses constant bandwidth on every link, and that the cost
of the multisignature verification is the same as the verification of a standard BLS
signature. Furthermore, this solution implicitly provides traceability by allowing
the source to eventually identify the malicious participants who send bogus ac-
knowledgments.

Our Contribution: A Robust DL-Based Multisignature and Acknowledgment Ag-
gregation. While efficient and robust, the above scheme is based on relatively
new cryptographic assumption of GDH. In this paper we show that a robust
multisignature scheme, and thus a robust acknowledgment aggregation, can be
done securely based (in ROM) on a more standard cryptographic assumption of
hardness of discrete logarithm. Our solution is an improvement on the DL-based
multisignature scheme proposed by Micali et al. [MOR01a]. Just as the multisig-
nature of [MOR01a], our scheme is a variant of the Schnorr’s signature scheme
[Sch89], provably secure (in ROM) under the discrete logarithm assumption.
However, by tying together the individual players’ commitments in Schnorr sig-
natures with Merkle tree hashes [Mer89], our multisignature scheme has a novel
property of robustness, because it enables the group of signers to efficiently gen-
erate a multisignature even in the presence of (some number of) communication
failures between the participating players and/or malicious behavior on the part
of (some of) the players. By contrast, the multisignature scheme of [MOR01a]
would have to be restarted from scratch in the case of a single communication
or node fault during a multisignature generation protocol.

Our robust multisignature scheme is provably secure only for a limited num-
ber of faults t. Specifically, if q is the size of the multiplicative group this discrete-
log scheme is instantiated with and n is the maximum number of players allowed
to participate in the multisignature generation protocol, then our scheme is se-
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cure as long as quantity St,n/q is negligible, where St,n is a sum of consecutive
combinations, St,n =

(
n
0

)
+

(
n
1

)
+ . . .+

(
n
t

)
. Although we do not see any attack on

our scheme for larger values of n and t, our proof of security does not extend be-
yond these limitations, and an existence of a discrete-log multisignature scheme
which is robust (without having to re-start the generation protocol) against any
number of faults remains an open problem. However, we note that our scheme
works for parameters like (q, n, t) = (21024, 210, 100), which should be useful in
practice. Furthermore, note that the if the number of faults t crosses the above
limit the multisignature protocol fails and needs to be restarted for the remain-
ing players, hence the above bounds really limit only the robustness property,
and not security.

The robustness property we introduce to Schnorr-based multisignatures comes
either at no extra communication cost, or at a modest communication cost in-
crease, depending on the communication medium connecting the players. In the
case when the players communicate in a ring as in [MOR01b], the total com-
munication cost grows from O(n) group elements to O(n log n). If the players
communicate via a reliable broadcast medium, as in [MOR01a], then the commu-
nication costs do not change. Finally, if the players communicate via a multicast
tree, as is the case in our application of multisignatures to multicast acknowl-
edgement aggregation, the total communication cost is O(n + t(log n)2) group
elements, where t is the number of faults. This is the communication setting in
which we will describe our multisignature scheme, but the scheme is applicable
to the other settings as well.

When we apply our multisignatures to multicast acknowledgement aggrega-
tion, the comparison of the resulting scheme to that of Nicolosi and Mazieres
[NM04] is as follows. Assuming that the source shares symmetric keys with the
receivers, if no malicious node faults occur then our scheme can run in an “op-
timistic” mode which provides an all-or-nothing verification of aggregated ac-
knowledgments and matches the communication cost of the scheme of Nicolosi
and Mazieres, i.e. it takes one round of communication and total bandwidth of
O(n) group elements, where n is the size of the multicast group. Moreover, our
scheme has a smaller computational overhead because we avoid the pairing oper-
ations used in the GDH-based scheme of [NM04]. In the case of malicious node
faults, our robustness mechanisms kick in and the scheme takes three commu-
nication rounds, and the total bandwidth grows to O(n + t(log n)2) bandwidth
where t is the number of faults, whereas the scheme of [NM04] takes only one
round and the total bandwidth remains O(n). Our scheme is therefore most ap-
plicable when the number of malicious faults and link failures is moderate, which
we believe is the case for many applications.

Limitations of Current Multisignature Schemes. We point out that the mul-
tisignature scheme we propose continues to suffer from the problem identified by
Micali et al., a problem which is shared by both the scheme of Micali et al. and
by the scheme of Boldyreva. Namely, none of these schemes, including ours, is
known to be secure without special requirements on the generation of the par-
ticipants’ public keys. Micali et al. list a number of such possible requirements
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on the key-generation process (see esp. [MOR01b]), which apply equally to the
scheme of Micali et al., Boldyreva, and ours, but we will mention here only two.

The first requirement under which all three schemes are provably secure is
the assumption that all certificate authorities who certify the participants’ pub-
lic keys are first of all honest, and second, that they verify a zero-knowledge
proof of knowledge of the private key when certifying some user’s private key.
As pointed out in [MOR01a], this requirement makes delegation problematic,
disallows self-delegation completely, and is probably sensible only when all cer-
tificates are signed by very few completely trusted entities. The second possible
requirement is that all participants generate and certify their public keys in a
special distributed protocol. While this requirement avoids trusted third parties
completely, it is applicable only to small groups, and is unsuitable for general
public key infrastructure.

Moreover, unlike in the scheme of Boldyreva but like in the scheme of Micali
et al., we will require that the players involved in the multisignature generation
protocol take as input the set G of players (potentially) participating in this
protocol.

However, while these limitations remain a serious problem for general applica-
tions of multisignatures, they do not influence the application of multisignatures
to multicast acknowledgement aggregation. In this application we can assume
not only that all participants’ keys are certified by a single trusted certification
authority, but we can in fact simply give everyone’s private key to this author-
ity. Therefore in the subsequent sections we choose to present our multisignature
scheme assuming a single trusted certification authority. Similarly, in the mul-
ticast acknowledgement aggregation application it can be safely assumed that
the intended set of recipients G who would participate in the multisignature
generation can be known to each of the participants.

Paper Organization: In the next section we describe the proposed multisigna-
ture scheme. In section 3 we describe its optimized variant suited to multicast
acknowledgement aggregation. Finally, in section 4 we sketch the security proof
for our scheme.

2 A Robust Discrete-Log Based Multisignature Scheme

2.1 Computational Setting and Initialization

We propose a multisignature scheme based on an extension of the Schnorr sig-
nature scheme [Sch89]. We assume common parameters (p, q, g) where p, q are
large primes and g is an element of order q in Z

∗
p. As in the Schnorr signature

scheme we assume a hash function h : {0, 1}∗ → Zq, which we will model as
a random oracle. All equations involving multiplication or exponentiation are
meant modulo p.

As mentioned in the introduction, we will assume a single trusted Certifi-
cation Authority who signs all participants’ public keys. We will describe our
multisignature scheme using the application to acknowledgment aggregation as
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a context. Namely, we assume that the group of players who are potential partic-
ipants in the multisignature generation are multicast group members, and that
they are logically organized in a binary tree, with the group members repre-
sented as the leaves of the delivery tree, the intermediary tree nodes occupied
by the multicast delivery network, and the multicast source S at the root. We
note, however, that the scheme is generally applicable, in which case the tree
data structure needs to be computed by the participating players, and both the
intermediary nodes and the “source” node will be just special functions played
by the players to whom the data structure assigns these roles.

We denote the left and right children of S as N0 and N1. More generally,
the left and right children of Ni are defined as Ni0 and Ni1 (see Figure 1 for
example). Each member Ni randomly selects its secret key xi ∈ [0, q−1] and sets
its public key yi = gxi . As discussed in the introduction, under the assumption
of a single trusted CA, the proof of security requires that during the registration
of the public key yi a player must pass a zero knowledge proof of possession
of the discrete logarithm xi = DLg(yi).5 When our scheme is used for efficient
acknowledgment aggregation, the trusted source can either check each player’s
ZK proof, or, to support the “optimistic” mode of the protocol operation, the
source simply picks Ni’s secret xi himself and shares it with the player.

We assume that each node Ni knows the public keys of all members (tree
leaves) in the subtree rooted at Ni. Each node can also aggregate the keys
of all the members in his subtree. The aggregated public key yi is computed as
yi = yi0∗yi1, where yi0, yi1 are (possibly aggregated) public keys of Ni’s children.

2.2 Overview of the Scheme

In the original Schnorr signature the signature on message M under key y = gx

is generated by taking one-time “commitment” r = gv for random v ∈ [0, q − 1],
computing the challenge c = h(m, r), and issuing a response z = v + cx mod q.
The signature is then a pair (r, z) s.t. gz = ryc mod p and c = h(m, r). Micali
et al., aggregate such signatures, i.e. pairs (ri, zi) produced by members of some
group G, by running a 3-stage protocol: In the first phase everyone broadcasts
its ri = gvi , all players combine r =

∏
i∈G ri, compute c = h(m, r), each player

broadcasts zi = vi+cxi and (c, z) where z =
∑

i∈G zi is a Schnorr multisignature
for group G, with y =

∏
i∈G yi as a verification key.6

However, this solution is not robust in the face of node and link failures during
the computation of the multisignature. For example, if any node first sends a
commitment ri but fails to send a valid response zi, the multisignature has to be
recomputed from scratch. To alleviate this problem, instead of hashing a simple

5 If no trusted CA’s can be assumed, to assuage the problem of concurrent composition
of such proofs, our multisignature scheme would have to generate all public keys
simultaneously, in a distributed protocol proposed by [MOR01a].

6 In the fuller version [MOR01b] of their work the authors show that the same scheme
works also without broadcast, for example if the players communicate in a ring-like
fashion. However, that version of the protocol is similarly not robust.
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product of all ri’s as above, we compute the challenge c via a Merkle Tree-like
[Mer89] aggregation of the ri values.7 Because a Merkle Tree is a commitment
to all the ri’s, the resulting challenge c is meaningful for all subsets of ri’s that
were used to create it. Therefore the challenge can be used for a multisignature
involving those and only those players that respond to it with proper zi’s. We
note that the Merkle tree we construct is not exactly standard because we fold
into it the intermediary values ri, which allows for a more efficient handling of
network or malicious faults occurring in the protocol. The exact computation of
the Merkle Tree is illustrated in Figure 1.

2.3 The Multisignature Generation Protocol

Our multisignature generation protocol has 3 stages. Each player always stores all
the information passing through it. As in the scheme of Micali et al. [MOR01a],
for the sake of provable security we forbid the players to participate in more than
one instance of this protocol at a time. Moreover, as in the scheme of Micali et
al., we also require that each participant is informed about the (potential, in our
case) set of participants G willing to sign the same message M .

Stage 1: Each member Ni that receives M randomly selects vi ∈ [0, q − 1] and
sends to its parent the commitment ri = gvi and the partial challenge ci = h(ri).
A node Nj that receives two commitments and partial challenges {rj0, cj0} and
{rj1, cj1} from its two children, Nj0 and Nj1, stores these values, generates its
own commitment and partial challenge rj = rj0∗rj1 and cj = h(rj0, rj1, cj0, cj1).
It then forwards {rj , cj} to its parent, as illustrated in Figure 1. Each Ni also
passes up the identities of nodes in Ni’s subtree which participated in the proto-
col. If some node Nj on the tree does not send correct values to its parent, the
parent assigns rj = 1 and cj = 0.

Stage 2: When the source receives the two tuples {r0, c0} and {r1, c1} from
its two children N0 and N1, it computes r = r0 ∗ r1 and the challenge c =
h(M, G, r0, r1, c0, c1). It then sends (c, r1, c1) to N0 and (c, r0, c0) to N1. N0
then sends (c, r1, c1, r01, c01) to N00 and (c, r1, c1, r00, c00) to N01 and so on.
Figure 2 shows an example of how the challenge c is propagated from the source
to the members.

As a result of this process, each member Nj receives the challenge c and the
values copathj = {(ri, ci)} on its co-path to the root c of the Merkle tree. Ev-
ery Nj can then reconstruct values pathj = {(ri, ci)} that lie on its path to the
root, and verify that c is correct. We denote this operation as checking if c =
hMHT (M, G, rj , copathj). For example, N011 receives values c and copath011 =
{(r010, c010), (r00, c00), (r1, c1)}. The verification if c = hMHT (M, G, r011,
copath011) consists of recomputing r01 = r010 ∗ r011 and c01 = h(r010, r011, c010,

7 We note that Micali et al. use a Merkle Tree in the key generation protocol, but they
use it to enable provable security in the absence of a trusted CA, while we use it in
the multisignature generation protocol instead, to enable its robustness.
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N0 N1

N00

N010

N011

r010=g^v010

N01 r01=r010*r011

(r01,c01)

(r010,c010)

(r00,c00)

r0=r00*r01

(r0,c0)

N000

N001

(r1,c1)

c01=h(r010,r011,c010,c011)

r011=g^v011
c011=h(r011)

(r011,c011)

c010 =h(r010)

c0=h(r00,r01,c00,c01)

c=h(M,G,r0,r1,c0,c1)
Source

Fig. 1. Computation of the Merkle Tree

c011), r0 = r00 ∗ r01 and c0 = h(r00, r01, c00, c01), and checking if c = h(M, G, r0,
r1, c0, c1).

Stage 3: If the challenge c verifies, each signer Ni sends back its response zi =
vi + c∗xi mod q. An intermediary node Nj that receives values zj0 and zj1 from
its two children verifies each of them by checking that gzj0 = rj0 ∗ (yj0)c and
gzj1 = rj1∗(yj1)c. If the equations verify, Nj forwards to its parent the aggregated
value zj = zj0 + zj1 mod q, and so on until the aggregated z = z0 + z1 value
reaches the source, as illustrated in Figure 3.

If one of the signatures is incorrect (let’s say zj1), Nj sets zj to zj0 instead
of zj0 + zj1, and sends (zj , rj0, rj1, cj0, cj1) to its parent. The parent, let’s say
Nk such that j = k1, can perform two checks: (1) Nk can check if gzj = rj/rj1 ∗
(yj/yj1)c; and (2) Nk can check if h(rj0, rj1, cj0, cj1) is equal to cj given to Nk

by Nj in stage 1 of the protocol.
In general, each intermediary node Nj passes up a set Mj of pairs (ri, copathi)

where each ri is a (possibly accumulated) value corresponding to players which
have not delivered a valid zi response, either due to communication failure or a
malicious fault. Each node Nk upon receiving these messages first performs the
following tests for both its branches b = 0 and b = 1:

1. Nk sets r′
kb = rkb/(

∏
i∈Mkb

ri) and y′
kb = ykb/(

∏
i∈Mkb

yi) and checks if
gzkb = r′

kb ∗ (y′
kb)

c.
2. Nk checks if c = hMHT (M, G, ri, copathi) for each i ∈ Mkb.

If everything verifies, Nk passes up zk = zk0 + zk1 and Mk = Mk0 ∪ Mk1. In
case of a failure in branch b, Nk passes up only the correct values, i.e. zk = zkb̄,
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N0

N01

Source S

N011

N010

(c,r1,c1)

(c,r1,c1, r00,c00)

(c,r1,c1,r00,c00,r010,c010)

(c,r0,c0)

(c,r1,c1,r01,c01)

(c,r1,c1,r00,c00,r011,c011)

Fig. 2. Transmission of the challenge value c

N0

N01

Source S

z010=v010+c*x101

z0=z00+z01

z00

z1

z01=z010+z011

z=z0+z1

N010

N011

z011=v011+c*x011

g^z ?= r * Y^c

Fig. 3. Default propogation of the responses zi

and passes up the set of the missing values as Mk = Mkb̄ ∪ {(rkb, copathkb)}. If
both branches fail, Nk passes up just Mk = {(rk, copathk)}.

Figure 4 illustrated this step when one of the member’s signature is in-
correct. In this example, N01 detects that the signature generated by N011



202 C. Castelluccia et al.

N0

Source S

z010=v010+c*x101

z1

z00

z010 z011 incorrect!

z011= %$&^$%

N01

N010

N011

z01=z010

z0=z00+z01
 r01?=h(r010,r011,c010,c011) 

c*01=h(r010,r011,c010,c011) 
c0 ?= h(r00,r010,r011,c00,c*01)

z01,{r010,r011,c010,c011}

z0,{c00,r00,{r010,r011,c010,c011}}

Fig. 4. Propagation of responses zi in case of faults

is incorrect because gz011 �= r011 ∗ yc
011. N01 then sets z01 to z010 and for-

wards the message {z01, r010, r011, c010, c011} to its parent N0. N0 then computes
c∗
01 = h(r010, r011c010, c011). If c∗

01 is equal to the value committed by N01 in the
first stage of the protocol, then N0 can verify if the signature z01 is correct by
checking whether gz01 = r01/r011 ∗ (y01/y011)c.

2.4 Multisignature Verification

We call σ a multisignature on message M issued by the group G \ M if

σ = [z, (r0, r1, c0, c1),M, { (ri, copathi)}i∈M]

such that:

gz =
(

r
∏

i∈M ri

)

∗
⎛

⎝
∏

i∈G\M
yi

⎞

⎠

c

where

c = h(M, G, r0, r1, c0, c1)
r = r0 ∗ r1

and moreover:

1. c = hMHT (M, G, ri, copathi) for each i ∈ M, and all the co-paths contain
values (r0, r1, c0, c1) in the appropriate places

2. |G| ≤ nmax, and the number of individual participants (implicitly) specified
by the missing set M is smaller or equal to tmax
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Importantly, the criterion in point 2 above limits the number of the missing
individual participants represented by the M set, and not the size of that set,
i.e. the number of (possibly aggregated) ri values supplied in { (ri, copathi)}i∈M.

The values nmax, tmax are set so quantity Stmax,nmax/q is negligible, e.g. less
than 2−80, where St,n =

(
n
0

)
+

(
n
1

)
+ . . . +

(
n
t

)
.

3 A “MultiMAC” Variant of the Multisignature Scheme

If acknowledgment non-repudiation is not required, the multicast source can
have a copy of each participant’s private key, in which case our aggregation
scheme can be called “multiMAC” rather than a multisignature. Moreover, while
the basic scheme described above requires three stages of communication, its
MultiMAC variant can run in an “optimistic” fashion, which requires only one
communication stage if none of the intermediary nodes acts maliciously. Since
this is very likely to be the common case of operation, the communication cost of
the resulting solution matches the cost of the scheme of Nicolosi and Mazieres.

In this variant, each member has a unique secret key xi shared with the
source. We assume that each such key is agreed upon or distributed at the
time when the member joins the source’s multicast group. Knowing all such
keys, the source can add them all up and obtain the aggregated key for any
group G of players, xG =

∑
i∈G xi. When a member Ni receives a message M

from the source, it replies by sending the acknowledgment acki = mxi , where
m = h(M), to its parent Nk, which, in turn, multiplies the acknowledgments of
its children and sends the resulting aggregated message acki = acki0 ∗ acki1 to
its parent. The parent also passes up the identities of players that participated
in the acknowledgment in his subtree. If most members usually do participate,
the parent can instead attach a vector identifying all subtree members who do
not participate. When the source computes the final aggregated acknowledgment
ack = ack0 ∗ ack1 and combines the sets of participating members sets into one
set G, it can verify if all these members indeed acknowledge receipt of M by
checking whether ack = h(M)xG .

Note that this “optimized” protocol by itself is secure but not robust against
malicious faults. It is, however, robust against non-malicious communication
faults. Note also that to save memory, the source could pick all the members’
keys as xk = h(s, k) where s is the source’s short secret. In this way the source
would not have to store all the secrets keys since it can easily retrieve each of
them.

The optimization allows the source to verify the aggregated acknowledg-
ment in one stage. However, this solution is not robust since, if the aggre-
gated acknowledgment is invalid, the source is unable to identify the malicious
member(s). We therefore propose to combine the two schemes by piggyback-
ing the commitment of the basic scheme with the authenticators of the sec-
ond scheme. As a result, the source can verify – in one stage – the aggregated
acknowledgment. If this acknowledgment is incorrect, Stage 2 and Stage 3 of
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the basic scheme can be executed to trace the malicious nodes and robustly
compute the desired multisignature.

4 Security Analysis of the New Multisignature Scheme

We briefly recall the definition of security for a multisignature scheme given by
Micali et al. [MOR01a]. The adversary A can corrupt any group member at any
time, and he conducts a chosen message and subgroup attack, i.e. he specifies the
message M and the subgroup of players G which participate in the multisignature
generation protocol, and then gets to participate in the multisignature generation
protocol involving group G and message M .

Definition 1. ([MOR01a]) We say that a multisignature scheme is secure if
every efficient adversary A which stages a chosen message and subgroup attack
against the multisignature scheme has at best negligible chance of outputting
triple (M, G, σ) s.t. (1) σ is a valid multisignature on M issued by the group G,
and (2) there exists an uncorrupted player Ni∗ in G who has never been asked
by A to participate in a multisignature protocol on M .

The multisignature scheme resulting from the addition of the optimistic “mul-
tiMAC” protocol as explained in section 3, is similar enough to the basic scheme
of section 2 that its security proof follows very simply from the security proof
for the basic multisignature scheme, given below.

Theorem 1. The multisignature scheme described in Section 2 is secure in the
Random Oracle Model under the Discrete Logarithm assumption.

Proof. The proof goes by exhibiting a simulator S which, with sizable proba-
bility, converts a successful attack algorithm A against our new multisignature
scheme into an algorithm that computes discrete logarithms. The simulation of
this scheme is very similar to the simulation of the Schnorr signature scheme,
although it is less efficient, and hence the exact security of our scheme is not op-
timal. However, a similar degradation, although for a different reason, is suffered
by the exact security of the multisignature scheme of [MOR01a]. The simulator’s
goal is to compute, on input a random y in Z

∗
p a discrete logarithm x = DLg(y).

Without loss of generality we can assume that the adversary forges a multisig-
nature issued by players G = {1, . . . , n}, all of whose members are corrupted
except of player Nn, on some message M which Nn is never ask to sign. (This
assumption does not hold if the adversary is adaptive, but the same proof holds
there too, except that the simulator has to guess the identity of an uncorrupted
player against whom the forgery claim is made.) The simulator assigns yn = y
as the public key of Nn, while it picks the private keys xi of all the other players
at random.

Since S knows the private data of all uncorrupted players except for Nn, the
only thing that the simulator needs to simulate are Nn’s responses. This is done
similarly as in the Pointcheval and Stern’s proof [PS96] of security of Schnorr
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signatures, except that as in the security proof [MOR01b] of the Schnorr-based
multisignature scheme of Micali et al., the simulator will need to rewind the
adversary in this simulation. Namely, when Nn is asked to participate in the
multisignature generation on message M , S picks c and zn at random in Zq,
outputs value rn = gzny−c

n , and then embeds c in the answer to one of the A’s
queries (M, r0, r1, c0, c1) to the h oracle. If this is not the c that comes down to
Nn in the second stage of the protocol together with some co-path copathn such
that c = hMHT (M, G, rn, copathn), then S cannot proceed and the simulation
has to wind back to right after Nn outputs his commitment rn. (Note that
the Merkle Tree hashing does not help us here in any obvious way because the
adversary can still try any number of values r1, . . . , rn−1 he likes, form them
together with rn into many different Merkle Tree hash constructions, and pick
any of the resulting c values.) If qh is the maximal number of hash queries made
by A, this trial and error procedure will eventually succeed in expected number of
at most qh repeats,8 which will slow the Schnorr-like simulation of this signature
process by only a polynomial factor. (We crucially use here the assumption that
the players do not participate in two multisignature protocol instances at the
same time.) When S is finally lucky and the right c comes down to Nn, the
simulator outputs its prepared answer zn.

Thus the simulation proceeds slowly but surely, and A eventually creates a
valid multisignature involving Nn with non-negligible probability. Similarly as
in the “forking lemma” proof of [PS96], we can argue that with high enough
probability it is the case that if A uses some values (M, G, (r0, r1, c0, c1)) in
this forgery, then A has a high enough probability of forging a message using
the same tuple of values, where the probability is taken over all the remaining
randomness used by the simulator in answering A’s oracle queries, including the
randomness c used in answering the very query c = h(M, G, r0, r1, c0, c1). Thus,
following the “forking lemma” technique, the simulator re-runs the adversary
A from the point of this query on, each time using fresh randomness and thus
answering this query with a fresh random value c. In any successful round of
such rewinding, the simulator gets a forgery which consists of:

1. set M such that the number of individual participants implicitly specified
by this set is no more than tmax

(For simplicity, we will use M here to describe this set of participants; Note
that then M ⊆ G and n �∈ M.)

2. a set of pairs {(ri, copathi)}i∈M s.t. for every i ∈ M we have c = hMHT

(M, G, ri, copathi), and all the co-paths copathi contain values that match
value (r0, r1, c0, c1) above

3. value z s.t. gz = r/rM ∗ (ynȳ/yM)c, where r = r0 ∗ r1, rM =
∏

i∈M ri,
ȳ =

∏
i∈G\{n} yi, and yM =

∏
i∈M yi

Note that if there are n members in G then there can be at most n values
ri which the adversary can “open” in item (2) above, unless A finds a collision

8 Thanks to the Merkle Tree hashing, this bound can be improved to qh/n.
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in the hash function, but that can happen only with negligible probability in
ROM.

Let’s denote v = DL(r) where r = r0 ∗ r1, vi = DL(ri) for i = 1, .., n,
xn = DL(yn), and x̄ =

∑
i∈G\{n} xi. Then the condition in item (3) translates

into a linear equation on n + 2 unknowns v, v1, . . . , vn, xn:

z = v −
∑

i∈M
vi + c(xn + x̄ −

∑

i∈M
xi) mod q (1)

For every successful round of such re-run of A, the simulator gets another
equation of type (1). Once the simulator gets n + 2 of such equations then with
an overwhelming probability it can can solve for xn (and thus answer its DLP
challenge). This is because for every choice of membership in the set M, there
is at most one c which can make the new equation linearly dependent on the
previous ones. Thus the number of c’s which can possibly make the new equation
dependent on the previous ones is at most St,n. Since c is chosen at random,
if St,n � q and n is polynomial in the security parameter then the probability
that any of the n + 2 equations is linearly dependent on the previous ones is
negligible.

The necessity of rewinding A creates a polynomial factor blow-up in the
running time of the simulation. However, it is not substantially worse then the
blow-up encountered in the security argument for the regular Schnorr signature
scheme, because the expected number of simulation rewindings that leads to a
single successful forgery is the same as in Schnorr signatures, and since we need
n + 2 successes, our simulation running time will only grow by the additional
factor of n + 2.
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