
Part 4: Video Transmission Techniques	Outline Part 1: Basic techniques • Network Adaptation • Application Adaptation Part 2: Streaming schemes • Unicast approaches
Vincent Roca and Christoph Neumann {firstname.name}@inrialpes.fr Planète project; INRIA Rhône-Alpes MIPS'03, Napoli, November 2003 Copyright © 2003, INRIA; all rights reserved	 Multicast approaches OSender based approaches OReceiver based approaches OHybrid approaches Network components
 Network Adaptation QoS management De.g. delay or bandwidth DiffServ, IntServ Pros: Guaranteed quality (statistically with DiffServ) Cons: QoS is supposed to be supported by the network. This is rarely the case! 	Outline Part 1: Basic techniques • Network Adaptation • Application Adaptation Part 2: Streaming schemes • Unicast approaches • Multicast approaches • Sender based approaches • Receiver based approaches • Hybrid approaches • Network components
Application Adaptation Adapt to: • Bandwidth • Congestion Control and rate regulation • Delay Jitter • Buffering • Error and Losses • Retransmissions, ARQ • OFEC, unequal protection	Apprication Adaptation Congestion Control, rate regulation Ovideo quality adaptation Ovideo quality adaptation Oset encoding rate when encoding on the fly OReduce/improve video quality thanks to video scalability/FGS OTranscoding Oswitch between different preencoded videos or choose different video group OFEC ratio adaptation

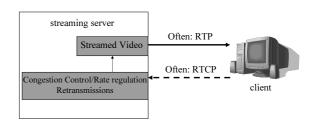
Outline

- Part 1: Basic techniques
- Network Adaptation
- Application Adaptation

Part 2: Streaming schemes

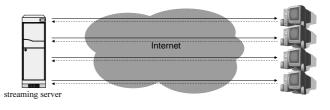
- Unicast approaches
- Multicast approaches
 OSender based approaches
 OReceiver based approaches
 OHybrid approaches
- Network components

Unicast


Adaptation of the video according to feedback OPreencoded video:

- OAdapt FEC ratios
- OAdd/drop quality if scalable compression OSwitch between different preencoded videos OTranscode
- OOn the fly encoding: OAdapt video encoding rate OAdapt FEC ratio

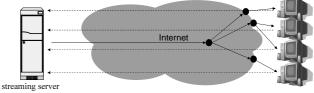
Unicast


Feedback to server ORetransmission request

OReports (loss rate, video quality, ...)

Unicast

• One session per client



Cons:

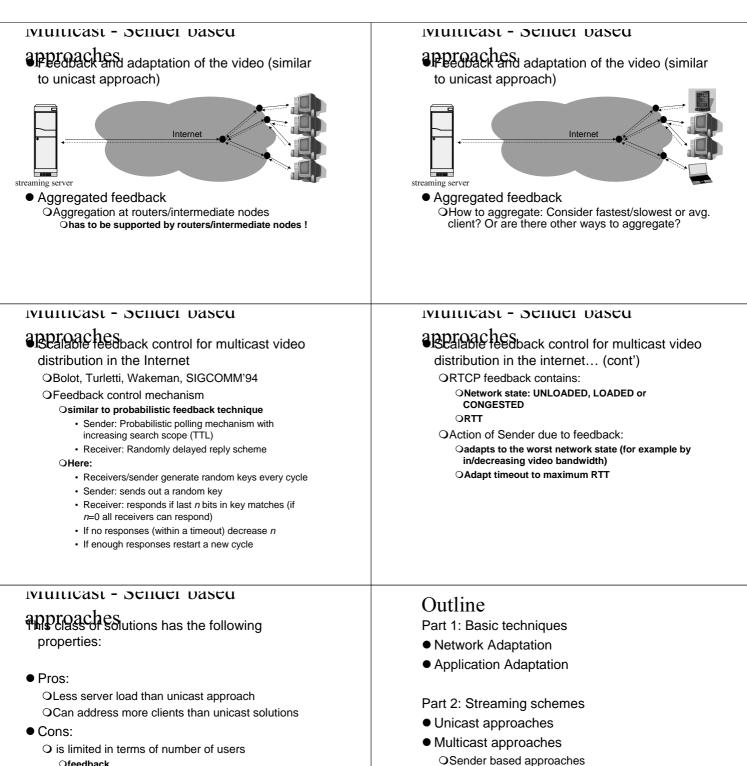
ORequires lots of processing and big access link on server side ONot scalable!

municast - Schuch Dascu

approaches readack and adaptation of the video (similar to unicast approach)

Unicast feedback

OAggregation at source (possible feedback implosion!!)

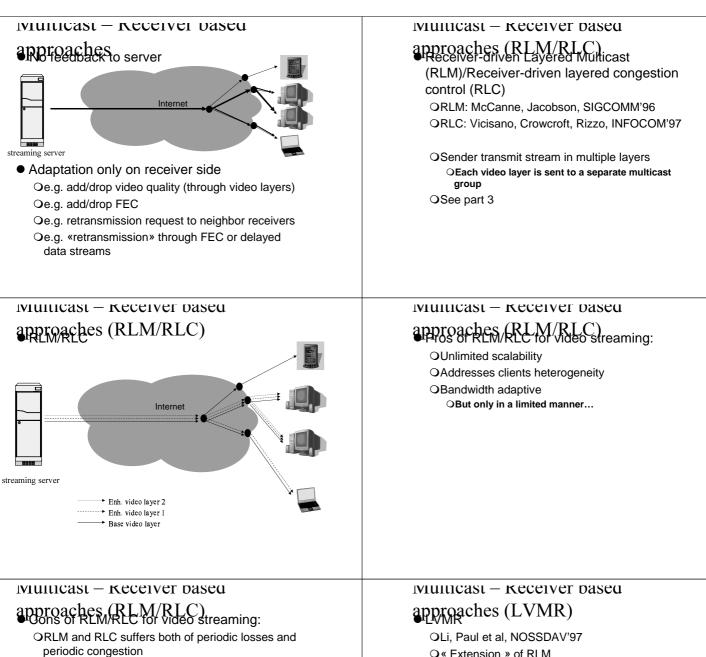

Outline

Part 1: Basic techniques

- Network Adaptation
- Application Adaptation

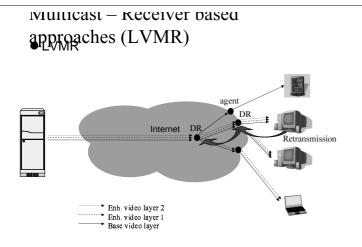
Part 2: Streaming schemes

- Unicast approaches
- Multicast approaches
 OSender based approaches
 OReceiver based approaches
 OHybrid approaches
- Network components


OReceiver based approaches

OHybrid approaches

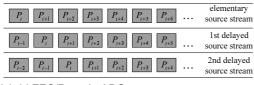
Network components


- Ofeedback Ointermediate nodes may be needed for aggregation
- ONo heterogeneity support Osource considers an aggregation of all clients

capacities

- OFrequent changes of video quality
- OVideo quality is strongly linked to network load
- OQuality adaptation and bandwidth adaptation dependent of the number of video layers
- OLayered video difficult to achieve! OOften only one enhancement layer is available
- Conclusion: Academic approach with many practical limitations

- **O**« Extension » of RLM
- OReceivers can ask neighbors (designated receivers DR) for lost packets
- OAdaptation to network congestion and heterogeneity using Hierarchical Rate Control OManagement of shared information (cf. RLM) is done by each agent
 - **OReduces overhead traffic**
- O Agents and Designated Receivers have to be deployed within the network



approaches (LVMR)

OLimited scalability

- ONeighbor are not necessarily available
- OVideo quality is still linked to network load OBut less than in RLM
- OStatically designated DR and agents, makes this approach difficult to deploy
- OQuality adaptation and bandwidth adaptation dependent of the number of video layers
- OLayered video difficult to achieve! OOften only one enhancement layer is available
- Conclusion: Academic approach with many practical limitations

municasi – keceiver based approaches (P.ARQ)

Hybrid FEC/Pseudo ARQ

$P_{iK} P_{iK+1} P_{iK+2}$	$P_{(t+1)K} P_{(t+1)K+1}$	$P_{(i+1)K+2}$ $P_{(i+2)K}$	 elementary source stream
$F_{t,1}$	$F_{t+1,1}$	$F_{t+2,1}$	 elementary FEC stream
$F_{i-1,2}$	$F_{t,2}$		 1st delayed FEC stream
$F_{i-1,3}$	[$F_{t,3}$	 2nd delayed FEC stream

municasi – keceiver based approaches (LVMR)

- OAddresses clients heterogeneity OBandwidth adaptation
 - OBut only in a limited manner...

OVideo quality is more stable than with RLM/RLC ODoes not rely on any QoS mechanism or other components in the network

Olmmediately deployable

winneast – Receiver based approaches (P.ARQ)

OChou et al, Communication Theory Workshop'99

- OSender transmits stream in multiple layers OEach layer is sent to a separate multicast group OSender transmit additional <u>delayed</u> streams on
- separate multicast groups
 - Opure data (*Pseudo-ARQ*) or FEC (*Hybrid FEC/Pseudo ARQ*)
- OReceivers listen to as many layers/groups as possible
- OListen to delayed groups if losses occurs to reconstruct lost packets Ocorresponds to the retransmission request

Ocorresponds to the retransmission request

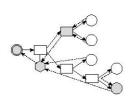
INIUIIICasi – Keceiver based approaches (PARQ) Pros of Pseudo ARQ:

- OUnlimited scalability
- OAddresses clients heterogeneity
- OBandwidth adaptation
 - OBut only in a limited manner...
- OVideo quality is more stable than with RLM
- ODoes not rely on any QoS mechanism or other components in the network
 - Olmmediately deployable

winneast – Receiver Dasen	Outline
approaches	Part 1: Basic techniques
properties:	Network Adaptation
	Application Adaptation
• Pros:	
OUnlimited scalability	Part 2: Streaming schemes
Ono feedback	Unicast approaches
Olow server load OAddress heterogeneity of clients	 Multicast approaches
OEvery client chooses the quality adapted to its	OSender based approaches
capacities	OReceiver based approaches
• Cons:	OHybrid approaches
ODepends on the proposal	Network components
Multiaget Unbrid approaches	Municasi – rryonu approaches
 Multicast – Hybrid approaches Hybrid approaches have two features: 	Destination Set Grouping (DSG)
Orely on feedback	OCheung et al, INFOCOM'96
Operform both source and receiver adaptation	OServer streams the same video on different video streams, each targeted at receivers with different capabilities
• Three proposals:	OIntra Stream Protocol:
 Three proposals: ODSG 	○Each stream is feedback controlled, to adjust data rate within prescribed limits
OSAMM	Using a probabilistic feedback technique (cf.
OSARC	«Scalable feedback control for multicast video distribution in the internet »)
	OInter Stream Protocol:
	 Receivers move among the streams as their (network) capabilities change
	(network) supublines shange
wunicast – rryonu approaches	municasi – nyunu appioaches
Bestination Set Grouping (cont')	Bestination Set Grouping (cont')
High Quality	
Stream Protocol	
Medium Quality	
Inter	
Stream Protocol	streaming server
Low Quality	Group 3 (low quality)
	Group 2 (avg. quality)

Multicast – Hybrid approaches (DSG) • Pros of DSG:

ONo assumption on video coding scheme OAddresses heterogeneity


• Cons of DSG:

ODuplicated traffic OLimited number of receiver sets Olimits heterogeneity support

• Conclusion: good, realistic approach

WILLICASI – TYULLU APPLOACHES

ORelies on feedback mergers within the network

Source Router

WILLICASI – HYDELU APPEOACHES

OHeterogeneity well addressed

Cons of SAMM:

OIntermediate nodes needed OSpecial video codec needed Obandwidth adaptation of video layers

 Conclusion: Academic approach with many practical limitations

wunicasi – riyonu approaches

(SAMM) (SAMM)

OVickers et al, ACM Transactions on Networking'99

OAssumes scalable video coding

OVideo dynamically adapted according to the aggregate feedback : ONumber of layers

ORate of layers

OFeedback is generated by:

 ○1st solution: Network intermediate nodes that monitor network state (*network-based SAMM*)
 ○2nd solution: Receivers (*end-to-end SAMM*)

(SAMM)...(cont')

Oend-to-end SAMM: Receivers estimates supported rates by analyzing losses

OFeedback contains Olist of rates requested by receivers

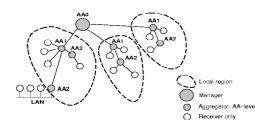
- Othe number of receivers requesting it O Feedback mergers adapt this list to the maximum number of layers supported by the encoder by merging rates that are close if necessary
- OThe sender adapts the number of layers and their rates according to the list of rates in the feedback messages

минисаят – пурни арргоаснея

(SARC) (SARC)

OVieron, Turletti, Salamatian, Guillemot, EURASIP Journal on Applied Signal Processing, 2004

OAssumes FGS video coding


OVideo dynamically adapted according to the aggregate feedback :

- ONumber of layers
- ORate of layers
- OLevel of protection of layers
- OFiltering mechanism based on a clustering algorithm to classify/aggregate receivers

wunicasi – riyonu approaches

(SARC)(cont')

- ORelies on *managers* and *aggregators* within the network
 - OThis aggregator tree hierarchy keeps the feedback traffic under 5% of the overall traffic

SARC:

- OHeterogeneity well addressed
- OScalability
- OFeedback generated with high frequency, even with large groups
- Cons of SARC :

OIntermediate nodes needed OUses non-standard RTCP extensions

Conclusion: Good solution, but requires FGS coding

wuncast – пурни арргоаснея

SARC. (cont') **OFiltering mechanism**: Aggregators receive RTCP reports from the lower hierarchy level (instead of multicast RTCP) ORTCP Reports (loss rate, TCP-Friendly rate) are aggregated into clusters (the nearest neighboring clustering algorithm is used) OClustering of similar reception behaviors into homogeneous classes OFeedback information for each cluster: OLoss rate OBandwidth limit Number of receiver within a given cluster OSender adapts FEC, number and bandwidth of layers according to feedback

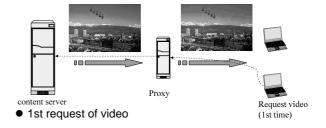
Outline

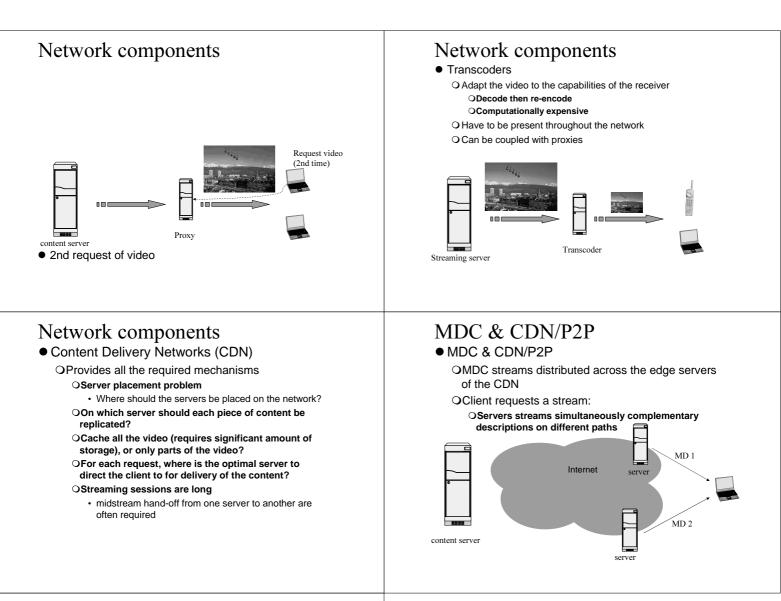
Part 1: Basic techniques

- Network Adaptation
- Application Adaptation

Part 2: Streaming schemes

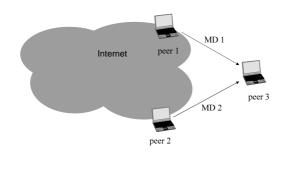
- Unicast approaches
- Multicast approaches
 OSender based approaches
 OReceiver based approaches
 OHybrid approaches
- Network components


Network components


Four proposals:
 ONetwork Proxies
 OTranscoders
 OContent Delivery Networks (CDN)
 OMDC & CDN/P2P

Network components

Network Proxies
 Distribution of the video within the network (network cache)
 O Repartition of network load
 O Repartition of server load


O Mainly for Video-On-Demand

MDC & path diversity

- MDC combines well with path diversity
 OLosses on two paths are likely to be uncorrelated
 O... unless losses take place on the last router
- Another example: Peer-to-peer-streaming

