7-2 Adding Data Traffic to Video/Voice Integration

The performance measurements of including data traffic with the integrated of video/voice traffics, which has been studied in the previous chapter is considered in this section. The same definitions of all parameters, we have defined earlier which are also used here, such as N_{vo}, N_{vi}, R_{vo} equals to 192 Kbps, R_{vi} equals to 1.5 Mbps, talkspurt period equals to 352 ms, silent period equals to 650 ms, and M_{siz} with interarrival time represented by an exponential distribution with mean value (μ) equals to 5 ms. Again, we have to mention that the maximum M_{siz} depends upon GR_{vi} and GR_{vo}, however the calculation of the ideal maximum values of M_{siz} depends on μ (ms), R_T = 352 cell/ms, and transit rate (cell/ms) as shown from the following equation (7-3).

Max.
$$M_{siz} = [[352(cell / ms) - transit rate(cell / ms)] - (GR_{vi} + GR_{vo})]x\mathbf{m}$$
 (7-3)

The generation of video and voice $(GR_{vi} + GR_{vo})$ depends upon GR_{vi} , GR_{vo} , N_{vi} , and N_{vo} as shown from the following equation (7-4).

$$(GR_{vi} + GR_{vo}) = (N_{vi} x GR_{vi} + N_{vo} x GR_{vo})$$
(7-4)

Using equation (7-3) and (7-4) helps to determine the ideal maximum M_{siz} for various values of N_{vi} and N_{vo} . Table 7-5 summaries the ideal maximum M_{siz} . However, the measured values could be less than or equal to those values of M_{siz} . The values of the parameters have mentioned above are used here.

N _{vi}	N _{vo}	$(GR_{vi} + GR_{vo})$ (cell/ms)	\mathbf{M}_{siz} (cell)
10	50	65	555
10	100	91	425
20	50	105	355

Table7-5 Ideal Maximum M_{siz} (cell).

Figure 7-8 illustrates video and voice MWT versus M_{siz} for the values of N_{vi} equals to 10 and 20, and N_{vo} equals to 50 and 100. The Figure shows the effect of N_{vo} and N_{vi} on the video and voice MWT. The increasing of either N_{vo} or N_{vi} yields increase of video and voice MWT. The absolute value of voice MWT is higher than that of video MWT, this is because the highest priority given to serve video cells first followed by voice cells. The increasing of M_{siz} corresponding slightly increase of video and voice MWT up to the saturation limit (which corresponding the optimal length of M_{siz} and it changes according to the value of N_{vo} and N_{vi}). Beyond the saturation limit the video and voice MWT smoothly increase with the increasing of M_{siz} , because the increasing of M_{siz} , increases the transmission (service) time used for data cells. We have to recall that the effect of the proposed control mechanism method is very clear. So, inspire the heavy load carried by the network and the highest priority given to the real-time traffic (video and voice), the non-real-time served properly, and all traffics served with acceptable delays as shown in Figure 7-8.

Figure 7-8 Video MWT & Voice MWT versus M_{siz}

Table 7-6 summaries the simulation results which represents the fixed generation rates of video/voice integration, and corresponding M_{siz} , video MWT, and voice MWT.

N _{vi}	N _{vo}	$(GR_{vi} + GR_{vo})$ (cell/ms)	M _{siz} (cell)	Video MWT (cell)	Voice MWT (cell)
10	50	65	500	100.84	234.76
10	100	91	400	47.08	1951.47
20	50	105	350	54.44	285.94

Table 7-6 Simulation Results of Figure 7-8.

Figure 7-9 illustrates video and voice MBS versus M_{siz} with the same values of N_{vi} , and N_{vo} used above in Figure 7-8. From the Figure, obviously that the characteristics behavior are similar to that in Figure 7-8 and for the same resons mentioned. Table 7-7 summaries the simulation results of Figure 7-9.

Figure 7-9 Video MBS & Voice MBS versus M_{siz}

N_{vi}	N _{vo}	$(GR_{vi} + GR_{vo})$ (cell/ms)	M _{siz} (cell)	Video MBS (cell)	Voice MBS (cell)
10	50	65	500	130	59
10	100	91	400	45	1509
20	50	105	350	92	79

Table 7-7 Simulation Results of Figure 7-9.

Figure 7-10 illustrates TP_{vi} and TP_{vo} versus M_{siz} , for $R_{vi} = 1.5$ Mbps, $R_{vo} = 192$ Kbps, $N_{vi} = 10$, $N_{vo} = 50$, and m = 5 ms. Obviously that the TP_{vi} and TP_{vo} remain constant at 39.89 cell/ms and 5.83 cell/ms respectively with the increasing of M_{siz} up to the saturation limit after that TP_{vi} and TP_{vo} decrease with the increases of M_{siz} . In contrast TP_{da} increases linearly with the increasing of M_{siz} , that is because, the increasing of M_{siz} increases the number of generated data cells. It is to be mentioning here that the reasons that make both GR_{vi} and GR_{vo} are constant, the N_{vi} and R_{vi} are constant at 10 and 1.5 Mbps respectively therefore GR_{vi} remains constant.

Figure 7-10 TP_{vi} and TP_{vo} versus M_{siz}

Figure 7-11 shows the same study of Figure 7-10, except the value of N_{vo} equals to 100. Clearly the behavior is similar to that in Figure 7-10, except that the saturation limit is changed here. So, we have to recall reason of that saturation limit is depends upon the values of N_{vo} in which as the value of N_{vo} increases the saturation limit decreases, as shown in Figure 7-10 and Figure 7-11.

Figure 7-12 shows the same studies of Figure 7-10, except the value of N_{vi} equals to 20. Clearly the behavior is similar to that in Figure 7-10, except that the saturation limit is changed here. So, we have to recall the reason of that saturation limit is depends upon the N_{vi} in which as the value of N_{vi} increases the saturation limit

Figure 7-12 TP_{vi} and TP_{vo} versus M_{siz}

Figure 7-13 illustrates the video and voice MWT versus N_{vo} , for the same values of R_{vi} , R_{vo} , and μ used above, the N_{vi} equals to 10, and the M_{siz} equals to 0, 100, and 300. The Figure summaries the effect of data traffic on the video/voice traffics. Obviously that, the increasing of N_{vo} slightly increases the video and voice MWT up to the saturation limit, which depends up on the M_{siz} . Beyond the saturation limit, the video and voice MWT sharply increase due to the large number of voice cells and queuing delays. The increasing of M_{siz} , slightly increase the video and voice MWT and decreases the saturation limit for N_{vo} .

Figure 7-13 Video MWT and Voice MWT versus M_{siz}

Figure 7-14 illustrates the video and voice MWT versus N_{vi} , for the same values of R_{vi} , R_{vo} , and μ used above, the N_{vo} equals to 50, and the M_{siz} equals to 0, 100, and 300. The Figure summaries the effect of data traffic on the video/voice traffics. Obviously that, the increasing of N_{vi} slightly increases the video and voice MWT up to the saturation limit, which depends up on the M_{siz} . Beyond the saturation limit, the video and data MWT sharply increase due to the large number of video cells and

queuing delays. The increasing of M_{siz} , slightly increase the video and voice MWT and decrease the saturation limit for N_{vi} .

Figure 7-14 Video MWT and Voice MWT versus N_{vi}

Table 7-8 summaries the simulation values at two cases: integration video/voice and integration data/video/voice. It is clear that the data traffic has very slightly effect on video traffic but the data traffic has a small effect on voice traffic.

At $R_{vi} = 1.5$ Mbps, $R_{vo} = 192$ Kbps, $\mu = 5$ ms						
At N_{vo} =100Sources & N_{vi} =10			At N_{vo} =50 Sources & N_{vi} =10 Sources			
Sources						
M _{siz} (cell)	Video MWT	Voice MWT	M _{siz} (cell)	Video MWT	Voice MWT	
	(cell)	(cell)		(cell)	(cell)	
0 100	30 32 34	148 156 236	0 100	30 30 39	82 90 144	
300			300			

Table 7-8 Simulation Results of Figure 7-13 and 7-14