

Application-Level Multicast Transmission Techniques Over The Internet

Ayman EL-SAYED

Projet Planète; INRIA Rhône-Alpes

Supervisor Dr. Vincent ROCA

Director of thesis Prof. Andrzej DUDA

March 8th, 2004

INRIA Rhône-Alpes - Planète project

Outline of the presentation

- 1. Introduction
- 2. Our proposal: Host Based Multicast (HBM)
- Evaluation and Improvements
 List of items addressed
 - 2. Improving the robustness
 - 3. An example of use: VPRN
 - **Discussion**, Conclusion, and Future Work

Part 1

Introduction

INRIA Rhône Alpes - Ayman EL-SAYED (Monday, 8 - 3- 2004)

Introduction to application-level multicast

Motivations

Omulticast routing is not available everywhere

Application-Level Multicast

Shifts the multicast support from core routers to end-systems

automatic creation of an overlay topology
 Ouse unicast between two end-systems
 Othe underlying physical topology is hidden
 Otry to find an ``optimal'' overlay topology
 (e.g. a spanning tree with minimal global cost)

Introduction ... (cont')

Application-Level Multicast (cont')

Requires a dynamic overlay topology update

Obecause the network conditions dynamically change

- try to stay as close as possible to an optimal overlay topology
- can be regarded as "static QoS routing"

Obecause the group is dynamic, the topology quickly becomes sub-optimal

- after a node departure/failure, a quick and dirty local solution is found to avoid topology partition
- when a node arrives, he joins the current topology as a leaf to create as little perturbation as possible

We need to periodically update the whole topology!

Introduction ... (cont')

Application-Level Multicast (cont') Example

With multicast routing

With Application-level multicast

Centralized (HBM, ALMI ...) Distributed (NARADA, Overcast, Nice, TBCP ...)

ANETE.

Part 2

Our proposal: Host Based Multicast (HBM)

Our HBM Proposal

- Centralized approach: everything is under control by RP
- The RP has a complete knowledge of group membership/communication costs.
- Take into account several metrics (RTT, loss, ...) when creating the virtual topology
 - Data flows on the virtual topology (no RP implication)
 - Each node periodically evaluates metrics between itself and other nodes and informs the RP
- Likewise RP periodically refresh the topology and inform all nodes

Our HBM Proposal ... (cont')

HBM Control Connections

PLANETE

INRIA Rhône Alpes - Ayman EL-SAYED (Monday, 8 - 3 - 2004)

S (9)

Our HBM Proposal ...(cont')

Joining a group

INRIA Rhône Alpes - Ayman EL-SAYED (Monday, 8 - 3- 2004)

S (10)

Our HBM Proposal ...(cont')

Leaving a group

Our HBM ... (cont')

Example: node N4 leaves the group

Our HBM ... (cont')

Example: node N4 leaves the group

Our HBM Proposal ...(cont')

The Message/Packet Format

INRIA Rhône Alpes - Ayman EL-SAYED (Monday, 8 - 3- 2004)

Our HBM Proposal ...(cont')

- Node characteristics are taken into account when creating the topology
 - ONode stability
 - Node type of connection to the Internet
 Node needs
 - Distinguish
 - Core Member (CM)
 Core Member (nonCM)
 Core Member (nonCM)

Part 3

Evaluation and Improvements 1. List of items addressed 2. Improving the robustness f in front of node failure during a topology update

3. An example of use: VPRN

INRIA Rhône Alpes - Ayman EL-SAYED (Monday, 8 - 3 - 2004)

S (16)

List of items addressed

Overlay topology creation

Improving the scalability

- Limit the control overhead
- Found a strategy that has an appropriate compromise for that

We won't detail them, we only focus on:

- Improving the robustness
- An example of use: VPRN

INRIA Rhône Alpes - Ayman EL-SAYED (Monday, 8 - 3- 2004)

S (17

Part 3

Evaluation and Improvements

1. List of items addressed

in front of node failure \leftarrow during a topology update

2. Improving the robustness

3. An example of use: VPRN

INRIA Rhône Alpes - Ayman EL-SAYED (Monday, 8 - 3- 2004)

S (18)

Robustness In front of node failures

 Application-level partition is possible when a node fails

Goal:

reduce the partition probability

Solution:

Add Redundant Virtual Links (RVL)

But:
How many RVL?
Between which nodes?
Source dependent or not?

•Adding RVL strategy I:

- Add a RVL between the farthest two nodes,
- Split group into two subgroups,
- Repeat for each sub-group which has at least 3 nodes.

•Other possibilities: choose the farthest two nodes in the group where:

- •Strategy II : a leaf node can have at most one RVL
- •Strategy III: RVL between two leaf nodes are forbiden
- •Strategy IV: RVL between transit nodes only
- •Strategy V : RVL between each leaf node and its farthest transit

node

INRIA Rhône Alpes - Ayman EL-SAYED (Monday, 8 - 3- 2004)

S (20)

- •Single failure, phys. topo. generated by GT-ITM, 600 routers
- •We measure RVL Ratio =

 $\frac{Num Of RVL}{N-1}$

NETE

INRIA Rhône Alpes - Ayman EL-SAYED (Monday, 8 - 3 - 2004)

S (22)

- •Single failure, phys. topo. generated by GT-ITM, 600 routers
- •We measure Ratio of connected nodes = $\frac{Num Of Connected Node}{N}$

NETE

INRIA Rhône Alpes - Ayman EL-SAYED (Monday, 8 - 3- 2004)

S (23)

•Single failure, phys. topo. generated by GT-ITM, 600 routers

•We measure Link stress:number of identical copies of packets carried by a physical link

INRIA Rhône Alpes - Ayman EL-SAYED (Monday, 8 - 3 - 2004)

S (24)

Conclusions

Strategy 4 offers a good balance between the robustness and the additional traffic generated

 they offer also some protection for two or more node failures

Part 3

Evaluation and Improvements

1. List of items addressed

2. Improving the robustness

in front of node failure during a topology update \leftarrow

3. An example of use: VPRN

INRIA Rhône Alpes - Ayman EL-SAYED (Monday, 8 - 3- 2004)

S (26)

Robustness during a topology update

- Application-level packet in transit can be lost during a topology update.
- Goal:

reduce the packet loss probability

Solution:

Nodes remember several overlay topologies. Topologies are identified by a TSN which is included in the packet header.

INRIA Rhône Alpes - Ayman EL-SAYED (Monday, 8 - 3 - 2004)

S (27

Robustness during a topology update...(cont')

- Strategies for reducing packet losses
 - Strategy 1: remember the current topology only, if a packet is received via another topology:
 - A. drop this packet. \rightarrow the reference
 - B. if it has never been received before, forward over the current overlay
 - C. If it is received from a link on current topology, forward it, otherwise drop it.

Strategy 2: remember two topologies (previous and current). Forward the packets appropriately or drop.

S (28)

Robustness during a topology update...(cont')

Results with data rate = 78 packet/sec (512 KbpS)

A small number of links are changed

All the topology links are changed

Robustness during a topology update...(cont')

Conclusions

Strategy 2: remember two overlay topologies

- Packet losses almost avoided
- Does not depend on the importance of topology changes

Part 3

Evaluation and Improvements

1. List of items addressed

in front of node failure

2. Improving the robustness

during a topology update

3. An example of use: VPRN

INRIA Rhône Alpes - Ayman EL-SAYED (Monday, 8 - 3 - 2004)

S (31

An exampleof use: VPRN

Application-level the security is not considered yet

• Goal:

build a secure yet efficient group communication service in a VPN environment

Solution: Virtual Private Routed Network (VPRN) concept.

INRIA Rhône Alpes - Ayman EL-SAYED (Monday, 8 - 3 - 2004)

S (32)

An example of use: VPRN ...(cont')

What is a VPRN?

«Virtual Private Routed Network»

Secure IP VPN environment for group communication services (IVGMP)

Application-level multicast approach (HBM)

A VPRN solution(or routed VPN) for fully secure yet efficient group communications

INRIA Rhône Alpes - Ayman EL-SAYED (Monday, 8 - 3 - 2004)

S (33)

An example of use: VPRN ...(cont')

INRIA Rhône Alpes - Ayman EL-SAYED (Monday, 8 - 3- 2004)

PLANETE

An example of use: VPRN ...(cont')

Conclusions

- ○A new VPRN architecture
- **OFully independent from the ISP**
- Fully dynamic
- Merge : a VPN group communication architecture
 + an application-level multicast approach
- Improved scalability (# of sites) for multicast bulk data distribution

Part 4

Discussion, Conclusion, and Future Work

INRIA Rhône Alpes - Ayman EL-SAYED (Monday, 8 - 3- 2004)

Discussion, Conclusion, and Future Work

Ease of Deployment

O HBM Group Communication Service Library (GCSL) can be:

- Ointegrated in applications requiring a group communication service
- **Oa standalone application**

GCSL only needs: RP IP address/port number and Group address/port number

Future Work:

Ofirewalls→use Application-level gateway to ensure the correct translation of address/port number.

INRIA Rhône Alpes - Ayman EL-SAYED (Monday, 8 - 3- 2004)

S (38)

Discussion, Conclusion, and Future Work

Robustness

 \bigcirc Application-level is fragile \rightarrow partition is possible

ORP has a global and coherent view of the overlay topology

ORobustness improvement is easy

With distributed approach

ORobustness improvement is not easy, requires random, less efficient solutions

INRIA Rhône Alpes - Ayman EL-SAYED (Monday, 8 - 3 - 2004)

S (39)

Discussion, Conclusion, and Future Work ... (Cont')

Impact of cheats

Cheats try to improve their position on the topology:
 ODirectly connected to the source
 ONo child.

Oreports minimal distance to the source and huge distance to the rest of the group.

Discussion, Conclusion, and Future Work ... (Cont') Impact of cheats...(cont') Source-Cheat =0 sec OAn example: fanout =6 Cheat-Cheat = RTT+20secNonCheat-Cheat=RTT+10sec honest 18 3 cheats cheats (19) Src 4 honest Src 15 10 16 8 6 7

Number of cheats = 10

Number of cheats = 6

PLANETE

Discussion, Conclusion, and Future Work ... (Cont')

Impact of cheats...(cont')

- Oconclusion
 - **OCheating is not always efficient**
 - Some cheats are directly connected to the source
 - Other cheats are connected randomly to honest nodes

OCheats lead to sub-optimal overlay topologies

Olf cheating is done in a trivial way, detecting them with HBM is possible:

• Ex: RTT to source = $0 \rightarrow$ it's a cheat

OBut cheats can be more subtle

→ Future Works

Discussion, Conclusion, and Future Work ... (Cont')

Security

is Neglected in Application-level multicast

- **OControl mechanisms are not secured**
- ONo authorization, authentication, encryption ...
- \bigcirc But HBM with VPN →VPRN
- Ohow the authorization, authentication, ...etc can be provided by HBM in the future

Discussion, Conclusion, and Future Work ...(Cont')

Performance

Depends on:

OType of topology created

OA per-source shortest path tree is more efficient than a single shared tree but has a higher cost

- ODynamic topology
 - **OBetter reflects the dynamic networking conditions**
 - OBut the update frequency is low since it creates a high signaling load
- Metrics
 - OTools like ping assume symmetric paths, while in reality paths are often asymmetric
 - ORTT/loss is not sufficient, other metrics may be more suited depending on the application

Discussion, Conclusion, and Future Work ... (Cont')

Scalability

ONot an obligation with Application-Level multicast
ODepends on the application.

Other forms of scalability exist OHigh number of group

Future works

OUsing a single overlay toplogy for several closely related groups (e.g.. In collaborative work tools).
 One representative per site can distribute traffic locally, using intra-domain multicast routing

Discussion, Conclusion, and Future Work ...(Cont')

- A few more words
 - Many open points
 - Application requirements » * « problems » is large
 - Our solution addresses only a subset of them !

The End

Merci de m'avoir écouté

INRIA Rhône Alpes - Ayman EL-SAYED (Monday, 8 - 3- 2004)

