Application-Level Multicast Transmission Techniques Over The Internet

Ayman EL-SAYED
Projet Planète; INRIA Rhône-Alpes

Supervisor
Dr. Vincent ROCA

Director of thesis
Prof. Andrzej DUDA

March 8th, 2004
Outline of the presentation

1. Introduction

2. Our proposal: Host Based Multicast (HBM)

3. Evaluation and Improvements
 1. List of items addressed
 2. Improving the robustness
 3. An example of use: VPRN

4. Discussion, Conclusion, and Future Work
Part 1

Introduction
Introduction to application-level multicast

- **Motivations**
 - multicast routing is not available everywhere

- **Application-Level Multicast**
 - shifts the multicast support from core routers to end-systems
 - automatic creation of an overlay topology
 - use unicast between two end-systems
 - the underlying physical topology is hidden
 - try to find an "optimal" overlay topology
 (e.g. a spanning tree with minimal global cost)
Introduction … (cont’)

- Application-Level Multicast (cont’)
 - Requires a dynamic overlay topology update
 - because the network conditions dynamically change
 - try to stay as close as possible to an optimal overlay topology
 - can be regarded as “static QoS routing”
 - because the group is dynamic, the topology quickly becomes sub-optimal
 - after a node departure/failure, a quick and dirty local solution is found to avoid topology partition
 - when a node arrives, he joins the current topology as a leaf to create as little perturbation as possible

- We need to periodically update the whole topology!
Introduction … (cont’)

• Application-Level Multicast (cont’)
 • Example

```
With multicast routing
```

```
With Application-level multicast
```

• Topology building algorithm can be
 • Centralized (HBM, ALMI …)
 • Distributed (NARADA, Overcast, Nice, TBCP …)
Part 2

Our proposal:
Host Based Multicast (HBM)
Our HBM Proposal

- Centralized approach: everything is under control by RP

- The RP has a complete knowledge of group membership/communication costs.

- Take into account several metrics (RTT, loss, …) when creating the virtual topology

- Data flows on the virtual topology (no RP implication)

- Each node periodically evaluates metrics between itself and other nodes and informs the RP

- Likewise RP periodically refresh the topology and inform all nodes
Our HBM Proposal … (cont’)

- HBM Control Connections

Rendez-vous point

TCP control connections

Control Messages to/from RP

Overlay topology
For data packets

UDP Tunnel
TCP Connection

Metric evaluation

Group Member
Our HBM Proposal ...(cont’)

- Joining a group

Diagram:
- New member
- RP
- Group Members
- Join request
- Member list
- Link list
- Get metrics
- Send metrics
- Metrics list
- Join
- Processing time
- New member
- Link list
- …
Our HBM Proposal ...(cont’)

● Leaving a group
Our HBM … (cont’)

Example: node N4 leaves the group

- N4 neighbors
- UDP Tunnel
- Control Msgs to/from RP
- Unchanged links
- New links
- Old links
Our HBM ... (cont')

Example: node N4 leaves the group

- Control Msgs to/from RP
- N4 neighbors
- UDP Tunnel
- New links
- Old links
- Unchanged links

N1
N3
N6
N9
N4
N7
N5
N2
N8
Our HBM Proposal ...(cont’)

- The Message/Packet Format

(TCP/IP) control message

Forwarded data Packet Format (UDP/IP).
Our HBM Proposal …(cont’)

- Node characteristics are taken into account when creating the topology
 - Node stability
 - Node type of connection to the Internet
 - Node needs

- Distinguish
 - Core Member (CM) can be transit node
 - Non-core Member (nonCM) are always leaves
Part 3

Evaluation and Improvements

1. List of items addressed

2. Improving the robustness

 in front of node failure

 during a topology update

3. An example of use: VPRN
List of items addressed

- Overlay topology creation

- Improving the scalability
 - Limit the control overhead
 - Found a strategy that has an appropriate compromise for that

We won’t detail them, we only focus on:

- Improving the robustness
- An example of use: VPRN
Part 3

Evaluation and Improvements

1. List of items addressed in front of node failure during a topology update

2. Improving the robustness

3. An example of use: VPRN
Robustness In front of node failures

• Application-level partition is possible when a node fails
• Goal:
 reduce the partition probability
• Solution:
 Add Redundant Virtual Links (RVL)

• But:
 • How many RVL?
 • Between which nodes?
 • Source dependent or not?
Robustness In front of node failures…(cont’)

• Adding RVL strategy I:
 • Add a RVL between the farthest two nodes,
 • Split group into two subgroups,
 • Repeat for each sub-group which has at least 3 nodes.

• Other possibilities: choose the farthest two nodes in the group where:
 • Strategy II : a leaf node can have at most one RVL
 • Strategy III: RVL between two leaf nodes are forbidden
 • Strategy IV: RVL between transit nodes only
 • Strategy V : RVL between each leaf node and its farthest transit node
Robustness In front of node failures…(cont’)

• An example: 10 nodes
 Dotted line : RVL links
 Bold line : Overlay links

Initial Overlay

Strategy I

Strategy II

Strategy III

Strategy IV

Strategy V
Robustness In front of node failures...(cont’)

- Single failure, phys. topo. generated by GT-ITM, 600 routers
- We measure RVL Ratio = \(\frac{\text{Num Of } RVL}{N - 1} \)
Robustness In front of node failures…(cont’)

• Single failure, phys. topo. generated by GT-ITM, 600 routers

• We measure Ratio of connected nodes = \(\frac{\text{Num Of Connected Node}}{N} \)
Robustness in front of node failures…(cont’)

- Single failure, phys. topo. generated by GT-ITM, 600 routers
- We measure Link stress: number of identical copies of packets carried by a physical link

Average link stress with/without strategies
Robustness In front of node failures…(cont’)

• Conclusions
 • strategy 4 offers a good balance between the robustness and the additional traffic generated
 • they offer also some protection for two or more node failures
Part 3

• Evaluation and Improvements

1. List of items addressed

2. Improving the robustness

3. An example of use: VPRN
Robustness during a topology update

- Application-level packet in transit can be lost during a topology update.

- Goal:
 reduce the packet loss probability

- Solution:
 Nodes remember several overlay topologies. Topologies are identified by a TSN which is included in the packet header.
Robustness during a topology update…(cont’)

- Strategies for reducing packet losses
 - **Strategy 1**: remember the current topology only, if a packet is received via another topology:
 - A. drop this packet. → the reference
 - B. if it has never been received before, forward over the current overlay
 - C. If it is received from a link on current topology, forward it, otherwise drop it.
 - **Strategy 2**: remember two topologies (previous and current). Forward the packets appropriately or drop.
Robustness during a topology update...(cont’)

Results with data rate = 78 packet/sec (512 Kbps)

A small number of links are changed

All the topology links are changed
Robustness during a topology update…(cont’)

● Conclusions
 ● Strategy 2: remember two overlay topologies
 ● Packet losses almost avoided
 ● Does not depend on the importance of topology changes
Part 3

Evaluation and Improvements

1. List of items addressed in front of node failure during a topology update

2. Improving the robustness

3. An example of use: VPRN
An example of use: VPRN

- Application-level the security is not considered yet

- Goal: build a secure yet efficient group communication service in a VPN environment

- Solution: Virtual Private Routed Network (VPRN) concept.
An example of use: VPRN ...(cont’)

What is a VPRN?

«Virtual Private Routed Network»

- Secure IP VPN environment for group communication services (IVGMP)
- Application-level multicast approach (HBM)
- A VPRN solution (or routed VPN) for fully secure yet efficient group communications
An example of use: VPRN ...(cont’)

Centralized IP VPN Environment: (Lina Alchaal)

IP VPN: build a secure connection between remote sites across the Internet

VPN edge device ED:
IPSec, Firewall, Policy configuration

VPN Secure Tunnel

Source

Configuration policies

IPGMPIVGMP
An example of use: VPRN ...(cont’)

- IVGMP/HBM Architecture
 - Add RP functionality to the VNOC
 - Each VPN site can act as a VPRN node
 - Each ED is authenticated by the VNOC
 - VNOC-ED communications are secured with SSL
 - ED-ED communications are secured with IPSec

VPN edge device ED:
- IPSec, Firewall, Policy configuration
An example of use: VPRN ...(cont’)

Conclusions

- A new VPRN architecture
- Fully independent from the ISP
- Fully dynamic
- Merge: a VPN group communication architecture
 + an application-level multicast approach
- Improved scalability (# of sites) for multicast bulk data distribution
Part 4

Discussion, Conclusion, and Future Work
Discussion, Conclusion, and Future Work

Ease of Deployment

- HBM Group Communication Service Library (GCSL) can be:
 - integrated in applications requiring a group communication service
 - a standalone application

- GCSL only needs: RP IP address/port number and Group address/port number

Future Work:

- firewalls → use Application-level gateway to ensure the correct translation of address/port number.
Discussion, Conclusion, and Future Work

- Robustness
 - Application-level is fragile → partition is possible
 - RP has a global and coherent view of the overlay topology
 - Robustness improvement is easy
 - With distributed approach
 - Robustness improvement is not easy, requires random, less efficient solutions
Discussion, Conclusion, and Future Work …(Cont’)

• Impact of cheats
 • Cheats try to improve their position on the topology:
 • Directly connected to the source
 • No child.
 • reports minimal distance to the source and huge distance to the rest of the group.
Discussion, Conclusion, and Future Work ...(Cont’)

- Impact of cheats…(cont’)
 - An example: fanout =6

Source-Cheat =0 sec
Cheat-Cheat =RTT+20sec
NonCheat-Cheat=RTT+10sec

Number of cheats = 6

Number of cheats = 10
Impact of cheats...(cont’)

Conclusion

Cheating is not always efficient
- Some cheats are directly connected to the source
- Other cheats are connected randomly to honest nodes

Cheats lead to sub-optimal overlay topologies

If cheating is done in a trivial way, detecting them with HBM is possible:
- Ex: RTT to source = 0 ➔ it’s a cheat

But cheats can be more subtle ➔ Future Works
Security

- is Neglected in Application-level multicast
 - Control mechanisms are not secured
 - No authorization, authentication, encryption ...

- But HBM with VPN \(\rightarrow\) VPRN

- how the authorization, authentication, …etc can be provided by HBM in the future
Discussion, Conclusion, and Future Work …(Cont’)

- **Performance**

 Depends on:
 - Type of topology created
 - A per-source shortest path tree is more efficient than a single shared tree but has a higher cost
 - Dynamic topology
 - Better reflects the dynamic networking conditions
 - But the update frequency is low since it creates a high signaling load
 - Metrics
 - Tools like ping assume symmetric paths, while in reality paths are often asymmetric
 - RTT/loss is not sufficient, other metrics may be more suited depending on the application
Discussion, Conclusion, and Future Work …(Cont’)

● Scalability
 ▪ Not an obligation with Application-Level multicast
 ▪ Depends on the application.
 ▪ Other forms of scalability exist
 ▪ High number of group

● Future works
 ▪ Using a single overlay topology for several closely related groups (e.g., in collaborative work tools).
 ▪ One representative per site can distribute traffic locally, using intra-domain multicast routing
Discussion, Conclusion, and Future Work ...(Cont’)

● A few more words
 ● Many open points
 ● « Application requirements » * « problems » is large
 ● Our solution addresses only a subset of them!
The End

Merci de m’avoir écouté