
1

New Results for the PTB-PTS
Attack on Tunneling Gateways

Vincent Roca
Ludovic Jacquin

Saikou Fall
Jean-Louis Roch

GreHack’15, Grenoble, November 20th 2015

New Results for the PTB-PTS Attack on Tunneling Gateways

Packet Too Big (PTB) or
Packet Too Small (PTS)?
The underlying idea

2

New Results for the PTB-PTS Attack on Tunneling Gateways

About packet sizes and tunnel
Ø two gateways establish a tunnel to connect two remote

LANs (or sites)

3

host A gateway G

Internet

host B gateway H

LAN
encapsulates packets

decapsulates packets

packet size S

packet size S

packet size H+S tunnel

LAN

New Results for the PTB-PTS Attack on Tunneling Gateways

About packet sizes and tunnel… (cont’)
l each link has a Maximum Transmission Unit (MTU)

o maximum allowed frame size on that link
o e.g. 1500 bytes for Ethernet (i.e., 1460 b. or less at TCP level)

l Path MTU (PMTU) is the min. MTU along the path

l a packet larger than a link’s MTU is either
o dropped and an error ICMP “Packet Too Big” (PTB) message

containing the MTU is returned to sender, or
o  fragmented if feasible (iff. IPv4 with DF bit clear)

l each link MUST guaranty a minimum MTU
o  IPv4 576 bytes
o  IPv6 1280 bytes
o essentially here for performance reasons

4

New Results for the PTB-PTS Attack on Tunneling Gateways

The issue
l what happens if G’s outgoing link is already at MTU

576 bytes (IPv4)?
Ø then we need H+S ≤ 576, which implies that S ≤ 576 - H

5

host A gateway G

Internet

encapsulates packets

packet size S

packet size H+S outgoing link MTU=576

New Results for the PTB-PTS Attack on Tunneling Gateways

The issue – an experimental example
l G tunneling A’s traffic using IPsec (Linux/Debian)

host A gateway
G

ICMP PTB, MTU=514 bytes*

impossible, packet size 552**, DF=1

impossible, packet size 552**, DF=1

ICMP PTB, MTU=514 bytes*

…
deadlock!

* 514 bytes because of IPsec ESP header
** 552 is minimum PMTU value on Linux/Debian

MTU=576

packet of size 836, DF=1

6

…

New Results for the PTB-PTS Attack on Tunneling Gateways

And now the exploit!

7

New Results for the PTB-PTS Attack on Tunneling Gateways

Attacker model
l “On path” attacker

Ø Eavesdrop and inject traffic on the WAN
Ø IPsec cryptographic ciphers deemed secure

8

host A gateway G

Unsecure WAN
(e.g. Internet)

host B gateway H

Secure LAN

Secure LAN

IPsec or IPIP

Linux or
Windows

“on path” attacker

New Results for the PTB-PTS Attack on Tunneling Gateways

Description of the exploit
l Resetting gateway G’s PMTU

Ø the attacker needs to be on the tunnel path
o eavesdrops a tunneled packet
o  forges an ICMP PTB message

•  Including a copy of the eavesdropped packet to bypass 
IPsec security check w.r.t. ICMP error messages

Ø the attacker can use a compromised router…
Ø … or be a simple host attached to a non-encrypted WiFi

o  if a user uses a tunnel from a laptop (no gateway H) to a
remote network, and is attached to a non-encrypted WiFi,
then we can attack the remote tunnel gateway

Ø a single “well formed” ICMP PTB packet is sufficient to
launch the attack!

9

New Results for the PTB-PTS Attack on Tunneling Gateways

Detail of the exploit
l Debian IPsec gateway
l Ubuntu client, TCP traffic, IPv4 with PMTUD

10

strong incentives to consider separately the case of ICMP PTB
error packets in order to enable PMTUd [1].

ICMP type origin recommended treatment

info. message trusted administrator’s policy
info. message untrusted administrator’s policy
error message trusted check packet, process if okay
error message untrusted administrator’s policy

TABLE I: Recommended ICMP processing rules in IPsec.

We now review two measures that help improving the
security of ICMP PTB packets processing.

a) Minimum sanity check for untrusted ICMP error
packets: the processing of ICMP error packets coming from
the untrusted network must satisfy the following sanity check
([14], section 2.3). ICMP requires that such an ICMP error
packet include in its payload the beginning of the packet that
triggered the error. Upon receiving the error packet, the IPsec
protocol must verify that the outer header of the packet that
triggered the error (i.e., contained in the ICMP payload) maps
to a valid entry in the SAD, by checking the source/destination
IP addresses and SPI. If not, the ICMP packet must be
immediately discarded.

b) Additional sanity checks: in addition to the minimum
sanity check, some IPsec implementations (including the
one we considered, see section IV) decrypt the ICMP packet
payload, recover the inner IP packet header and verify that the
source/destination IP addresses of the inner packet match the
SAD entry associated to the SPI. If the check fails, the packet
is immediately dropped. This is an easy solution to avoid blind
attacks, coming from attackers that are not able to eavesdrop
an active tunnel. However it offers no protection if the attacker
is on the path followed by the IPsec tunnel (a feature our
PTB-PTS attack relies on).

[1] also recommends to ”establish a minimum PMTU for
the traffic (on a per destination basis), to prevent receipt of
an unauthenticated ICMP from setting the PMTU to a trivial
size”. We will see in our attack that this is not necessarily
sufficient.

IV. ATTACK DESCRIPTION BASED ON A REAL EXPLOIT

Our attack is designed to take place both in site-to-site
or host-to-site configurations (Fig 1). It is carried out from
the untrusted network, and through the IPsec gateway, the
attack targets hosts in the trusted network, behind the gateway
(i.e., in host-to-site configuration, the site is the target, not the
isolated host). We assume the attacker can eavesdrop and inject
traffic on the untrusted network, as described in section II-B.
However a single ICMP packet is sufficient for the attack,
which means it can easily remain unnoticed.

A. Experimental conditions

We illustrate the attack through an exploit, using two on-
the-shelf IPsec gateways with their default configuration3.
The gateways as well as the end machines are all running
the stable ”Squeeze” Debian distribution [15], with Linux

3Since we assume that most administrators do not change the default IPsec
policies with regard to ICMP processing, we did not change them.

kernel 3.2.1 [16]. However this attack is not specific to this
distribution. We exhibit the impacts of the attack on a user, in a
trusted red network, that tries to establish an ssh connection
with a machine located on the remote trusted red network,
through the IPsec tunnel, using IPv44.

In the next section, we assume that hosts rely on the classic
PMTUd algorithm (the default) and show that it leads to a DoS

since the attacker can easily prevent any new ssh connection
from being established.

Then, in section IV-C, we consider the case where hosts
rely on the PLPMTUd alternative and show that the attacker
can slow down the ssh connection (6+ seconds of connection
delay) as well as limiting the TCP segment size to a tiny
value much lower than the minimum MTU size of IPv4 which
negatively impacts the throughput5.

Finally we also tested with a bulk UDP flow. Here also,
the attack leads to a major slow down of the connection since
the gateway needs to further segment IP datagrams.

B. DoS on TCP connections with hosts using PMTUd

Let us assume that end-hosts use PMTUd. The attack is
illustrated in Fig. 2 and the corresponding tcpdump traces,
collected on the red network, are shown in Fig. 3. Note that
the traces show the two TCP flows (connections are bidirec-
tional), whereas Fig. 2 is simplified and only shows the flow
being attacked. In particular the ssh connection establishment
involves the exchange of 784 bytes in one direction (which hit
the gateway PMTU entry) and 848 bytes in the other direction
(this segment is not subject to PMTU restrictions).

Fig. 2: Our attack on an IPsec gateway, PMTUd case

1) Forging an ICMP PTB packet from the untrusted net-
work: the attacker first has to forge an appropriate ICMP
PTB packet (a single packet is sufficient). This is done by
eavesdropping a valid packet from the IPsec tunnel on the
untrusted network. Then the attacker forges an ICMP PTB
packet (step 1 in Fig. 2), specifying a very small MTU value
equal or smaller than 576 with IPv4 (resp. 1280 with IPv6).
The attacker uses 0 in this case. This packet spoofs the IP
address of a router of the untrusted network (in case the

4In this configuration, the attacker targets the gateway of the ssh server. We
also tested the symmetric configuration (gateway of the ssh client). Since the
results are exactly the same, they are not shown.

5We show an exploit with an interactive ssh connection for which through-
put is not an issue. But the attack consequences will be more serious with an
application doing bulk data transfer on top of TCP or HTTP.

0 (Any IPsec protected packet)

New Results for the PTB-PTS Attack on Tunneling Gateways

Another PMTU discovery to the rescue?
l Packetization Layer Path MTU Discovery

(PLPMTUD)
Ø Developed to mitigate ICMP “black holes”

o no dependency on ICMP any more
Ø Relies on “probes” and “feedbacks” to adjust packet sizes
Ø compatible with TCP

o TCP ACK are used as feedbacks
Ø the TCP packet size can be reduced below the 576

minimum MTU (in IPv4) if needed
o e.g., 256 bytes + headers

11

New Results for the PTB-PTS Attack on Tunneling Gateways

PLPMTUD only mitigates the exploit
l Ubuntu client, TCP traffic, IPv4 with PLPMTUD

12

0.000000 a.b.10.7.48063 > a.b.11.5.ssh: S *:*(0) win 17920 <mss 8960,sackOK,timestamp 1572549 0,nop,wscale 7> (DF)
0.000142 a.b.11.5.ssh > a.b.10.7.48063: S *:*(0) ack * win 17896 <mss 8960,sackOK,timestamp 1645937 1572549,nop,wscale 7> (DF)
0.000417 a.b.10.7.48063 > a.b.11.5.ssh: . ack 1 win 140 <nop,nop,timestamp 1572550 1645937> (DF)
0.004208 a.b.11.5.ssh > a.b.10.7.48063: P 1:33(32) ack 1 win 140 <nop,nop,timestamp 1645938 1572550> (DF)
0.004535 a.b.10.7.48063 > a.b.11.5.ssh: . ack 33 win 140 <nop,nop,timestamp 1572551 1645938> (DF)
0.004538 a.b.10.7.48063 > a.b.11.5.ssh: P 1:33(32) ack 33 win 140 <nop,nop,timestamp 1572551 1645938> (DF)
0.004676 a.b.11.5.ssh > a.b.10.7.48063: . ack 33 win 140 <nop,nop,timestamp 1645938 1572551> (DF)
0.004688 a.b.10.7.48063 > a.b.11.5.ssh: . 33:545(512) ack 33 win 140 <nop,nop,timestamp 1572551 1645938> (DF)
0.004711 a.b.11.5.ssh > a.b.10.7.48063: . 33:533(500) ack 33 win 140 <nop,nop,timestamp 1645938 1572551> (DF)
0.004719 a.b.11.4 > a.b.11.5: ICMP ERROR: a.b.10.7 unreachable - need to frag (mtu 514) [tos 0xc0]
0.004721 a.b.11.5.ssh > a.b.10.7.48063: P 533:817(284) ack 33 win 140 <nop,nop,timestamp 1645938 1572551> (DF)
0.004960 a.b.10.7.48063 > a.b.11.5.ssh: P 545:881(336) ack 33 win 140 <nop,nop,timestamp 1572551 1645938> (DF)
0.005006 a.b.10.7.48063 > a.b.11.5.ssh: . ack 33 win 140 <nop,nop,timestamp 1572551 1645938,nop,nop,sack 1 {533:817} > (DF)
0.005046 a.b.11.5.ssh > a.b.10.7.48063: . ack 881 win 156 <nop,nop,timestamp 1645938 1572551> (DF)
0.214634 a.b.11.5.ssh > a.b.10.7.48063: . 33:533(500) ack 881 win 156 <nop,nop,timestamp 1645991 1572551> (DF)
0.214643 a.b.11.4 > a.b.11.5: ICMP ERROR: a.b.10.7 unreachable - need to frag (mtu 514) [tos 0xc0]
0.638636 a.b.11.5.ssh > a.b.10.7.48063: . 33:533(500) ack 881 win 156 <nop,nop,timestamp 1646097 1572551> (DF)
0.638646 a.b.11.4 > a.b.11.5: ICMP ERROR: a.b.10.7 unreachable - need to frag (mtu 514) [tos 0xc0]
1.486639 a.b.11.5.ssh > a.b.10.7.48063: . 33:533(500) ack 881 win 156 <nop,nop,timestamp 1646309 1572551> (DF)
1.486645 a.b.11.4 > a.b.11.5: ICMP ERROR: a.b.10.7 unreachable - need to frag (mtu 514) [tos 0xc0]
3.186646 a.b.11.5.ssh > a.b.10.7.48063: . 33:533(500) ack 881 win 156 <nop,nop,timestamp 1646734 1572551> (DF)
3.186655 a.b.11.4 > a.b.11.5: ICMP ERROR: a.b.10.7 unreachable - need to frag (mtu 514) [tos 0xc0]
6.586634 a.b.11.5.ssh > a.b.10.7.48063: . 33:289(256) ack 881 win 156 <nop,nop,timestamp 1647584 1572551> (DF)
6.586831 a.b.10.7.48063 > a.b.11.5.ssh: . ack 289 win 148 <nop,nop,timestamp 1574196 1647584,nop,nop,sack 1 {533:817} > (DF)
6.586941 a.b.11.5.ssh > a.b.10.7.48063: . 289:533(244) ack 881 win 156 <nop,nop,timestamp 1647584 1574196> (DF)
6.587143 a.b.10.7.48063 > a.b.11.5.ssh: . ack 817 win 156 <nop,nop,timestamp 1574196 1647584> (DF)
6.587147 a.b.10.7.48063 > a.b.11.5.ssh: P 881:905(24) ack 817 win 156 <nop,nop,timestamp 1574196 1647584> (DF)
6.588458 a.b.11.5.ssh > a.b.10.7.48063: P 817:969(152) ack 905 win 156 <nop,nop,timestamp 1647584 1574196> (DF)
6.589189 a.b.10.7.48063 > a.b.11.5.ssh: P 905:1049(144) ack 969 win 164 <nop,nop,timestamp 1574197 1647584> (DF)
6.593662 a.b.11.5.ssh > a.b.10.7.48063: . 969:1225(256) ack 1049 win 164 <nop,nop,timestamp 1647585 1574197> (DF)
6.593739 a.b.11.5.ssh > a.b.10.7.48063: . 1225:1481(256) ack 1049 win 164 <nop,nop,timestamp 1647585 1574197> (DF)
6.593750 a.b.11.5.ssh > a.b.10.7.48063: P 1481:1689(208) ack 1049 win 164 <nop,nop,timestamp 1647585 1574197> (DF)
6.593946 a.b.10.7.48063 > a.b.11.5.ssh: . ack 1481 win 176 <nop,nop,timestamp 1574198 1647585> (DF)

Fig. 5: tcpdump trace on the red network during the attack, PLPMTUd case. Notations are consistent with Fig. 3

Fig. 4: Our attack on an IPsec gateway, PLPMTUd case

gateway processes each packet, returning an ICMP PTB packet
for the first one (step 4) as it is too large, and forwarding the
second one (step 4’).

2) Large segment and ICMP PTB: the ICMP PTB packet is
ignored as the PLPMTUd component only relies on acknowl-
edgments and delay expirations. In our test, after expiration of
the timeout for the first packet (at time 0.21s), the host sends
an identical 552 byte packet to the gateway (step 5) because
PLPMTUd already used the minimal size allowed by the host
configuration. This pattern happens 5 times, generating a total
of 5 ICMP PTB packets.

3) Further reduction of the segment size: 6.59s after the
TCP connection establishment, the PLPMTUd component de-
cides to drastically reduce the segment size: instead of a single
500 byte segment, it now sends a 256 byte TCP segment
(step 13) followed by a 244 byte TCP segment. Being small

enough, both of them are forwarded by the IPsec gateway.
The ssh connection finishes after a few additional segments
and a prompt appears in the terminal.

To conclude a huge delay of 6.59s was required for data to
arrive to the destination. Additionally, any packet leaving the
host after this initial delay contains at most 256 byte of data,
which drastically reduces the TCP throughput and consumes
more resources in the forwarding nodes7.

D. Attack on a bulk UDP flow

Let us now consider a UDP flow, where the application
submits 1,100 byte data chunks to the UDP socket. The
beginning of the attack is the same. Then the host sends a
1100 + 28 = 1128 byte IP packet with the DF bit set to 1
(no fragmentation). The IPsec gateway discards this packet
and returns an ICMP PTB packet with the same 514 byte
MTU indication as before. The following UDP datagram is
fragmented into three IP packets of size 548, 548 and 72 bytes
respectively. This time the DF bit is set to 0 in all three packets
(fragmentation is authorized), probably to reduce the risks that
these packets be dropped. At the gateway, it turns out that
after encapsulation, the first two IP packets are again too large
compared to the PMTU value of the SAD. Since fragmentation
is authorized, they are once again fragmented into two packets
each, of size 528 and 60 bytes respectively. At the end, the
initial large UDP datagram is transmitted in the IPsec tunnel
in five medium size or tiny IP packets (548, 60, 548, 60 and
112 bytes respectively), instead of a single packet (without the
attack).

7Router performance (number of packets per second) is relatively indepen-
dent of the packet size, but the lower the size, the lower the throughput.

0 (Any IPsec protected packet)

New Results for the PTB-PTS Attack on Tunneling Gateways

Some additional tests
l UDP traffic with PMTUD
l IPv6
l Windows 7, with default configuration
l IPIP tunnel

13

New Results for the PTB-PTS Attack on Tunneling Gateways

Ubuntu client results

14

TCP, IPv4, PMTUD
IPsec tunnel

DoS: no connection possible any more
(TCP closes after 2 min.)

TCP, IPv4, PLPMTUD
IPsec tunnel

Major performance impacts:
6.5s initial freeze, tiny packets (MSS = 256)

UDP, IPv4, PMTUD
IPsec tunnel

Major performance impacts:
tiny packets

TCP, IPv6, PMTUD
IPsec tunnel

DoS: no connection possible any more
(TCP closes after 2 min.)

TCP, IPv6, PLPMTUD
IPsec tunnel

Major performance impacts:
3.3s initial freeze, small packets (MSS = 504)

TCP, IPv4, PMTUD
IPIP tunnel

Major performance impacts:
7 min. initial freeze, tiny packets (MSS = 256)

TCP, IPv4, PLPMTUD
IPIP tunnel

Major performance impacts:
6.7s initial freeze, small packets

New Results for the PTB-PTS Attack on Tunneling Gateways

Windows 7 client results

15

TCP, IPv4
IPsec tunnel

Major performance impacts:
fragmented packets (548 and 120)

TCP, IPv6
IPsec tunnel

DoS: no connection possible any more
(TCP closes after 21 sec.)

TCP, IPv4
IPIP tunnel

DoS: no connection possible any more
(TCP closes after 35 sec.)

l Really strange behavior in TCP/IPv4/IPsec tests
Ø Windows reset the “Don’t Fragment” bit after the first error
Ø It keeps increasing TCP segment size… up to ~64 kB!!!
Ø The gateway needs to fragment into smaller packet which

is highly inefficient
l Similar results with Windows 10

New Results for the PTB-PTS Attack on Tunneling Gateways

Conclusions

16

New Results for the PTB-PTS Attack on Tunneling Gateways

A highly effective attack
l A single packet is enough to launch the attack

Ø Only needs to eavesdrop one packet of the tunnel

l The gateway and client cannot agree
Ø Once the attacker created confusion he can pull out

l Works on all client OSes
Ø Highly effective, no matter the client configuration,

leading either to DoS or major performance impacts
Ø There is no good solution to deal with it!

17

New Results for the PTB-PTS Attack on Tunneling Gateways

Two issues highlighted
l Tunnels and small PMTU

Ø The client rejects request to use an MTU smaller than the
“minimum guaranteed”
o The client does not know this is motivated by IPsec or IPIP

tunneling at the gateway
o … and in any case it infringes the minimum MTU

l Legitimacy of untrusted ICMP PTB packets
Ø IPsec sanity check is not fully reliable and is by-passed if

the attacker is on the path

18

New Results for the PTB-PTS Attack on Tunneling Gateways

Some counter-measures
l Trivial and unsatisfying

Ø Ignore DF bit at a tunneling gateway
o E.g., as suggested by CISCO IPsec configuration guide!

Ø Ignore any ICMP PTB at the gateway and let clients use
PLPMTUD
o But PLPMTUD won’t work with UDP!

l Two proposed counter-measures at a gateway
Ø A gateway must not blindly accept an ICMP PTB

advertising a tiny MTU
o The gateway needs room to add tunneling headers

Ø A gateway should assess untrusted ICMP PTB
o Add a probing scheme between tunneling gateways,

similarly to PLPMTUD, to check the Path MTU
19

New Results for the PTB-PTS Attack on Tunneling Gateways

Thank you

20

