
Low-rate coding using incremental

redundancy for GLDPC codes

Cunche M., Savin V., Roca V., Kraidy G., Soro A., Lacan J.

Work supported by the CAPRI-FEC ANR project

IWSSC’08

October 3rd, Toulouse

Introduction

FEC codes for the erasure channel

o Symbols either erased or received without error

Low rate coding (i.e., add a lot of redundancy)

o to improve carousel-based transmissions (e.g., with

FLUTE/ALC), or to counter with very high loss rates

Proposal based on LDPC-staircase codes

o Belong to “regular repeat accumulate” codes

o Now an IETF standard (RFC5170)

http://www.rfc-editor.org/rfc/rfc5170.txt

Extended with a Generalized LDPC scheme

http://www.rfc-editor.org/rfc/rfc5170.txt
http://www.rfc-editor.org/rfc/rfc5170.txt
http://www.rfc-editor.org/rfc/rfc5170.txt

What is a FEC code for the erasure channel?

o Source object is divided into k symbols

o Encoding: add redundancy with (N-K) repair symbols

o Decoding: rebuild the source object from the K(1+)

symbols received
Symbol erasure

Encoding Decoding

Transmission

Source object Decoded object

Repair symbols

Source symbols

Extend a “Mother code” for low rate coding

o Use a Generalized-LDPC construction to add extra

repair symbols

Proposed coding scheme (1/6)

LDPC

(mother code)

G-LDPC

(extended code)

Extension

Repair symbols

Source symbols

Extra repair symbols

Proposed coding scheme (2/6)

 « Mother » code: LDPC-Staircase

o Based on Simple parity checksum (XOR)

o 1 repair symbol created per constraint node

Constraint_node 1:

S1S2 S5 P1=0

Constraint_node 2:

S1S3S4P1P2=0

Repair symbolsSource symbols

Constraint nodes

(Parity check)

Constraint_node 3:

S3S4S5P2P3=0

Proposed coding scheme (3/6)

Encoding

o Linear time encoding thanks to an appropriate code structure

 Iterative Decoding

o If a constraint node has all but one symbol known, the latter

is equal to the sum of the others. Reiterate if possible…

o Linear time decoding 

P1

S1

S4

S2S1 =S5  

S3 P1S4 P2 =   

S5 P2 P3S3   =

S1S2P1

S50

P2S4 S30

0

S1 S2 S3 S4 S5 P1 P2 P3

Proposed coding scheme (4/6)

Extended with Reed Solomon (RS) codes

o They are ideal codes

o Practical limit on n due to encoding/decoding

complexity

• Cannot be applied directly on the whole source object

o In our case n is small and we can use small Galois

Fields (e.g., GF(24)) that are easily encoded/decoded

n

k n-k

Repair symbolsSource symbols

Proposed coding scheme (5/6)

Extended G-LDPC code based on Reed-Solomon

o (1 + E) repair symbols created by constraint node

o With appropriate RS codes, the first repair symbol remains

the parity check (idem LDPC-staircase codes)

Constraint_node 1:

RS(S1,S2,S5,P1, P4, P5)

Constraint_node 3:

RS(S3,S4,S5,P2,P3, P8, P9)

Repair symbolsSource symbols

Constraint nodes

(RS)

Constraint_node 2:

RS(S1,S3,S4,P1,P2, P6, P7)

Extra repair symbolsParity check as in mother code

Proposed coding scheme (6/6)

Encoding

o First round: “Parity check” repair symbols created

o Additional rounds: Extra repair symbols created on

demand

o Linear complexity

Decoding

o Iterative Decoding (ID) for G-LDPC codes:

o Idea: If a constraint node of dimension k, has k symbols

known, rebuild the other symbols. And reiterate …

o Complexity: linear in the number of source symbols 

Distribution of the Extra repair symbols (1/5)

 Is it appropriate to produce the same number of

Extra Repair Symbol per constraint node?

o Not necessarily!

o We show that a non constant number can help

improving the erasure recovery capabilities…

o We tested 3 distributions

1/ Constant : the number of extra repair symbols

connected to a constraint node is constant.

Distribution of the Extra repair symbols (2/5)

Repair symbols

Source symbols

Constraint

nodes

Extra repair

symbols

2/ Uniform: the number of extra repair symbols connected

to a constraint node is uniformly distributed between 0

and a maximum value Emax.

Distribution of the Extra repair symbols (3/5)

Repair symbols

Source symbols

Constraint

nodes

Extra repair

symbols

3/ Irregular: the number of extra repair symbols connected

to a constraint node is irregularly distributed between 0

and a maximum value Emax.

Distribution of the Extra repair symbols (4/5)

Repair symbols

Source symbols

Constraint

nodes

Extra repair

symbols

Distribution of the Extra repair symbols (5/5)

Density evolution analysis

o Find a good irregular distribution (#3) of the extra

repair symbols produced

o We found the best irregular distribution (see paper)

 In fact, uniform distribution…

o …is very close to the best irregular distribution

o …is better than constant distribution

o …is fairly simple

We use uniform distribution !

Conditions: K=5,000 source symbols,

mother code rate=1/2

Results (1/2)

code rate Average overhead

Extended codes LDPC-Staircase

Uniform distrib. Constant distrib.

1/2 11.4% 11.4% 11.4%

1/5 13.0% 13.4% 32.8%

1/10 14.0% 16.5% 84.6%

1/17 14.4% 18.2% 144.0%

Fairly stable performances,

even at small code rates 

Unusable with iterative

decoding at small rates

(use ML decoding…)

Results (2/2)

Uniform distribution

Theoritical limit for

uniform distribution

(infinite length code)

Gap to capacity

High code rate Low code rate

Finite length codes

(from 1,000 to 50,000)

Gap to capacity (i.e., distance to ideal code

perf.) decreases with the code rate 

Additional advantages (1/2)

Flexibility on the encoder side: Extra repair

symbols can be produced on demand, in

“rounds”

o To adapt dynamically to the loss rate

o To start transmissions earlier (no need to wait for all

repair symbol creation) and to reduce the delay

o To save resources (no need to remember all extra repair

symbols)

Advantages at the encoder…

Additional advantages (2/2)

 Limited memory requirements

o No need to store the whole matrix, the mother code

matrix (much smaller) is sufficient

o No need to re-build extra repair symbols during

decoding ( ID with LDPC codes)

Backward compatibility…

o An RFC5170 compliant decoder can decode with

source/parity symbols, ignoring extra repair symbols

Advantages at the decoder…

To conclude

An efficient small rate coding scheme

o good erasure recovery capabilities at very very low rates

Relies on an iterative decoding scheme

o Guaranties linear decoding complexity,

o Decoding remains fast even with huge source objects (

ML decoding)

 Incremental redundancy added on demand

o Provides a high flexibility

To conclude

A very simple design

o Based on well-known and standardized building blocks

A possible alternative to rate-less codes

o We can easily/efficiently reach very small code rates

With RS over GF(24) we can reach a code rate 1/7

GF(28) we can reach a code rate 1/127

……

Questions ?

