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Abstract—File distribution is becoming a key technology, in of linear equations, if one of them has only one remaining
particular in large scale content broadcasting systems like DVB- unknown variable, then the value of this variable is that of
H/SH. They largely rely on Application Level FEC codes (AL- 0 constant term. So, this variable is replaced by its value
FEC) in order to recover from transmission erasures. We believe . . . .
that sooner or later, content integrity and source authenticatio in all the rgmammg equations and we reiterate. .The \_/alue of
security services will be required in these systems. In order to Several variables can therefore be found recursively. idgpl
save the client terminal resources, which can be a handheld au- to LDPC AL-FEC codes, the parity check matrix defines a set
tonomous device, we have designed a hybrid system that mergesof linear equations whose variables are the source symhdls a
the AL-FEC decoding and content integrity/source authentication parity symbols. Receiving or decoding a symbol is equivialen

services. More precisely our system can detect a random object, .~ . - -
corruption triggered by a deliberate attack with a probability to finding the value of a variable. When the decoding succeeds

close to 100% almost for free in terms of computation overhead. With this algorithm, all the source and parity symbols are
received or rebuilt. This paper does not detail LDPC-ssaiec

and interested readers can refer to [11][12].

. INTRODUCTION . . N

S ) ) R ¢) Adding Content Integrity/Source Authentication Ser-
@) File distribution and AL-FEC:File/object distribution yjces: within closed networks (e.g. DVB-H infrastructure),
is becoming a key technology, in particular in large scalg nching a DoS attack or injecting spurious traffic regaiaa
content broadcasting systems like DVB-H/SH. They largelypensive equipment, which limits the risks. But the siarat
rely on Application Level Forward Erasure Correction codgg gpnosite in case of open networks, like the Internet or Wifi
(AL-FEC), not only to recover from transmission erasures byqspots. Here the content integrity and source authdiatica
also to improve the content broadcasting scheme itself @9 sevices are often required to enable a receiver to check tha

FLUTE/ALC protocol stack of DVB-H/SH). More specifically, yhat he received is actually the content that has been sent by
AL-FEC codes work over aacket erasure channeWhere ihe authorized sender.

packets either arrive without any error or are lost. Packet . . e .
. These integrity/source verifications can be made either on a
erasures can result from transmission errors (that exde=d t

. o . per-packet or per-object basis. This work focuses on therlat
error correcting capabilities of the physical layer codes) ” : o
i o . case. The traditional solution consists in signing a hasthef
congestion problems within an IP router, or simply becau

Se: . ) . .
the receiver is a mobile device that is currently discorerbct O%JeCt with an asymmetric cryptographic function. In thase,

If the patented Raptor AL-FEC codes[7] are well suited t\c’)vIth big objects, the computaﬂqn time of the S|gnature W I(.)
mpared to the hash calculation over the object, espgciall

broadcasting systems (they are part of t'he 3GPP gnd D\\?v%h modern strengthened hash functions. This isrétfierence
standards), LDPC codes form an interesting alternative. solution against which we will compare our scheme
b) The LDPC-Staircase AL-FEC Codeshe LDPC- ’

staircase codes [8] (also called double-diagonal or repeat d) Goals of this Work:Our work explores an alternative
accumulate codes) are particularly interesting for filsveey solution that consists in adding object verification cafids
systems. Thanks to their parity check matrix structure ehet an existing FEC schemehile minimizing the computation
codes feature a high encoding/decoding speed, which me@R§ transmission overheadS'he resulting system, called
they can easily encode in a single pass objects that M@IFEC must be able to:
composed of a hug_e .number of source symbols (typically. detect the vast majority of corrupted objects with a
several 10,000s). Th|s is a great advantage when cqmpared 10 Leduced cost (i.e. enable a lightweight pre-check),
small block codes like Reeq-SoIomon codes[11]. Besidesethe . detect all the corrupted objects with a cost close to
codes have been standardized at IETF as RFC 5170 [12] and a standard integrity check (i.e. during full check)
high performance on-the-shelf GNU/LGP_L C(_)dec is available . and keep exactly the same erasure recovery ;:apabilities
[10]. For all these reasons they are used in this work. Ncm? th as the original AL-FEC scheme.
in the following we consider that symbols (AL-FEC coding
point of view) are equivalent to packets (network point of The corruption can be either intentional (i.e. mounted by
view) since (usually) a symbol is carried in a single packetn attacker) or not (e.g. caused by transmission errors that
Symbols can therefore be several hundreds of bytes long. have not been detected/corrected by the physical layer FEC

Several decoding techniques are possible. Iterative degodcodes/CRC). In this work we first consider the caseapidom
is a usual, high performance technique [12]: given a sebrruptions and then we considentelligent attacks
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Il. PROBLEM ANALYSIS AND OBSERVATIONS Said differently, LDPC decoding at the symbol level corssist

This section introduces the attack model and the corruptigh  Parallel LDPC decoding at the bit level (codeword), all
propagation phenomenon that is the core of our proposah THY them sharing the same erasure pattern.

it discusses the potential use of this phenomenon, both from-€t assume that the transmitted chewcwd ha; been
the attacker and the receiver points of view. corrupted. The output of the decoder is necessarily another

codeword,w’ (w # w’). Since we are dealing with linear
codes, the difference of two codewords is also a codewort, an

A. The Attack Model in particulare = w—uw’. Therefore a successful corruption can

Let us consider an unsecured transmission channel. @ seen as the addition of a codewer(talled thecorrupting
first assume the attacker can corrupt an unlimited numberasideword to the transmitted codeword.
symbols randomly chosen (which includes the cases of errors3) Experimental Approachin order to quantify this phe-
not detected by the lower layers and attackers with limité¢Pmenon, we carried out experiments using the on-the-shelf
capabilities). In a second step (section V) we will considdDPC-staircase C++ reference codec [10]. We chose an object
the case of intelligent attacks mounted by powerful atteckeComposed 020,000 symbols, and used a coding rate =

A first goal for the attacker can be wworrupt the object k/n = 2/3 (i.e.n —k = 10,000 parity symbols are added).
without the receiver's noticingThis corruption is anyway Symbols are transmitted in a random order in order (1) toycarr
detected by the use of cryptographic hash over the wh&Ht experiments without considering the channel loss model
object, and the detection probability is only limited by th@nd (2) to be sure that decoding operations will take pBlace
robustness of the hash function itself against maliciotscks. 1he attacker randomly chooses some symbols and corrupts
Another goal for the attacker can be to mounbanial of them. We then count the number of corrupsedircesymbols
Service (DOS) attackeither by Sending a |arge number oﬁfter deCOdina The test is repeated 2,000 times for each value
fake objects that will be received in addition to the legiim and we plot the min/average/max/90% confidence intervals.
objects or simply by corrupting as many objects as possible.
This attack is trivial to launch. The challenge for the rgeei
is to quickly identify corrupted objects and get rid of them
with the lowest possible computational overhead

This work essentially focuses on the second type of attack,
where the attacker tries to consume the receiver resources.
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B. The Corruption Propagation Phenomenon

1) The Phenomenorin order to recover from erasures, the
iterative decoder rebuilds the missing symbols thanks ¢ th

number of corrupted source symbols after decoding
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received ones. Let us consider the following equation (dne o number of corrupted symbols transmited
the constraint equations defined by the LDPC parity check ,
matrix): So® S, @Sy ®Ss=0. Fig. 1. Number of corrupted source symbols after decoding r{ave

age/min/max/90 % confidence interval) W.R.T. the number of umied
We assume that the valugs, s,, s3 of these symbols have symbols received.

been received, but noty. Then: sy = s1 @ s9 D s3. If Ss
has been corrupted isf, = s3 ¢ ¢, whereas the other symbols Figure 1 shows that even a single corruption triggers on
have been correctly received. Thép is decoded as: average more than 700 corrupted symbols after decoding (i.e
3.5% of the object). However some experiments exhibit few
symbol corruptions, which means that the symbols corrupted
S, has inherited the corruption &;. Therefore, if a corrupted by the attacker have been used to rebuild only a small number
symbol is used during decoding, the decoded symbol inheritk symbols. In some tests there is no corrupted symbol at
from the corruption. Furthermore, each newly decoded symi@&ll after decoding, which means that the symbols corrupted
can be used to decode other symbols recursively, and a day-the attacker were symbols that have not been used during
ruption avalanche can take place. We call this ¢beruption decoding (e.g., because this symbol has already beentjebuil
propagation phenomenon
2) Codeword InterpretationThis phenomenon can also beC- First Conclusions

seen from a "codeword” point of view. Let us remind that, 1) For the Attacker:For the attacker, a massive corruption
in the context of AL-FEC codes, a codeword is the vect@f the object can be achieved with only a limited attack over
formed by all the bits of a certain position in the set of | , _ . 3
source and parity symbols. The output of FEC decoding is, "¢ Siz8 of each symbol has no impact and is not specified.

. i Note that if the transmission order is not sufficiently randaneceiver
always a codeword and this decoded codewardsatisfies can easily randomize the order in which the received symbasgiven to
the conditionHw = 0, where H is the LDPC parity check the decoder, without requiring additional buffering sirtbe target use-case

matrix. In our case, symbols are several hundreds of big, lo-¢: FLUTE/ALC) requires large buffering capabilitiesyvy. _
Note that we do not take into account the number of corrupiadty

say s, which means that the set of Slour_ce and parity Symp%bols after decoding since the ultimate goal of the attackén corrupt
form s codewords, each of them satisfying the above relatioihe object, not the temporary parity symbols.

$51DsaDss=51DsaDszsDe=359De =35
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the transmitted packets (a single symbol is often suffigienB. Details

which can be the attacker target. However, the attacker Wi||1) Sender SideThe sender performs FEC encoding and
usually have difficulties to create a limited targeted cptian. gends the source and parity symbols as usual. In parallel
This is not totally impossible though, but it remains excefhe randomly selects a subsgt of Nyeriy Source symbols,
tional. This latter aspect will be detailed in section V. by using a pseudo-random number generator and a seed,
2) For the ReceiverThe receiver can regard the importang | verif seed Let 7 denote the complementary subset, equal
corruption propagation phenomenon as either as a problgfihe source symbols that are notlin Then he computes
(e.g., a corrupted video will exhibit many glitches) or ag,e hash oveV/, calledprel_hash and the hash ovér, called
an .advantage. (detepting a 9orruption is easier). In our, Cag6mplhash The {prelverif seed; prelhash; comphash
VeriFEC heavily relies on this phenomenon. triple is then sent to the receiver. Since the security of thi
lIl. OUR SOLUTION: VERIFEC triple is crucial, the sender digitally signs it [9] so th&iet
receiver can check its integrity and authenticate the gende
) . ) (we assume the receiver knows the sender’s public key, e.g.
The idea is to take advantage of the propagation ph@mnks to a PKI). The signed triple can be sent in-band (using
nomenon by using an integrity verification of the decodegle unsecured channel) or out-of-band (e.g. in a web page).
object in two steps. First a low cost preliminary check destecsometimes a secure channel exists over which the triple can
the vast majority of corrupted objects, and if the prelimyna pe transmitted. This is not expected to be the usual solution
check does not detect anything, a complementary checkds Ugfhce it does not scale.
to obtain a 100% detection probabifity 2) Receiver SideThe receiver proceeds to a standard AL-
The preliminary check consists in verifying only a subset ¢fec decoding of the object, using the received symbols. In
the source symbols after AL-FEC decoding (figure 2). Thankgrajie| the receiver retrieves tHgrel_verif seed; prelhash;
to the corruption propagation phenomenon, we know that megfmplhash triple and checks the digital signature. Thanks
random attacks (even on a single symbol, the worst casg)this check, the sender is also authenticated. The receive
will trigger many corruptions in the decoded object. Sin@® When proceeds to a two step object integrity verification:
only check a subset of the object, the preliminary verif@ati hanks to the receivepirelverif_seedthe receiver selects the
cannot reach a 100% detection probability, but we will showgme subset’ of source symbols, computes the hash of this
in section IV that in practice the vast majority of attacke argpset and compares it to the receiyedl_hash If the two
detected. The second check consists in verifying the rén@inpashes differ, the receiver has detected for sure a coorupti
source symbols. Therefore, an object that successfullyguasoiherwise the receiver cannot conclude yet. Then he corapare

A. Principles

the two checks is certified 100% sure. the hash of the complementary subdétto the received
oreliminary complhash If the two hashes differ, the receiver knows for
Hasting | ventcation sure the object has been corrupted, otherwise he knows for

g ; sure the object is not corrupted.

DECODER |—» Decoded Object

i

IV. PERFORMANCEEVALUATION WITH RANDOM ATTACKS

ercation” We have designed a VeriFEC class that derives from the
underlying LDPCFecSession class of the LDPC-staircase C++
Fig. 2. VeriFEC preliminary versus complementary integrityifieation. open source codec version 2.0 [10]. We use OpenSSL version
0.9.8c for the cryptographic primitives. More preciselgithl
F T Sender T T~ | P Receiver ~ ~ " T T~ 1 signatures use RSA-1024 and the message digest is one of
MD5 (banned from secure systems), RIPEMD-160 [4], SHA-
1, and SHA-256.

We carried out experiments meant to appreciate the VeriFEC
preliminary verification performances in terms of corropti
detection capabilities and processing overhead. The same
configuration as that of section 1I-B.3 is used: the object is
composed oft = 20,000 symbols (except in section IV-C),
and the coding rate is equal tB = 2/3 (except in sec-
tion IV-C). We assume that the attacker does not want to
be detected by the preliminary check and therefore corrupts
Fig. 3. VeriFEC global view. a single symbol. We also assume that the attacker chooses

the corrupted symbol randomly (intelligent attacks will be

In this paper we only consider a single receiver. Howevaddressed in section V).

VeriFEC does not include any mechanism that would limit its

field of application, and since there is no information sent by pependency W.R.T. the Verification Ratio
the receiver(s) to the sender, VeriFEC is massively soalabl
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We first study the numbeN,.,;y of source symbols that
“4This probability is in fact only limited by that of the hash fition. must be verified (i.e. the number of symbols¥f) in order
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to reach the desired corruption detection probability with [ MDiECJiV;':P;t'\rAa?:GO[ SHA1 | SHA2%

the preliminary check. The higher th&/,.,;; value, the [ FEC+signed hash (s)[ 651 Mb/s | 473 Mb/s | 586 MbJs [ 337 Mb/s

: : . AT VeriFEC (s) 865 Mb/s 861 Mb/s 858 Mb/s | 828 Mbl/s
_hlgher_ the corruption detection probability (a full detent Refafive gain 5% | 24.78% TE IR 3TIA% | 59IR%
is achieved whenV,.,;; equalsk). However we also want Receiver: verification time only

H imi ooigned hash verif. (s)) 0.0657 s 0.1646 s 0.0937 s | 0.3032 s
to keep the processing overhead of the preliminary check O FEC v R e e

a minimum, and from this point of view,.,;s should be [Relatve gan &%) | 9445% | 94.85% | 94.65% | 94.88%
as small as possible. In order to find an appropriate value, we

carried out experiments where, for each verification ragioie TABLE |
(i.e. Nverif/k ratio), we calculate the percentage corruptiong3!TRATE AND PROCESSING TIMES OR/ERIFEC'’S PRELIMINARY CHECK
detected oveb0, 000 tests. VERSUS THE STANDARDFEC+SIGNED HASH SCHEME
100 T : L ————
e ] observe that VeriFEC reduces the overhead 9dySA%,
s 07 I which is in line with the theoretical 95% improvement (since
g oy 1 we only check 5% of the symbols).
5 e i 1 2) Complete verification:The second scenario is when
g s | A the preliminary verification has not detected any corruptio
g 99_44 i meaning that either the object is not corrupted or that the
003 | i preliminary check failed to spot the corruption. The cost of
ool the standard solution is compared to the cost of VeriFEC when
0

10 20 30 4 5 6 70 8 9 100 both preliminary and complementary verifications are done.

verification data ratio

Standard VeriFEC overhead

Fig. 4. Corruption detection probability of the preliminartyeck as a function (FEC+hash) | (prel+compl hash)

of the verification ratio,Nye,; s /k. SENDER FEC + hash

creation time 0.2946 s 0.2975 s 0.98 A%

As expected figure 4 shows that the detection probability | FocEVER FEC 0.3880 s 03911 s 0.80 A%

increases withlV,,;y. But we also see that checking only [ RECEIVER verif.
1% of the decoded object already enables to detect 99.22%ime only 0.1724 s 0.1753 s 168 A%
of the attacks. We believe thaerifying 5% of the symbols TABLE Il

to achieve a corruption detection probability of 99.86% is a
good balance between detection and computation overhead
This ratio will be used for the rest of the paper.

TOTAL PROCESSING TIME OFVERIFECVERSUS THE STANDARD
FEC+SIGNED HASH SCHEME

B. Computing Overhead Gains We can expect a little computation overhead because the
Since the verification ratio is now set to 5%, we cafat@ chunks given to the message digest function during the
study the computing gains made possible by the preliminaWo \{erlflcatlons are not necessarily c_ontlguous. We measur
check as well as the global (two step) VeriFEC overhead with USing the RIPEMD-160 hash function. Table Il shows that
respect to the reference solution (i.e. standard FEC couc &iS overhead remains small68A% (if we only consider the
signed hash over the entire object). To that purpose, we h&@sh verification time). . .
measured the various times at a receiver with different hash3) Computing Overhead Gains W.R.T. the Object Corrup-
systems, and we have calculated the average values over 99p Ratio: We now appreciate the benefits of VeriFEC as a
runs. The experiments are carried out on a Dual-Core Infeiction of the object corruption ratio (i.e. the ratio ofjetts
Xeon 5120 processor, 1.86 GHz/4 GB RAM/Linux host. Theorrupted by an attacker). The computation cost is fixed in
symbol size is set to 1024 bytes, which means that we £@Se of a standard "FEC plus complete hash” solution. On the
dealing with 20 MB objects, adding 10 MB of parity data. opposite, thl_s verification cost varies a lot with VeriFECE. |
1) Preliminary Check OnlyThe first scenario corresponds/ery few objects are corrupted, the (costly) complementary
to the case where the object is corrupted and the prelimina#yeck is almost always performed. On the opposite, if a
check detects this corruption (this is the most probable)cas@ge number of objects are corrupted, then most corruption
Table | compares the cost of the standard solution to tRge identified by the (cheap) preliminary verification, etgr
cost of VeriFEC with the preliminary verification only, bySaving processing time. _
showing their processing times and corresponding bitratles L€t us introduce some notations:
see that the relative gains are very significant, espeaonatly o Tv.rip: average time spent to verify the object,
modern, strengthened message digest algorithms, that@ncu e Tp.._verip: preliminary verification time,
significant processing load. With SHA-256, the relativengai ¢ Tcompi_verif: COMplementary hash verification time,
for FEC decoding/hash verification made possible by VeriFEC e Popject_corruption: OBjECt COrruption ratio,
amounts t9.2A% (even with SHA-1, this gain is significant, e Ppre_verif_Detection: Preliminary verification corruption
31.7A%). If we focus only on the verification process, we  detection probability.
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With the VeriFEC system, the average verification time as a V. ON INTELLIGENT ATTACKS

function of the object corruption ratio is given by: In this section, we consider the case of an intelligent and

powerful attacker. As the main benefit of VeriFEC is the
high detection probability of the preliminary verificatiowe
will only consider attacks that significantly reduce it,.i.e
We Use Pprc_verif_Detection = 0.9986 (section IV-A). that lead to a non detection probability higher thad.10—3
We have experimentally measured the other parametgsgction IV-A). Note that in any case, all attacks will fiyall
and, with RIPEMD-160, we found that on averagepe detected after the complementary check.
TPreliminary,Vem’f = 0.0091s and TCmnpl,Ve'rif = 0.1662s.

TVe'r‘if = TPreliminaT‘y,Verif + TCompl,Verif X (1 -
PObject,Corruption X PPartial,Hash,Detection)

A. Preventing Simple Intelligent Attacks by Extending the
02 ' VenFE'C+nglngglee'?;erﬁgmggggéggg 1 Subset of Verified Symbols

< Let us first assume that the LDPC code is known by the
015 1 attacker (the{k, n, seed triple is transmitted in clear text
. by default and fully defines the LDPC code [12]). In that
~ case verifying only a subset of the source symbols during the
I preliminary check is no longer sufficient. Indeed an ingeltit
wos | S | attacker can choose a corrupting codeword with only one 1’
N in the source bits. To find it, the attacker just needs to FEC
~ encode the source bit vector (since he knows the code), and
0 20 40 60 a0 100 retrieve the associated parity bits (of course, there aneyma
Opfectcamupton probanily '1’ in the parity bits in that case). Then the attacker adds th
Fig. 5. Verification time as a function of the object corruptiatio. codeword to the received symbols and forwards the resulting
symbols to the receiver The detection probability is then

Figure 5 shows the two curves for each solutions, n8flual toNyc,if/k, i.e. the verification ratio.
including the FEC decoding time (identical in both cases). One counter measure is those the verified subset over
We see that if there is no corruption, our system adds a litfédl the source and parity symbolsiowever,the complemen-
overhead. This overhead becomes null when the corrupti@y subset” remains the samand only encompasses source

ratio is 1.3%. Then, the higher the corruption ratio, the enofymbols. A consequence is that the receiver needs to rebuild
effective our system is. the repair symbols of. In fact, the iterative algorithm already

rebuilds a large majority of the parity symbols, if not alhy s
this overhead can be neglected.

C. Dependency W.R.T. the Object Size and FEC Coding Raténother counter measure is to hide the LDPC code. This

_ _ . technique will be fully described in section V-B.3.
We now analyze the influence of both the object size (in

terms of the number source symbols, regardless of the symbol
size which has no influence) and the FEC coding rate on tRe Preventing Low Weight Codeword Attacks
corruption detection probability. Since these two par@met We now describe another attack using so called "Low
were fixed in the previous experiments, we now want to makgeight Codewords” (LWC) and we introduce counter mea-
sure that the VeriFEC efficiency remains good for differerdures.
object sizes and coding rates. 1) The Need for Low Weight CodewordSor convenience,
Concerning the object size, experiments reported in [3hd without loss of generality, let us focus on one of the
show that the detection probability quickly increases witbodewords (we assume the attacker has received allthe
the object size. With objects containing 4000 symbols, tlsymbols, and therefore knows the correspondingdewords).
corruption detection probability of the preliminary vecdtion Let S.S() be the function that selects the subsef\of, ;s bits,
already amounts to 98.75%. So the VeriFEC system matclatsthe positions selected for tHé subset, in the codeword.
well the operational conditions of the underlying LDPCA corruption of w is not detected if the attacker creates a
staircase codes since thelgge block AL-FEC codes are codewordw’ # w such thatSS(w') = SS(w)®. Knowing the
known to perform well when the number of symbols exceedgrified subset and finding a codeword having null bits in the

CPU time (s)
o
2
T
/
1

a few thousands [11]. verified subset is therefore sufficient to launch a successfu
Concerning the coding rate, experiments reported in [3jtack for the preliminary verification.
show that the detection probability of the preliminary fied- A trivial counter measure is to hide the verified subset

tion remains fairly stable (between 99.53% to 99.90%), evérom the attacker. This can be done by one of the following
when the coding rate largely varies, betwe®83 and0.91. technigues: sending thgrel_verif seedon a secure channel,

Note that using coding rates beldw33 is not recommended
with LDPC-staircase [11]. 5 Of course the attacker hagpossible ways to add the corruption codeword
. . to the original symbolss being the symbol size in bits. This is not an issue.
We can therefore conclude that the object size and COdIngWe assume that hash function is collision-resistant, ie.pfobability of

rate parameters do not impact the VeriFEC efficiency. having two different objects whose hash collide can be megte



inria-00379155, version 1 - 27 Apr 2009

or sending it encrypted, or sending it at the end of thee the number of codeword of weight lower or equalio
transmission along with a secure way for the receiver tolkche@/e can give an upper bound on this quantity:
that packets have not been excessively delayed while isitran w ,
(indeed, if the verified subset is revealed once the symbols < o Z Cn o wCy w n® __wn
have been received, it is too late to perform an attack).rgidi v = on—k = gn—k = gn—k 4yl = on—kyyw
the prel_verif_seedis therefore an easy task. . .

If the prel.verif seedis hidden, it is still possible for the ~The probability that a codeword of weight lower than
attacker to hope that the verified subsewill not intersect P°€l0ng to this ensembl# is:
with the non null bits of the corrupting codeworel, The as- Card(T) .28 - wn
sociated success probability depends on the Hamming weight  Ps,w = Card(©) * No = g5 *No < 505
of e, H,(e), and the size of the verified subs#t.,;s. The

w

w

Non Detection Probability (NDP) is therefore: This probability goes to zero when n goes to infinity. In our
casew (resp.s) is two (resp. one) order of magnitude smaller
NDP = thann, so the probability that a LWC be transmitted is very
Nyerip—1 " ) small, and we can ignore them.
11 w if Hy(e) <n— Nyerig Let us consider now the second possibility. Finding a LWC
i=0 e of a known LDPC code can be achieved with an exhaustive
0 if Hy(e) >n — Nyeriy search, or with less naive algorithms [1]. The complexity of

such algorithms can be an obstacle for attackers with balinde
computational capabilities. However, in order to obtain an

n=30000 k=20000
T

10 — T unconditional security, we assume in the remaining of this
ol o Veratiezto o] work that the attacker can find a LWC if he knows the code.
—verl o0 This leads us to the problem of hiding the LDPC code.

107 3) Hiding the LDPC Code:Let us now focus on the
problem of hiding the code to the attacker. Changing the
code for each transmission is trivial with LDPC-staircase
codes, since these codes are are generated on the fly, using
a PRNG and a 32-bit seed that can be easily changed at each

; transmission [12]. As for therel_verif_seed(section V-B.1),
the seed used for the generation of the code can be easily

Fig. 6. Non Detection Probability (NDP) of the preliminaryeck as a hidden. o

function of the Hamming weight of the corrupting codeword farigus However an attacker can also usede recognition tech-

verification ratios (n=30,000, k=20,000). niques [13] to guess the code. The number of codewords

. . . required for the recognition of LDPC codes in a noisy en-
Figure 6 shows that the non detection probability faII§ironment has been studied in [2] (in our case we assume

quickly as the Hamming weight of the corrupting codeworﬂmt the intercepted codewords do not contain any errog. Th

increases. For a verification ratio 6%, codewords of Ham- problem of recognizing an LDPC code is equivalent to finding

ming weight larger thar200 have a non-detection probabilityits parity check matrix. With LDPC-Staircase codes, thetpar
lower than10~3, i.e. lower than the intrinsic non detection ) :

- . o check matrix isH = (H;|H,), where H; is a matrix with
et e e e TS S tegular o and colmn deees s an(r ) « (11
o the problem of finding "Low Weight Codewords” (LWC). staircase matrix. Let be the set of such matrices. L& be

i ) the column degree and= N, %5 be the row degree offy,
2) Finding Low Weight CodewardsThe attacker needs towhereR is the coding rate (these degrees are the result of

use LWC, that are known to exist with LDPC codes. Thﬁ1e [12] specifications for these codeg); defines a regular

attacker has two possibilities: bipartite graph withk left nodes of degre&’1 andn — k right
« he takes advantage of thebinary codewords extractednodes of degree. From [2](8) we have:

from the transmitted packets;
« or he tries to find LWC from the code definition itself, logs(card(e)) ~ Ni(t—1)
assuming he knows the LDPC code or is capable of t

inferring this LDPC codes thanks to the received packetphe necessary number of intercepted codewords for recmyeri
Let us consider the first possibility. Here the probabilitatt the code is of the ordelogs(n). Let assume that is such
one of theses codewords be a LWC, or that a linear combinathat s < wlogg(n) — C, whereC is a constant. The
tion of theses codewords be a LWC, must be considered. Letumber of potential codes (i.e. the choices) is then of tderor
N, be the number of codewords of weigiatin the codeC. 2¢ and therefore the probability of picking the good code
This number can be approximated by, ~ f,k Assuming (i.e. launching a successful attack)2s. By choosingC' =
that the s transmitted codewords are linearly independent(), we make this non detection probability equal2o'® =
they span a spac& of dimensions and from this set of 0.00098, i.e. a little bit smaller than the VeriFEC preliminary

codewordsp* different codewords can be produced. éf verification non detection probability (section V).
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Let us consider the same experimental conditions as significantly increases to reach almost 100%. The case of
section [I-B.3. Sok = 20,000 and R = 2/3, and it follows intelligent attacks aiming to reduce the detection prolignf
thatn = 30,000 andt = 6 (N; = 3 is the default with the preliminary check has been addressed. We demonstrated
LDPC staircase codes using iterative decoding). Therefdfeat low weight codewords attacks can be prevented by re-
wlogg(n) — C = 27.18, which means that it is sufficient ducing the symbol size and by hiding a small number of key
that s < 27 bits. parameters.

To conclude we can say that in practice, wheg 20, 000 Globally, thanks to its low computation overhead, VeriFEC
and R = 2/3, using symbols that are 3 bytes long, hidingan be of great help to mitigate random or intelligent denial
the LDPC code (i.e. the associated seed), and hiding thé service attacks. Additionally, if the threats only ind&
prelverif_seedprevent an attacker from attacking the prelimrandom attacks and if a high integrity probability is su#iu,

inary check of VeriFEC using the preliminary verification of VeriFEC only is mean-
ingful. However this is a particular case, not the generakca
VI. RELATED WORKS This scheme can be generalized to other LDPC codes, on

cgzcg:ndition these codes can be hidden instead of being totally

d&fined by the{n;k} tuple. It can also be used with Reed
%Iomon codes, but as the decoding speed of these codes is

oW compared to the integrity verification speed, the reéati

In [6], the authors introduce a scheme that corrects err
and verifies symbols with a "very high” probability when th
errors are random. Then they extend the work to address
more complex problem of intelligent attacks by means .
code scrambling. If we consider only the first contributior ) will be smaller.

. ; e ; . Finally, in future works we will study techniques to hide the

the solution relies on the use of a specific decoding algorith ; : .
. code to the potential attackers, for instance by adding know
for a so-called qSC channel (g-ary Symmetric Channel). This . . .
. : noise to the transmitted symbols. One goal is to relax the
solution completely differs from ours, that keeps the same . : .
. . . i current constraint on the symbol size 6ee section V-B.3).
iterative decoding algorithm, over the same erasure channe

but checks a subset of the source symbols after decoding. The
goals are different too, since VeriFEC does not try to cdrrec
nor locate corruptions_ [1] A. Canteaut and F. Chabaud. A new algorithm for finding miam-

: weight words in a linear code: application to mceliece’s toggstem
In [5] the authors present a system that allows to Venfy and to narrow-sense bch codes of length Shformation Theory, IEEE

on the fly the symbols before decoding. This verification Transactions on44(1):367—378, Jan 1998.
is done thanks to a homomorphic collision-resistant hask] M. Cluzeau and J.-P. Tillich. On the code reverse engingeproblem.

: : : : Information Theory, 2008. ISIT 2008. IEEE Internationalnfpsium
function. An advantage of this solution is that only correct on, pages 634-638, July 2008.

symbols are used by the decoder. So the decoded objectdp M. Cunche and V. Roca. Adding integrity verification caies to the
guaranteed not to be corrupted if decoding succeeds. But ldpc-staircase erasure correction codes. Research R&fit INRIA,

: : : " : February 2007.
this solution requires the use of addition 0\@5 which [4] H. Dobbertin, A. Bosselaers, and B. Preneel. RIPEMD:168trength-

are much more expensive than the Exclusive-OR operations ened version of RIPEMD.Fast Software Encryption, LNCS 1039, D.
used by LDPC-staircase codes. According to the authors, the Gollmann, Ed., Springer-Verlag.996.

. - M. Krohn, M. Freedman, and D. Eres. In-the-fly verificatiohrateless
0 ) )
system adds around 500% processing time overhead. TH% erasure codes for efficient content distribution.IEEE Symposium on

totally contradicts our goals of keeping the overhead asdsw Security and PrivacyMay 2004.
possible. Additionally, there is also a significant trarssion  [6] M. Luby and M. Mitzenmacher. Verification based decoding fpacket

: : based low-density parity check codedEEE Trans. on Information
overhead since a hash must be transmitted for each source Theory 50(1). January 2005.

symbol, whereas VeriFEC only requires the transmission qf] M. Luby, A. Shokrollahi, M. Watson, and T. StockhammeRaptor

{preLverif,seed; preJhash;comthasr}. Forward Error Correction Scheme for Object Deliver@ctober 2007.
IETF RMT Working Group, Request for Comments, RFC 5053.
[8] D. MacKay. Information Theory, Inference and Learning Algorithms
VIlI. CONCLUSIONS Cambridge University Press, ISBN: 0521642981, 2003.

. . . [9] R. L. Rivest, A. Shamir, and L. M. Adelman. A method for obiam
In this work we have shown that corruption detection capa- " gigital signatures and public-key cryptosystems. TectinRaport

bilities and source authentication can be efficiently adted MIT/LCS/TM-82, 1977. o

the LDPC-staircase large block AL-FEC codes. The propos@&l :{6508%f?ﬂﬂ;iﬁﬁgﬁg&i;nTri(;cf:)Se;?frr/l_arQe scale content distrbu-

scheme, VeriFEC, checks the integrity of the decoded object) v. Roca and C. Neumann. Design, evaluation and compac$daur

in two steps: the first step detects the vast majority of the large block fec codecs, Idpc, Idgm, ldgm staircase and Idgangte,

corruption with a very low computational cost, while the ﬁ\'lusl N Sii‘é'sz%'gznon small block fec codec. Research Repof, 522

second step finishes the verification to reach a 100% guaramty] v. Roca, C. Neumann, and D. Furodetow Density Parity Check
Thanks to comprehensive experiments, we found et (LDPC) Forward Error Correction June 2008. IETF RMT Working

IFEC dete(_:ts 99.86% O,f the most difficult random attac‘ffi%] 2;?;%?/2?:;?023 CDZ?;Eﬁ)nr}SénZFécilgz?ﬁon of a binéinear code.
(where a single symbol is corrupted) for less théf of the Discrete Applied Mathematicd11(1-2):199-218, 2001.
computation overhead required for a complete signed hash of

the object without any penalty in terms of erasure recovery

capabilities, the primary goal of AL-FEC codes. If the ramdo

attack is less subtle (e.g. if several symbols are corrQpted

then the detection probability of the preliminary verifioat
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