
Impact of Simple Cheating
in Application-Level Multicast

Laurent Mathy Nick Blundell
Computing Department

Lancaster University, UK
{laurent, n.blundell}@comp.lancs.ac.uk

Vincent Roca Ayman El-Sayed
Planète Project

INRIA Rhones-Aples, France
{vincent.roca, ayman.elsayed}@inrialpes.fr

Abstract— We study the impact of cheating nodes in
application-level multicast overlay trees. We focus on selfish
nodes acting independently, cheating about their distance mea-
surements during the control phase building or maintaining the
tree. More precisely, we study, through simulations, the impact
of simple cheating strategies in four protocols, representatives of
different application-level multicast protocol “families”: HBM (a
protocol based on a centralized approach), TBCP (a distributed,
tree first protocol), NICE (a distributed, tree first protocol based
on clustering) and NARADA (a mesh first protocol). We evaluate
the impact of cheats on the performance of the overlay trees as
perceived by their nodes and the underlying network.

I. INTRODUCTION

Application-level multicast [7], a technique whereby hosts
or end-nodes are organized into an overlay distribution tree
without requiring any specific support from the network (i.e.
based on normal unicast routing and forwarding), has been
proposed mainly as a way to palliate to the lack of deployment
of native IP multicast in production networks [6]. Application-
level multicast represents a trade-off between the efficiency of
IP multicast and the ease of deployment of group communica-
tions as a single source replicating the data sequentially, using
unicast, to a group of receivers.

Although there is no question about the superiority of IP
multicast for data distribution to large groups, application-
level multicast may still prove a cheaper solution for com-
munications within small groups (groups whose membership
is in the order of tens of receivers). Also, some systems and
applications need to establish relations and communications
requiring a semantics richer than that provided by IP. Levels
of control of the communication patterns and reliability of
the communication structure may be needed, that cannot be
provided by IP multicast. For example, because the group
members are the nodes of the overlay application-level multi-
cast tree, these nodes can interpret and modify the distributed
content “en route”, something not possible in native multicast
where application nodes are always leaf nodes of the tree.

For these reasons, we believe that application-level multicast
is complementary to IP multicast and will remain a useful
group communication tool if and when IP multicast is de-
ployed ubiquitously.

Application-level multicast is based on the collaboration of
group members with each other. Indeed, as group members
(i.e. receivers) are the nodes of the overlay tree, they rely on

each other to distribute the data. However, there is an intrinsic
imbalance of roles in an overlay tree: non-leaf nodes must
take part in the burden of replicating data along the tree, while
nodes which are, on the tree, closer to the source (the source
is often the root of the tree) observe lower propagation delays.
Also, the closer to the source a node is, the lower the loss rate
observed (since in normal data transfer from root to leaf nodes,
losses “accumulate” as data travels down the tree branches).
The collaboration is also extended to the control of the overlay
tree which is often built based on distance measurements
taken by the receivers amongst themselves. Whether a full
measurement matrix is required prior to the construction of the
tree, or the matrix can be populated overtime while improving
the tree, or partial group and measurement knowledge is
enough, is entirely dependent on the protocol used. As a rule
of thumb, the better the knowledge of the group membership
and distances between members, the better the performance of
the tree can be tuned, but the least scalable the corresponding
application-level multicast protocol is.

The important point here is that there is an opportunity for
receivers to try and improve their position on the overlay
tree by “manipulating” distance measurements, in order to
be positioned closer to the data source while limiting, to a
minimum, their replication burden. In the rest of the paper, we
will refer to such receivers as “cheats”, and the consequences
of their actions is the focus of this paper.

If we consider the very popular round-trip time (RTT) dis-
tance measurements used in many application-level multicast
protocols, a cheat could delay a probe received from another
receiver to artificially increase their measured distance in order
to try and reduce its replication burden (since the further
away another receiver is, the more likely that receiver will be
connected to another (closer) node). For scalability reasons,
most of the existing application-level multicast protocols re-
quire that each node measures its distance to other nodes in
the overlay tree and reports these distance measurements to
other nodes and/or uses these for decision making. A cheat
can therefore lie outright about its distance measurements, in
order to try and improve its position in the tree.

It is important to note that the cheats considered in this
paper do not attempt to disrupt the flow of data along the
overlay tree or even to break the protocol used to build the
tree, they simply try and improve their position in the tree.

In other words, we are not interested in disruptive behaviour
such as denial of service: once in the tree, although the cheats
can keep lying about measurements, they otherwise follow all
other protocol rules.

In some controlled environments, cheating is almost im-
possible. For instance, this is the case when application-level
multicast is used to provide a group communication service
in an IPSec virtual private network (VPN) environment [1].
Here the gateways of the various sites connected through the
VPN are fully secured and remotely controlled by the VPN
operator. However, such a situation belongs to a very specific
application domain.

Nevertheless, although the problems of cheats in
application-level structures (and overlay trees in particular)
has often been mentioned, we are not aware of any quantitative
study of their effects on application-level multicast protocols,
as well as on the underlying network. We believe that
understanding such effects is critical if the benefits offered
by application-level multicast are to be reaped in application
domains where the receivers do not pertain to the same,
tightly controlled, administrative domain (e.g. corporation),
as is the case in gaming, video distribution/webcasting, etc.

Therefore, in this paper, we will study the effects of simple
cheating strategies on four application-level multicast proto-
cols. These cheating strategies will be simple, but targeted to
the respective protocols: the cheating will be slightly different
depending on the protocol considered. For this reason, it is
important to note that our goal is not to compare the relative
ability of the protocols considered to deal with cheats, but
rather we seek to extract possible common consequences
and trends created by the presence of cheats in application-
level multicast overlay trees. Also, the protocols studied in
this paper were chosen as being representatives of different
application-level multicast protocol “families”, and because
simulators were readily available for these.

Furthermore, although there may exist more sophisticated
cheating strategies, in this paper we deliberately look at simple
ones, where selfish cheats act independently of each other and
make no attempt to evade possible detection.

In section II, we briefly review the different families of
application-level multicast protocols. In section III, we de-
scribe in more details the workings of the protocols chosen
for this study, and we describe the simple cheating strategies
used. Section IV presents our simulation study, while section V
concludes with a summary of our observations and some
recommendations.

II. APPLICATION-LEVEL MULTICAST

In this section, we give a brief overview of application-level
multicast protocol families.

A. Centralized Algorithms
The ALMI protocol [10] and HBM [12] are examples of a

centralized approach to application-level multicast. They have
a session controller node which gathers distance information
from all of the group nodes and calculates the overlay tree
which it uses to inform each node of its neighbours.

B. Distributed Algorithms

1) Mesh-First Algorithms: Narada [4] is an example of
a mesh-first application-level multicast protocol where nodes
arrange themselves into a well connected mesh on top of which
a routing protocol similar to DVMRP is run, to build per-
source overlay trees. The quality of the mesh, and therefore the
overlay trees are improved incrementally over time by nodes
adding and dropping mesh links based on a decentralised
utility function. SCATTERCAST [3] is another protocol taking
the same approach.

2) Tree-First: The NICE [2] protocol uses hierarchical
clustering techniques to build overlay trees whereby group
members arrange themselves into clusters with nodes closest
to themselves.

TBCP [9] and HMTP [15] build an overlay tree by having
receiver nodes recursively choose better parents to connect
to, in a distributed fashion. These protocols are said to use
a “limited scope approach”, because, at each step of the
recursion, a node only measures its distance to the children
of its current parent.

3) Coordinate Systems: The protocols presented in this
section use the notion of coordinates in various virtual ge-
ometrical spaces.

In the Delaunay triangulation method [8], each receiver
is assigned coordinates in a Euclidian plane and the tree
is computed via a distributed application of the geometric
process known as Delaunay triangulation.

Application-level multicast based on CAN [11] splits a
mutli-dimensional virtual torus into adjacent regions and uses
a sort of broadcast method to flood a data packet to all the
regions in a controlled way.

Finally, SCRIBE [13] exploits the properties of a peer-to-
peer network system to build application-level multicast trees,
by merging peer-to-peer “search” paths to form a tree.

III. THE PROTOCOLS IN OUR STUDY

In this paper, we chose to concentrate on four protocols:
HBM as a representative of the centralized approach; TBCP
as a representative of distributed, tree first, limited scope
approach; NICE as a representative of the method based on
clustering techniques; and NARADA as a representative of the
mesh-first approach.

A. HBM

1) Principles: In HBM, the construction and maintenance
of the overlay tree is under the control of a single host,
the rendez-vous point (RP) or controller. Periodically and
asynchronously, each group member measures its distance
to all the others (or a subset of them) and reports these
to the RP which thus knows the identity of each group
member and the communication costs between them. The RP
is then responsible for the overlay topology calculation and its
dissemination among the group members.

Although HBM is a general protocol that does not restrict
the properties of its overlay topology, the topology used in

this study is a degree-bounded shared tree of minimum cost,
based on RTT distance metrics.

2) Simple Cheating Method: An HBM cheat always reports
a distance of zero to the source, and adds 10 seconds to the
RTT distances it measured to the rest of the group. An HBM
cheat also delays by 10 seconds any measurement probes it
receives from any other group member. This probe delaying
action is mandatory since otherwise the RP could easily
detect cheats by comparing the A ←↩ B and B ←↩ A RTT
measurements. If they differ significantly, the RP could easily
conclude that one of A and B has a suspect behaviour. Then,
after cross-checking with other metrics evaluations where A
and B are implicated, the RP could easily determine which
node is cheating.

A cheat is thus aiming to become one of the source’s
children, while having no children at all.

B. TBCP

1) Principles: In TBCP, each node chooses individually
the maximum number of children (i.e. the fanout) that it will
accept. This fanout is strictly enforced and must have a value
of at least one. TBCP has been designed to operate with
minimum knowledge of the group membership and associated
measurement matrix. It is a recursive algorithm where, starting
at the tree root (which is considered to be the source) as a
potential parent, a newcomer measures the distance between
itself and the potential parent, along with the distance between
itself and all of its potential siblings (i.e. the potential parent’s
current children). These distances are reported to the potential
parent who, thanks to the measurements previously reported
by its existing children, has complete knowledge of the mea-
surement matrix for the “local” full mesh comprising itself, its
children and the newcomer. The potential parent then considers
all the local configurations for the acceptance of the newcomer
in the tree (i.e. considers the newcomer as a child if there
is room, considers sending the newcomer as a child of one
of its current children, considers keeping the newcomer as a
child while sending one of its existing children as a child
of the newcomer, and considers keeping the newcomer as
child while sending one of its existing children as a child
of one of its existing children), evaluating the “goodness”
of each local configuration with a score function. The best
local configuration (according to the score function) is chosen
and the appropriate node directed to its “next” potential
parent where the algorithm starts again. It is important to
note that when choosing amongst several equivalent local
configurations, TBCP always favours those resulting in the
newcomer “moving”, to provide stability for already joined
receivers.

TBCP has a maintenance method where nodes periodically
“re-join” one of its known ancestors chosen at random, but
for the purpose of this study, all nodes will always “re-join”
at the root, as we expect this to be the behaviour chosen by a
cheat who is trying to get as close as possible to the root.

2) Simple Cheating Method: A TBCP cheat will always
report a distance of zero to its potential parent. As all receivers

start joining the tree at the root, this provides the cheats with
an opportunity to try and stay as close as possible to the root.

Because cheats want to minimize the work they do for the
rest of the group, a cheat will choose the minimum allowed
fanout value (i.e. 1). However, to try and avoid having a child,
cheats also lie about their distance to other receivers: a cheat
always delays a received probe by a fixed amount of time (10
seconds) and always adds a fixed amount of time (10 seconds)
to the distance it reports from other receivers.

C. NICE

1) Principles: In NICE, nodes arrange themselves into a
hierarchy of clusters whereby clusters belong to layers and
nodes belonging to a cluster are close to each other in relation
to some given cost metric[2]. At the highest layer of the
hierarchy is a single cluster whose cluster members are each
the leader of a single cluster in each of the subsequent lower
layers. All nodes belong to a cluster in the lowest layer of the
hierarchy but cluster leaders are also members of a cluster in
their next-higher layer.

A node joins the group by first contacting a Rendez-vous
Point (RP) to discover members belonging to the highest-layer
cluster. The joining node then probes each of these cluster
members to discover the closest to itself with whom it makes
a request to join. The closest, highest-layer cluster member
replies to the joining node with a list of cluster members in
the next-lower layer to who it is the cluster leader. The joining
node then probes each of the cluster members in the next-
lower layer and the algorithm continues recursively until the
new node joins the cluster closest to itself in the lowest-layer
of the hierarchy.

Members of a cluster periodically exchange heartbeat mes-
sages with each other containing an estimate of the distance
from themselves to each of the other cluster members. When-
ever membership of a cluster changes (i.e. if a new node joins
or leaves) the cluster leader, using this cluster member distance
information, checks if it is still the center of the cluster and
thus the most appropriate leader, transferring leadership to
another cluster member if necessary.

The cluster leader periodically checks the size of its cluster
and splits the cluster if its membership exceeds an upper
bound. Likewise, if the cluster size falls below a lower bound
the leader merges its cluster with the closest cluster belonging
to the next-higher layer.

2) Simple Cheating Method: A NICE cheat sets out to join
a cluster in the highest layer possible in order to minimise its
distance to the data source. Note that, although NICE supports
any-source, application-level multicast routing through a bi-
directional overlay tree, in this study we consider only the
optimal case of a single source at the root. For a cheat to join a
cluster in the next-higher layer it must become the leader of its
highest-layer cluster and so tries to achieve leadership through
quoting, in its heartbeat messages, only a fraction of the actual
distances to the other cluster members. On recalculating which
node is closest to all of the other nodes the current cluster

leader will likely transfer its leadership to the cheat which, in
effect, gets pushed up to the next-higher layer.

Once a cheat has gained leadership of a cluster it will make
sure never to transfer leadership from itself to any other cluster
members, by reporting a distance of zero to all other cluster
members in its regular heartbeat messages.

In an attempt to preserve its resources, a cheat will never
merge its clusters in the lower layers if their size falls below
a lower bound and will also delay cluster join requests from
other nodes by 10 seconds to reduce the likelihood of these
joining the clusters. Note that, whilst a cheat will try to avoid
having large clusters in all of the layers it occupies, the cheat
will be required to forward data to members of its clusters in
each of the lower layers which could potentially result in a
high node fanout for the cheat as described in [2]1.

D. NARADA

1) Principles: Narada is a mesh-first, application-level mul-
ticast protocol whereby nodes organise themselves into a well
connected mesh through the addition of links to other group
members, termed their mesh-neighbours[4]. Nodes exchange
routing tables with their mesh-neighbours allowing per-source
data delivery trees to be constructed on the mesh using well-
known reverse-shortest-path routing techniques as in DVMRP
[5]. Narada therefore supports multi-source, application-level
multicast but group size is limited by the need for nodes to
have complete knowledge of all other group members.

On joining the mesh, a node selects, at random, a hand-
ful of nodes to add as mesh-neighbours from a subset of
currently active mesh members obtained using some out-of-
band bootstrap mechanism. As a result of adding these random
mesh links, the recently-joined node’s position in the mesh is
likely to be sub-optimal in relation to the given cost metric.
However, once connected a node is able to improve its position
in the mesh by periodically probing random members, learned
of through gossipping membership update messages with its
mesh-neighbours. When a node is probed, it returns a copy of
its routing table to the probing node who then calculates the
utility of adding a mesh link to the probed node. A mesh link
is deemed to be good if it improves the cost of a number of
paths in the probing node’s routing table such that the number
of improved paths is greater than some threshold parameter.

In order for nodes to keep adding better mesh links, it is
necessary for them to ’drop’ their least useful links, where use-
fulness when considering to drop a mesh link is approximated
by how many other members can be reached on shortest-paths
through the mesh link.

Consequently, the overall mesh quality improves over time
with respect to the given cost metric, resulting in more efficient
data routing paths on the per-source overlay trees.

2) Simple Cheating Method: On discovering the identity
of a data source in the mesh, through either receiving a data
packet or through out-of-band mechanisms, a Narada cheat

1Note that, in this study we do not consider the NICE protocol extention
whereby cluster leader’s delegate some of their data forwarding responsibility
to their highest-layer cluster members.

will set out to add the source as a mesh-neighbour and so
receive data directly from the source.

However, to reduce the likelihood of a cheat being dropped
as a mesh-neighbour to the source when the source eventually
discovers that it is not very useful, a cheat makes sure to
establish at least one mesh link to another node through which,
by lying to the source about the cost of shortest-paths in
routing update messages, it misleads the source to believe
that it can deliver data to all of the other group members
at a fraction of the actual costs (this is achieved by the cheat
reporting route costs to other nodes that are a small fraction
of their actual values). Once attached to the source, a cheat
is likely to be dropped by its other mesh-neighbours and so
in the same way, as with the source, misleads them as to its
benefit for reaching other members of the group.

Narada is susceptible to partitioning when the degree of
mesh nodes is small, so in order not to break the protocol
whilst preserving resources, a cheat maintains three mesh links
and no more (by setting its maximum out-degree – fanout –
to the appropriate value).

IV. EFFECTS OF CHEATING IN APPLICATION-LEVEL
MULTICAST

A. Performance Indicators

Several indicators are widely used to evaluate the per-
formance of application-level multicast protocols. Two such
classical performance indicators are the link stress and the
stretch.

The link stress (or stress, in short) is a measure of the
network efficiency of the application-level multicast protocols
and is defined as the number of redundant copies of a data
packet carried on a network link. The maximum stress is
therefore the maximum number of duplicates seen by any
single network link, while the average stress is the sum of
duplicates divided by the total number of network links making
up the branches of the tree. A major goal of all application-
level multicast protocols is, of course, to keep the value
of these stress indicators as small as possible, since higher
network stress levels (especially maximum stress) indicate
higher risks of network congestion.

The stretch, or relative delay penalty (RDP), is a measure
of the penalty paid by a receiver for receiving data on an
application-level tree rather than directly from the source.
It is defined as the ratio TD/UD, where TD is the tree
delay, that is the latency from the source to the receiver
observed along the tree; and UD is the unicast delay, that
is the networked delay resulting from direct communication
from the source to the receiver. The average stretch (over
all the receivers) and maximum stretch (i.e. worse penalty)
are therefore good indicator of the tree efficiency of the
application-level multicast protocols.

The above mentioned performance indicators are used to
characterize the intrinsic performance of application-level mul-
ticast protocols. However, in this paper, our focus is not on
benchmarking the performance of the protocols, but rather
to study the impact of cheats on their performance. In our

study, we therefore use the following performance indicators
which are the above mentioned metrics normalized to the
performance of the protocol without cheat, used as a reference:
• stress ratio = stress/stressref , where stressref is the

corresponding stress observed when all receivers behave
in an honest way.
We will be interested in the maximum stress ratio as a
measurement of the impact of cheats on the underlying
physical network. Indeed, maximum stress represents the
highest load created by an application-level overlay tree
on any network link, and thus the maximum stress ratio
gives a good idea about the way risks of congestion
evolve in the presence of cheats. Note that a stress ratio
smaller (resp. greater) than 1 represents an improvement
(resp. deterioration) compared with the case without any
cheat.

• stretch ratio = stretch/stretchref , where stretchref is
the stretch of a receiver observed when all receivers
behave in an honest way. Note that since the unicast delay
is dictated by the physical topology and routing in the un-
derlying network, it is independent of whether a receiver
cheats or not, and we therefore have stretch ratio =
(TD/UD)/(TDref/UDref) = TD/TDref , since UD =
UDref .
To have a better view of the influence of cheating in
application-level multicast, we will segregate the re-
ceivers in a group of cheats and a group of honest
receivers, and measure average, minimum and maximum
stretch ratios in each group. This will allow us to not only
study the impact of cheats on the performance observed
by honest nodes, but also study the effects independent,
selfish cheats have on each others. Note that as the overall
goal is always to try and minimize stretch, a stretch ratio
smaller (resp. greater) than 1 represents an improvement
(resp. a deterioration), with a minimum ratio therefore
representing the best improvement and a maximum ratio
representing the worst deterioration.

B. Simulation Setup

We have studied the effects of cheats in application-level
multicast on an Internet topology of 600 routers generated
by GT-ITM [14]. We have tested 25 groups of 20 receivers
and 25 groups of 100 receivers. Each group was tried with
respectively 5%, 10%, 20%, 30%, 40%, 50%, 75% and 100%
of cheating receivers. It is worth noting that all the protocols
were studied with the same groups and the same cheats within
these groups, while nodes hosting application-level multicast
agents were always connected to edge routers of the topology2,
to achieve a realistic set-up. Trees of maximum fanout of 2,
3, 4 and 5 were built for each of these groups3.

2For each trial, the total number of simulated nodes was therefore either
621 or 701, comprising the routers, the source and the receivers.

3More precisely, the parameter controlling the maximum number of chil-
dren was set to these values. It is important to note that some protocols, NICE
in particular in our study, do not enforce the fanout value at all times, but
rather use it as a target value for stable trees.

For protocols that improve the quality of their overlay trees
over time (e.g. NARADA and NICE), simulations run for 1000
seconds in order to ensure stabilisation of these trees.

As a comparison point, beside the case where the protocols
were run with all receivers behaving in an honest way, we also
built random trees for each of the groups, where the receivers
joined in random order and simply randomly connected to one
of the nodes in the tree (i.e. the source or an already existing
receiver), whose maximum fanout had not been attained yet.
These random trees are used as representatives of “bad”
application-level multicast trees.

The cheating techniques described in section III were imple-
mented in the HBM simulator that was used in [12], the TBCP
simulator used in [9], and the NARADA/NICE simulator4 used
in [2].

C. Network Stress Ratios

We study the stress ratio in order to assess the overall
impact of cheats in application-level multicast on the network.
Figures 1 to 4 depict the maximum stress ratio observed during
the simulations.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 20 40 60 80 100

M
ax

im
um

 li
nk

 s
tre

ss
 ra

tio

% of cheats

fanout = 2, 20 rcvers
fanout = 3, 20 rcvers
fanout = 4, 20 rcvers
fanout = 5, 20 rcvers

fanout = 2, 100 rcvers
fanout = 3, 100 rcvers
fanout = 4, 100 rcvers
fanout = 5, 100 rcvers

Fig. 1. Maximum link stress ratios in HBM

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 20 40 60 80 100

M
ax

im
um

 li
nk

 s
tre

ss
 ra

tio

% of cheats

fanout = 2, 20 rcvers
fanout = 3, 20 rcvers
fanout = 4, 20 rcvers
fanout = 5, 20 rcvers

fanout = 2, 100 rcvers
fanout = 3, 100 rcvers
fanout = 4, 100 rcvers
fanout = 5, 100 rcvers

Fig. 2. Maximum link stress ratios in TBCP

4myns simulator – http://www.cs.umd.edu/∼suman/research/myns/

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100

M
ax

im
um

 li
nk

 s
tre

ss
 ra

tio

% of cheats

fanout = 2, 20 rcvers
fanout = 3, 20 rcvers
fanout = 4, 20 rcvers
fanout = 5, 20 rcvers

fanout = 2, 100 rcvers
fanout = 3, 100 rcvers
fanout = 4, 100 rcvers
fanout = 5, 100 rcvers

Fig. 3. Maximum link stress ratios in NICE

 1

 1.5

 2

 2.5

 3

 3.5

 0 20 40 60 80 100

M
ax

im
um

 li
nk

 s
tre

ss
 ra

tio

% of cheats

fanout = 2, 20 rcvers
fanout = 3, 20 rcvers
fanout = 4, 20 rcvers
fanout = 5, 20 rcvers

fanout = 2, 100 rcvers
fanout = 3, 100 rcvers
fanout = 4, 100 rcvers
fanout = 5, 100 rcvers

Fig. 4. Maximum link stress ratios in NARADA

We see that the effects of cheats are quite different in the
various protocols. In HBM (figure 1) the maximum stress
ratio progressively increases with the percentage of cheats
because the centralized algorithm creates a shared tree using a
distance database that is less and less related to the reality. As
a consequence the resulting overlay topology is less and less
efficient. However, we also observe that the maximum link
stress ratio is better when most or all of the receivers cheat
than when the cheats are in smaller numbers. This is because
of the complete distance knowledge at the RP: when most of
the receivers cheat, the vast majority of distances advertised to
the RP are merely the real values shifted by a constant (except
of course for the distances to the source which are advertised
as zero, and therefore introduce some degree of randomness at
the top of the tree). We have also observed that HBM almost
always produces an overlay tree whose maximum stress is
smaller than that of a random overlay tree. This is again due
to the fact that HBM always strives to make the best usage
out of its complete distance knowledge.

TBCP (figure 2) shows a smaller maximum stress ratio, that
is somewhat independent of the group size and the number
of cheats. This is explained by the facts that, in TBCP, the
cheats have the luxury to ensure their own maximum fanout
is reduced to 1, thus shifting the stress from the edge of the

network (i.e. access links) towards links inside the network,
as the tree growths in “length” (with long branches of cheats
dangling from the root) rather than in “width”. In other words,
in TBCP, the effects of cheats is to shuttle data packets several
times across the network, while cheats do the minimum data
replication they can.

Because of the way TBCP overlay trees grow in “length” in
the presence of cheats, the maximum stress ratio was always
worse for random overlay trees than for TBCP. This is because
random overlay trees tend to concentrate more traffic towards
the edge of the network (as receivers limit their fanout to the
same value as honest receivers in TBCP – and random trees
therefore grow “wider” than TBCP trees with cheats), while
still producing the shuttling effects of data packets across the
network.

In NICE (figure 3), the situation is opposed to the one
observed for TBCP. Indeed, NICE does not strictly enforce its
fanout at all times (see section III-C.1) and therefore allows
clusters to form whose membership is greater than dictated by
the fanout value (in particular near the tree root), resulting in
some cluster heads serving more children than “they should”.
As a result, we see that for small groups, the maximum stress
ratio is small as most cheats would have occupied a position
close to the root if they had not cheated anyway, thus resulting
in an overlay tree very similar to a tree of honest receivers. For
larger groups, the maximum stress ratios can show the greatest
values we observed, because cheats create large clusters near
the root, thus increasing the stress on the access links of
nodes near the top of the overlay tree (including the root).
We therefore see that NICE has actually a tendency to grow
its overlay “too wide”.

No surprisingly, the maximum stress ratio was almost
always better for random trees than for NICE, because the
fanout is strictly enforced in the random trees.

In NARADA (figure 4), we make the interesting observation
that fewer cheats have a greater effect on the network effi-
ciency of the protocol than when cheats are present in larger
numbers. This is because the more cheats are present, the
fewer the opportunities that exist for a cheat to create “forced”
mesh links to nodes near the source, as the utility (see section
III-D.1) associated with each cheat decreases. This decrease
in utility is caused by the fact that, as the number of cheats
increases, honest receivers and cheats alike are fooled into
thinking that they are close to more and more members of the
group, in essence choosing cheats as mesh-neighbours with
equal probability. In other words, through the combination
of enforcing a strict degree for all nodes in the mesh and
the use of the notion of utility for the construction of the
overlay tree, NARADA forces the cheats to share the profits
of cheating. As a result, because cheats also report distances
to other receivers as a fraction of the real values (this strategy
is actually chosen to “beat” the utility function (see section
III-D.2), the more cheats in the group, the more NARADA
brings the mesh “back” to what it is when all receivers are
honest (to the exception of the “lucky” cheats who connect
directly to the root). This behaviour, although also observed

in HBM, is much more prominent with NARADA.
Figure 4 also shows that NARADA just does not cope

very well with small tree fanout (or mesh degree) values, as
reported in [4].

Not surprisingly given the discussion above, we found
that NARADA produces stress ratios that are worse than
those produced by a random overlay tree, when there is a
small number of cheats. However, as the number of cheats
increases, NARADA outperforms random trees as far as stress
is concerned.

D. Stretch Ratios

There are basically two ways to grow an overlay tree: in
length and in width. Growing an overlay tree in length results
in lower network stress levels at the expense of higher stretch
levels (as receivers are pushed away from the source/root and
therefore observe longer delays along the tree). The opposite
holds true for an overlay tree grown in width. Therefore, when
considering average stretch levels over all receivers in the tree,
we would observe that the application-level protocols that were
showing the smaller stress ratios show the higher stretch ratios,
and vice versa. To have a better understanding of the effects
of cheats on the stretch levels of receivers in an application-
level overlay tree, we will therefore focus separately on the
effects of cheats on honest receivers and amongst the cheats
themselves.

Figures 5 to 8 show the average stretch ratio for honest
receivers in the presence of cheats.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 0 10 20 30 40 50 60 70 80

A
ve

ra
ge

 h
on

es
t s

tre
tc

h
ra

tio

% of cheats

fanout = 2, 20 rcvers
fanout = 3, 20 rcvers
fanout = 4, 20 rcvers
fanout = 5, 20 rcvers

fanout = 2, 100 rcvers
fanout = 3, 100 rcvers
fanout = 4, 100 rcvers
fanout = 5, 100 rcvers

Fig. 5. Average stretch ratios for honest receivers in HBM

We see that in HBM (figure 5), the average stretch ratio
for honest receivers rapidly increases, even with a small
percentage of cheats. This is due to the fact that honest
receivers are immediately moved away from the source, and
this is particularly true with trees having a small fanout. We
also observe that the average stretch ratio for honest receivers
tend to stabilize as the number of cheats increases, because,
as explained in section IV-C, the more cheats are present,
the more accurate the RP’s neighbour selection becomes (and
therefore honest receivers end up in the “correct” part of the
tree).

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10 20 30 40 50 60 70 80

A
ve

ra
ge

 h
on

es
t s

tre
tc

h
ra

tio

% of cheats

fanout = 2, 20 rcvers
fanout = 3, 20 rcvers
fanout = 4, 20 rcvers
fanout = 5, 20 rcvers

fanout = 2, 100 rcvers
fanout = 3, 100 rcvers
fanout = 4, 100 rcvers
fanout = 5, 100 rcvers

Fig. 6. Average stretch ratios for honest receivers in TBCP

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 0 10 20 30 40 50 60 70 80

A
ve

ra
ge

 h
on

es
t s

tre
tc

h
ra

tio

% of cheats

fanout = 2, 20 rcvers
fanout = 3, 20 rcvers
fanout = 4, 20 rcvers
fanout = 5, 20 rcvers

fanout = 2, 100 rcvers
fanout = 3, 100 rcvers
fanout = 4, 100 rcvers
fanout = 5, 100 rcvers

Fig. 7. Average stretch ratios for honest receivers in NICE

We see that in TBCP (figure 6), the average stretch ratio for
honest receivers increases steadily, with the rate of increase
proportional to the group size. This is because, as cheats
occupy higher positions in the overlay tree, the remaining
honest receivers get pushed towards the bottom of the tree
and thus see an increasing stretch. Also note that even a
small increase in stretch, when more cheats (with a fanout
of 1) are added, can result in a more substantial increase in
average stretch ratio for honest receivers, as this number of
honest receivers decreases steadily (i.e. the increase in stretch
is shared amongst fewer honest receivers).

Expectedly, NICE (figure 7) shows little average stretch
ratio for honest receivers, almost independently of the group
size. This is again due to the fact that, during normal op-
erations of the protocol, clusters are allowed to grow bigger
than dictated by the maximum fanout, leaving more unaffected
honest receivers by the presence of cheats than in the other
protocols.

In NARADA (figure 8), we see that the effects of cheats
on the stretch of honest receivers stabilizes as the number of
cheats increases, especially in small groups. This is because,
as explained in section IV-C, NARADA operates in such a
way that the actions of individual cheats tend to balance each
other as the number of cheats increases. This effect is less

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 10 20 30 40 50 60 70 80

A
ve

ra
ge

 h
on

es
t s

tre
tc

h
ra

tio

% of cheats

fanout = 2, 20 rcvers
fanout = 3, 20 rcvers
fanout = 4, 20 rcvers
fanout = 5, 20 rcvers

fanout = 2, 100 rcvers
fanout = 3, 100 rcvers
fanout = 4, 100 rcvers
fanout = 5, 100 rcvers

Fig. 8. Average stretch ratios for honest receivers in NARADA

noticeable for larger groups, though, as the overlay tree gets
longer, and thus the effects on the stretch (of honest receivers)
accumulate faster.

Figures 9 to 12 show the average ratio in stretch for the
cheats themselves.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 20 40 60 80 100

A
ve

ra
ge

 c
he

at
 s

tre
tc

h
ra

tio

% of cheats

fanout = 2, 20 rcvers
fanout = 3, 20 rcvers
fanout = 4, 20 rcvers
fanout = 5, 20 rcvers

fanout = 2, 100 rcvers
fanout = 3, 100 rcvers
fanout = 4, 100 rcvers
fanout = 5, 100 rcvers

Fig. 9. Average stretch ratios for cheats in HBM

In all the protocols, we see a decrease in average stretch
ratios for cheats when the number of cheats are small. This
indicates that the cheats indeed get a better position near the
source when cheating. However, as more and more cheats
operate in an overlay tree, these compete with each other, and
the rate of increase of the average stretch ratio for cheats give
an indication of the ferocity of the competition.

This is particularly visible with HBM (figure 9). Cheats
experience an average benefit only if the fanout enables them
to be close to the source. Thereafter, the situation rapidly
deteriorates because the additional cheats are located lower
in the tree, beneath honest receivers. So when the number
of cheats increases, honest receivers experience on average
a slightly better stretch ratio than cheats. Yet this average
hides a major discrepancy between cheats who succeeded to
be directly attached to the source and others.

Figure 10 shows that competition between cheats is the
fiercest in TBCP. This is because cheats that have already

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 20 40 60 80 100

A
ve

ra
ge

 c
he

at
 s

tre
tc

h
ra

tio

% of cheats

fanout = 2, 20 rcvers
fanout = 3, 20 rcvers
fanout = 4, 20 rcvers
fanout = 5, 20 rcvers

fanout = 2, 100 rcvers
fanout = 3, 100 rcvers
fanout = 4, 100 rcvers
fanout = 5, 100 rcvers

Fig. 10. Average stretch ratios for cheats in TBCP

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0 20 40 60 80 100

A
ve

ra
ge

 c
he

at
 s

tre
tc

h
ra

tio

% of cheats

fanout = 2, 20 rcvers
fanout = 3, 20 rcvers
fanout = 4, 20 rcvers
fanout = 5, 20 rcvers

fanout = 2, 100 rcvers
fanout = 3, 100 rcvers
fanout = 4, 100 rcvers
fanout = 5, 100 rcvers

Fig. 11. Average stretch ratios for cheats in NICE

found a place in the tree, do not relinquish their position to
new cheats joining, the latter getting pushed down the tree.
Further more, the rate of “descent” towards the bottom of the
tree is exacerbated by the fact that cheats use a fanout of 1,
leaving other cheats far further away from the source than in
the reference overlay tree where all receivers are honest.

There is very little competition amongst cheats in NICE
(figure 11) and NARADA (figure 12). NICE, however, offers
better opportunities for cheats to better their positions in the
tree, thus resulting in lower average stretch ratio values for
cheats.

Tables I to IV, indicate when the average stretch ratios
for cheats become worse than in random trees. These tables
show that, from the point of view of cheats, the collective
benefit of cheating always eventually disappears, leaving the
“average” cheat in a worse position than if the tree was
random. However, this observation should be contrasted by
the fact that cheats are selfish and that some of the cheats
always see a dramatic improvement in their positions in the
overlay trees, as illustrated in figures 13 to 16.

These tables show that NICE and NARADA provide more
favourable conditions for cheats to collectively gain an ad-
vantage over the honest receivers, in term of stretch. Table II
also confirms that competition amongst cheats is very high

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 20 40 60 80 100

A
ve

ra
ge

 c
he

at
 s

tre
tc

h
ra

tio

% of cheats

fanout = 2, 20 rcvers
fanout = 3, 20 rcvers
fanout = 4, 20 rcvers
fanout = 5, 20 rcvers

fanout = 2, 100 rcvers
fanout = 3, 100 rcvers
fanout = 4, 100 rcvers
fanout = 5, 100 rcvers

Fig. 12. Average stretch ratios for cheats in NARADA

group size fanout % of cheats
20 2 20 – 30
20 3 30 – 40
20 4 30 – 40
20 5 40 – 50

100 2 5 – 10
100 3 5 – 10
100 4 5 – 10
100 5 5 – 10

TABLE I
HBM CHEATS VS RANDOM TREE: % OF CHEATS WHEN CHEATS ARE

BETTER OFF BEING IN RANDOM TREE.

in TBCP as a small number of cheats makes these cheats
collectively better off in a random tree.

Figures 13 to 16 show that cheating in NICE and NARADA
is potentially very rewarding for individual cheats, while the
benefits of cheating for an individual are similar in HBM and
TBCP. It should be noted that NICE gives more chances to
more individual cheats to improve dramatically their position
in the tree, then any other of the protocols studied in this paper.

Finally, for HBM, TBCP and NARADA, we have observed
that the maximum stretch ratio for honest receivers can be in
the order of several hundreds (i.e. one of the honest receivers

group size fanout % of cheats
20 2 20 – 30
20 3 30 – 40
20 4 20 – 30
20 5 40 – 50

100 2 0 – 5
100 3 5 – 10
100 4 5 – 10
100 5 10 – 20

TABLE II
TBCP CHEATS VS RANDOM TREE: % OF CHEATS WHEN CHEATS ARE

BETTER OFF BEING IN RANDOM TREE.

group size fanout % of cheats
20 2 never
20 3 75 – 100
20 4 40 – 50
20 5 40 – 50

100 2 75 – 100
100 3 40 – 50
100 4 30 – 40
100 5 20 – 30

TABLE III
NICE CHEATS VS RANDOM TREE: % OF CHEATS WHEN CHEATS ARE

BETTER OFF BEING IN RANDOM TREE.

group size fanout % of cheats
20 2 40 – 50
20 3 20 – 30
20 4 20 – 30
20 5 20 – 30

100 2 10 – 20
100 3 10 – 20
100 4 0 – 5
100 5 10 – 20

TABLE IV
NARADA CHEATS VS RANDOM TREE: % OF CHEATS WHEN CHEATS ARE

BETTER OFF BEING IN RANDOM TREE.

is several hundred times further away from the source than
it was in the reference tree). These situations occur when the
honest receiver is actually physically close to the source and
therefore gets displaced relatively very far by the cheats. The
noticeable exception is of course that in NICE, the honest
receivers are relatively undisturbed by the cheats and the
observed maximum stretch ratio for honest receivers are small
(usually less than 10).

V. DISCUSSIONS

In this paper, we have studied the impact of simple cheating
on the performance of application-level multicast overlay trees.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

m
in

im
um

 s
tre

tc
h

ra
tio

 fo
r c

he
at

s

% of cheats

fanout = 2, 20 rcvers
fanout = 3, 20 rcvers
fanout = 4, 20 rcvers
fanout = 5, 20 rcvers

fanout = 2, 100 rcvers
fanout = 3, 100 rcvers
fanout = 4, 100 rcvers
fanout = 5, 100 rcvers

Fig. 13. Minimum stretch ratios for cheats in HBM

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

m
in

im
um

 s
tre

tc
h

ra
tio

 fo
r c

he
at

s

% of cheats

fanout = 2, 20 rcvers
fanout = 3, 20 rcvers
fanout = 4, 20 rcvers
fanout = 5, 20 rcvers

fanout = 2, 100 rcvers
fanout = 3, 100 rcvers
fanout = 4, 100 rcvers
fanout = 5, 100 rcvers

Fig. 14. Minimum stretch ratio for cheats in TBCP

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

m
in

im
um

 s
tre

tc
h

ra
tio

 fo
r c

he
at

s

% of cheats

fanout = 2, 20 rcvers
fanout = 3, 20 rcvers
fanout = 4, 20 rcvers
fanout = 5, 20 rcvers

fanout = 2, 100 rcvers
fanout = 3, 100 rcvers
fanout = 4, 100 rcvers
fanout = 5, 100 rcvers

Fig. 15. Minimum stretch ratio for cheats in NICE

We have shown that simple cheating strategies always have
negative impact, either on the performance of the tree as
perceived by its nodes (both cheats and honest receivers), or
on the underlying physical network, or on both.

We have also witnessed a range of responses to the cheating
strategies from the studied protocols. However, none of the
studied protocols coped well, in the presence of cheats, for
all the performance aspects described. Actually, none of these
protocols were explicitly designed to deal with cheats, and all
showed, at various point of the study, that their performance
could quickly degrade to be worse than the performance
exhibited by a random tree.

Although the simple cheating techniques used in this study
were tailored to the specific protocols, it is worth noting that
they all exploited the fact that the protocols relied on receivers
to take their own distance measurements and either make
independent decisions based upon these measurements or ad-
vertise these to other nodes. In the case of the distance metric
used in this study (the RTT), detection of a cheat advertising
dramatically reduced distances seems rather straightforward:
the node which the cheat claims to be close to, can always
check its distance to the cheat, with tamper-proof probes (e.g.
probes that do not contain any timestamp information or that
have undergone a cryptographic modification such as hashing).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

m
in

im
um

 s
tre

tc
h

ra
tio

 fo
r c

he
at

s

% of cheats

fanout = 2, 20 rcvers
fanout = 3, 20 rcvers
fanout = 4, 20 rcvers
fanout = 5, 20 rcvers

fanout = 2, 100 rcvers
fanout = 3, 100 rcvers
fanout = 4, 100 rcvers
fanout = 5, 100 rcvers

Fig. 16. Minimum stretch ratio for cheats in NARADA

However, in order not to jeopardize scalability by increasing
the measurement overhead too much, such distance checks
should probably be carried out as a periodic sampling process
that eventually detects cheats. Note that such an approach is
only applicable for metrics whose values are independent of
the point of measurement (which is the case for the RTT
between two points and measured at either point, but certainly
not for the delay between these points). The sampling methods
should probably also make use of statistical methods to help
cope with natural variations in the measured values.

Nevertheless, it is not clear at all how effective such simple
distance sampling methods would be in the presence of several
cooperating cheats, since at the very least, the actual distance
between these may never be reliably verified. In such a case,
correlating the distance measurements taken among several
application-level multicast nodes may be a way ahead, but
doing so in a distributed fashion without requiring complete
knowledge, at all nodes, of the group and its measurement
matrix is a challenging problem.

On the other hand, it is probably impossible to ever detect,
or prevent, a cheat which delays measurement probes system-
atically, in order to artificially increase measured distances.
Such an “attack” can even easily be implemented by putting a
proxy in front of the node which desires to cheat. As a result,
cheat detection methods may just provide a “high-pass filter”
on measurement matrices (i.e. a method to weed out artificially
low distances but not artificially high ones). We will study the
impact of such detection methods on the performance of the
resulting overlay trees in the presence of cheats in our future
work.

Designing general cheat detection and/or prevention tech-
niques for various types of metrics is, we believe, an open
research challenge. Indeed, there is always the danger that
such techniques be designed on an ad-hoc basis, depending
on the metric and cheating methods used, resulting in some
kind of “cat and mouse” situation with cheats.

This paper was only concerned with selfish cheats operating
independently. The case of cooperating cheats, maybe using
evolutionary cheating strategies, is an open research challenge.

As future work, we will also study the effects of simple
cheating on coordinate-based methods, and the application-
level multicast protocols built on top of peer-to-peer systems
(see section II). For such protocols, the cheats will not only
have the opportunity to lie about their distance to other nodes,
but they will also be able to carefully “choose” their place in
the corresponding virtual geometric space.

REFERENCES

[1] L. Alchaal, V. Roca, A. El-Sayed, and M. Habert. A vprn solution
for fully secure and efficient group communications. In 8th IEEE
Symposium on Computers and Communications (ISCC’03), Kemer-
Antalya, Turkey, June 2003.

[2] S. Banerjee, B. Bhattacharjee, and C. Kommareddy. Scalable Applica-
tion Layer Multicast. In ACM SIGCOMM, Aug 2002.

[3] Y. Chawathe, S. McCanne, and E. Brewer. RMX: Reliable Multicast
for Heterogeneous Networks. In IEEE Infocom, Mar 2000.

[4] Y-H. Chu, S. Rao, and H. Zhang. A Case for End System Multicast. In
ACM SIGMETRICS, pages 1–12, Santa Clare, CA, USA, June 2000.

[5] S. Deering and D. Cheriton. Multicast Routing in Datagrams Internet-
works and Extended LANs. ACM Trans. Comp. Syst., 8:85–110, May
1990.

[6] C. Diot, B. Levine, B. Lyles, H. Kassem, and D. Balensiefen. De-
ployment Issues for the IP Multicast Service and Architecture. IEEE
Network, 14(1):78–88, Jan/Feb 2000.

[7] A. El-Sayed, V. Roca, and L. Mathy. A Survey of Proposals for an
Alternative Group Communication Service. IEEE Network, 17(1):46–
51, Jan/Feb 2003.

[8] J. Lieberherr, M. Nahas, and W. Si. Application-Layer Multicast with
Delaunay Triangulations. In IEEE GLOBECOM, Nov 2001.

[9] L. Mathy, R. Canonico, and D. Hutchison. An Overlay Tree Building
Control Protocol. In Proc. of Intl. workshop on Networked Group
Communication (NGC), pages 76–87, Nov 2001.

[10] D. Pendarakis, S. Shi, D. Verma, and M. Waldvogel. ALMI: an
Application Level Multicast Infrastructure. In 3rd USENIX Symposium
on Internet Technologies, San Francisco, CA, USA, Mar 2001.

[11] S. Ratnasamy, M. Handley, and S. Shenker. Application-Level Multicast
using Content Addressable Networks. In Proc. of Intl. workshop on
Networked Group Communication (NGC), Nov 2001.

[12] V. Roca and A. El-Sayed. A Host-Based Multicast Solution for Group
Communications. In IEEE Intl. Conf. Networking, Jul 2001.

[13] A. Rowstron, A-M. Kermarrec, M. Castro, and P. Druschel. SCRIBE:
the Design of a Large-Scale Event Notification Infrastructure. In Proc. of
Intl. workshop on Networked Group Communication (NGC), Nov 2001.

[14] E. Zegura, K. Calvert, and S. Bhattacharjee. How to Model an
Internetwork. In IEEE Infocom, pages 40–52, Mar 1996.

[15] B. Zhang, S. Jamin, and L. Zhang. Host Multicast: a Framework for
Delivering Multicast to End Users. In IEEE Infocom, Jun 2002.

