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Abstract

This work describes several techniques that we used to
design a multicast file transfer tool on top of the Asyn-
chronous Layered Coding protocol proposed by the RMT
IETF WG@. Their goal is to improve the overall perfor-
mances of that tool. More specifically we analyze sev-
eral object and symbol ordering schemes that improve
transmission efficiency and we see how the Application
Level Framing paradigm can help to reduce memory re-
quirements and enable processing to be hidden behind
communications.

1 Introduction

1.1 Motivations for Multi-Rate/Multi-
Layer Group Communications

Using several multicast groups is a scalable and efficient
way of sending information to a set of highly hetero-
geneous receivers, either in terms of processing power
or networking capabilities. In this approach the source
uses a layered data coding and transmits each layer in a
separate multicast group. Receivers join as many groups
as possible. If a receiver experiences losses, then he
leaves one or more groups in order to reduce its recep-
tion rate [10][16]. The high scalability property derives
from the fact that there is no feedback information flow-
ing back to the source.

This approach has long been used for the transmission
of multi-resolution video where each layer of refinement
is mapped onto a different multicast group.

The same approach can be used for multicast file
transfers. As the same amount of data is expected by
each receiver, high-end and low-end receivers differ in
the time they need to get data. How the source or-
ganizes data in the various layers is discussed later in
this paper. This kind of application has no real-time or
ordering constraint but assumes reliable transmissions.

Benoit Mordelet
Activia Networks, Sophia-Antipolis, FRANCE
http:/ /www.activia.net/

1.2 Quick Introduction to ALC

The ALC (Asynchronous Layered Coding) protocol pro-
posed by the RMT IETF WG provides a general frame-
work for the reliable transmission of files. It uses the
LCT (Layered Coding Transport) building block [7], a
Layered Congestion Control building block and a FEC
(Forward Error Correction) building block [8].

Throughout this paper the official ALC terminology
is used: a data message submitted by the application
to ALC is called an object. No assumption is made on
the nature and size of these objects. Each object is seg-
mented into one or more blocks, of limited size, usually
because of FEC codec constraints. Each block is further
segmented into data symbols, the unit of transmission.
Finally the FEC codec adds a certain number of redun-
dant FEC symbols.

Several transmission modes are possible [7]. In this
work we only consider transmissions in push mode (all
the receivers must be ready before the transmission
starts (synchronous start)), and in on-demand mode
(data is sent continuously in a loop, and receivers can
arrive at any time (asynchronous start), download the
file and leave).

Because of reliability constraints using FEC is
mandatory. [9] identifies three classes of FEC codes
and choosing one of them has many consequences on
efficiency [2], on the maximum number of FEC sym-
bols generated, and on the coding/decoding speed. This
work relies on a small block Reed-Solomon code. If not
the most efficient, this class of FEC code is currently the
most popular because of the availability of high quality
open-source implementations like [11].

2 Related Work

ALC raises the problem of data organization on the var-
ious layers. The problem of finding efficient cumulative
layered organizations has been addressed in [1] [4] [15].
A common denominator of these schemes is that they



rely on a deterministic algorithm to decide on which
layer and at what time to send each data packet. Be-
cause of that, efficiency is high (e.g. in [1] the whole
file can be received without any duplication). Yet sev-
eral problems like channel desynchronization or start
delay significantly reduce this efficiency [4]. Finally us-
ing a congestion control protocol can compromize this
efficiency as layers are added and removed dynamically.

Another class of cumulative layered organizations
consists in sending data and FEC packets in a fully ran-
dom order on the various layers [2]. In addition to its
simplicity, the idea is to have the same efficiency no
matter how layers are added or dropped and no matter
how losses occur (periodically, randomly, or in bursts).
Our work follows this random organization principle.

Finally [5] discusses the implementation of a multicast
file transfer tool. This tool is based on a Reed-Solomon
FEC codec (as us) but uses a single fixed rate layer and
provides no congestion control. Because of the single
fixed rate nature of the tool, some receivers frequently
miss packets due to a reception rate higher than the
possible disk access rate. Several strategies are analyzed
to overcome this problem. Note that if this application
is also called Fcast, it has no direct relationship with
our own FCAST tool (section 5.1).

3 The Various Meanings of Effi-
ciency

Efficiency has various meanings when applied to a file
transfer tool based on ALC.

e Ffficient transmissions: The number of duplicated
symbols (e.g. the same symbol received on various
layers, or symbols received after the decoding of
their block) must be kept as low as possible.

o FEfficient behavior in front of losses: Transmissions
must be robust in front of all forms of packet losses.

e Efficient CPU usage: It concerns either the source
or the receiver and can be a limiting factor on
lightweight hosts.

e Efficient memory usage at a receiver: This is the
amount of physical memory required to receive the
objects. With large objects it can quickly become
a limiting factor on lightweight hosts.

e Efficient disk usage at a receiver: Because of the
random nature of transmissions, a receiver may
quickly be limited by the non-sequential disk ac-
cess speed (e.g. if he tries to store symbols at their
final location). [5]

e Ffficient disk usage at the source: With huge files
whose size exceeds the physical memory size of the
source, storing data symbols on disk is unavoid-
able. Besides, because of the processing cost of
generating FEC symbols, these latter cannot be
produced just-in-time. Instead FEC symbols are
pre-calculated which still increases the storage re-
quirements. The problem is that the random na-
ture of transmissions quickly limits the transmis-
sion rate with the non-sequential disk I/O speed.

4 Our Proposals

4.1 ALF Applied to Multicast File
Transfer

The Application Level Framing (ALF) paradigm [3] says
(1) that the control and transmission units must be the
same for optimal efficiency and (2) that the applica-
tion is the best location to define this unit. Applied to
our case, the application can choose to cut a large file
into multiple independent fragments. Each fragment
contains all the information required to enable its pro-
cessing at a receiver, no matter the order in which it
is received. Note that with a small block FEC code a
large object is anyway split into several blocks. In that
case a fragment can be composed of b > 1 blocks. This
approach has several benefits:

e a reduced memory consumption at the receiver: a
receiver no longer needs to keep a copy of the whole
file in memory until the last missing symbol arrives.
Instead, memory can be freed as soon as a fragment
is completed.

e it postpones the moment when, by lack of physical
memory, disk storage of incoming symbols is re-
quired. This possibility may dramatically increase
the effective reception rate. Indeed, in the absence
of elaborated schemes like [5], symbols are stored
sequentially on disk. But the high randomization
of the symbol transmission order leads to inefficient
random disk I/Os when recovering each object from
the scattered symbols.

e processing can be hidden behind communications:
Each fragment can be processed by the application
as soon as it is received, instead of waiting the end
of reception of the whole file. This is more com-
fortable for a user as the file is almost immediately
available on receiving the last missing symbol.

Yet the ALF approach assumes that the network is
indeed the limiting factor which may not be true in all
situations (e.g. with CPU bounded hosts).



4.2 How to Deal with Multiple Objects?

The following issue is how to manage multiple objects?
These objects can be either the fragments of a given
file (section 4.1) or each of them be a separate file (e.g.
during a recursive directory transmission).
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(m/rand) (figures identify the object to which each sym-
bol belongs).

4.2.1 Sending Objects in Sequential Order

A first scheme, called “m/seq” (for Multiple objects,
SEQuential object order), consists in sending objects
in a sequential manner, i.e. all the symbols of object
i — 1 are sent before those of object i, even if within
each object symbols are sent in a random order. This
solution is obviously inefficient. Figure 1 shows that as
time goes, lower layers become more and more late com-
pared to higher layers (a host receiving all four layers
will get symbols of object 3 only from layer 3). This is
confirmed by the experimental results of section 5.3.

4.2.2 Sending Symbols in Random Order

A second scheme, called “m/rand” (for Multiple objects,
RANDom symbol order), consists in mixing all the sym-
bols of all the objects and sending them in a different
random order in each layer (figure 2). Here a host re-
ceiving all layers still benefits from all of them at any
time and reception finishes before time t4.

A wariant of this second solution, called “m/p_rand”
(for Multiple objects, Partially RANDom symbol or-
der), consists in using a partially random permutation
of symbols. In that case, the probability that a sym-
bol s is not permuted is: Pryo_perm(m/prand) >

1
total nb of symbols

4.3 What Symbols to Send in Each
Layer?

This section discusses a complementary issue, namely
what symbols to send in each layer.

Let k be the number of data symbols per block. Let
n be the total number of symbols per block (data plus
FEC). Using a Reed-Solomon FEC codec like over a
Galois Field GF(2%) (default) limits the n parameter to
256 and k to a small value for computational reasons
[11]. With k = 32 (as suggested in [5]), there can be at
most n — k = 224 FEC symbols for each data block. In
practice, because of the need to pre-calculate and store
them, we limit the maximum number of FEC symbols
to 3+ k = 96. A symbol is by default 512 bytes long
to avoid IP fragmentation therefore a large object is
segmented into 32 % 512 = 16 kbyte blocks. We identify
two strategies to assign symbols to layers.

4.3.1 Symbol Organization 1

For each block the same data symbols {0..k — 1} and
FEC symbols {k..n — 1} are sent in each layer. Then,
for each layer, the final symbol transmission order is
controlled by one of the three scheduling schemes pre-
viously defined: “m/seq”, “m/p_rand”, “m/rand”.

4.3.2 Symbol Organization 2

With organization 2 the n/k ratio is necessarily an in-
teger. With n/k = 4, data symbols {0..k — 1} are af-
fected to layer 0, FEC symbols {k..2k — 1} are affected
to layer 1, FEC symbols {2k..3k—1} to layer 2 and FEC
symbols {3k..n — 1} to layer 3. We say in that case that
there are “three FEC layers” and each group of four
layers forms a “layer cycle”. More generally layer ¢ con-
tains the symbols affected to layer ¢ modulo4 (figure 3).
Here also for each layer the final transmission ordering is
controlled by the scheduling scheme previously defined.

The obvious asset of this organization is that a re-
ceiver experiences no packet duplication within each
layer cycle (other sources of duplication are still pos-
sible though, e.g. when receiving additional packets of
an already completed block). This scheme implicitly as-
sumes that a low-end receiver can receive at least the
first two layers as no FEC packet is sent on the base
layer. An alternative is to merge layers 0 and 1.
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5 Experimental Results

5.1 The MCL Library and FCAST Ap-
plication

FCAST application MCL API
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Figure 4: The MCL library and the FCAST application.
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Figure 5: The FCAST encapsulation format of the 12th
slice of file /tmp/big_file.ps.

We implemented the ALC, LCT and RLC protocols
within a library, MCL (MultiCast Library) [12], built
on top of UDP/multicast IPv4 (figure 4). We also im-
plemented FCAST on top of MCL, a recursive multicast
file transfer tool inspired from [6]. We integrated all the
schemes of section 4 in FCAST. For instance when split-
ting a large file, several meta-data are appended to each
fragment to make them autonomous (figure 5). FCAST
also includes an application-level checksum to check the
fragment integrity. The whole trailer size is typically
around 140 to 170 bytes long, which is reasonable (e.g.
a 0.2% overhead with 64 kilobyte fragments).

5.2 Tests Methodology

Table 1: Test matrix showing the various combinations.

scenario description name org-1 org_2
tx. as a single object single yes yes

split in mult. objects, m/seq yes yes

sequential order

split in mult. objects, m/p-rand yes yes

partially random order,

imm. delivery upon rx

split in mult. objects, m/rand yes yes

random order with imm.

delivery upon rx

Table 1 summarizes the tests performed, showing the
various combinations between the transmission scenario
and symbol organization. We evaluate several perfor-
mance metrics: (1) the end of reception time of each

object; (2) the redundancy experienced by a receiver:

. number of duplicated symbols received _
dupjatzo - total number of symbols received (We con

sider here the two kinds of packet duplications: inter-
layer duplicates and extra packets received after the
completion of a block), and (3) the mazimum memory
required by a receiver.

5.3 Comparison of the Various Trans-

mission Schemes
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/ sequential tx

wlid ly random tx

random tx
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1 block each
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Figure 6: Experiments performed (~1 MB file).

This section compares the various transmission
schemes of section 4 during the transmission of a single
1042142 byte file (figure 6). In these tests, the sending
rate is voluntarily low. All the hosts are attached to the
same LAN to focus on our proposal performances with-
out being disturbed by those of the multicast routing
infrastructure.

5.3.1 Loss-Free and Lossy Transmissions

We first assume that no loss occurs in order to have a
fair comparison in an optimal situation. Because of size
limitations, this paper does not include the figures (see
[14]).



We then introduce random bursty losses according
to a Guilbert loss model: loss probability when previ-
ous symbol is received = p,; = 0.01, and loss prob-
ability when previous symbol is lost = ppeq = 0.75.
The stationary probability for a symbol to be lost is:

Pok = 0.0385; the average number of consecutive

1—pyad+pok
losses is: 17; - = 4 symbols; and the average number
1

of consecutive received symbols: P 100 symbols.

Because of the presence of a congestion control
scheme, high loss ratios are not expected to be frequent
under normal conditions. We perform the same exper-
iments as previously, repeating each test 40 times, and
plot the min/average/max values (figures 7 to 9).
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Figure 7: Transfer duration with various transmission
schemes (bursty random 1%/75% losses, ~1 MB file).
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Figure 8: Duplication ratio with various transmission
schemes (bursty random 1%/75% losses, ~1 MB file).

The relatively high loss rate prevented the receiver to
subscribe to more than three layers in all cases. In case
of the “m/seq/2” scheme, the receiver never managed
to complete all objects (between 48 to 61 objects out of
64 have been completed).
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Figure 9: Maximum buffer space at the receiver with
various transmission schemes (bursty random 1%/75%
losses, ~1 MB file).

5.3.2 Partial Conclusions

In all cases, the organization 1 versions have a higher
duplication rate than the corresponding organization 2
versions which confirms the theoretical results of [14].
Therefore we will only consider organization 2 in the
rest of this paper.

The “single/org_2/3_-FEC_layers” and
“m/rand/org_-2/3_-FEC_layers” have wvery similar
performances. For instance, the latter has a 0.7%
(no loss) to 1% (with losses) higher average recep-
tion duration.  The difference is more important
when considering memory requirements. Indeed, the
“m/rand/org_2/3_FEC_layers” approach enables be-
tween 14.9% (no loss) and 25.8% (with losses) memory
savings at the receiver.

In situations where receivers are highly memory-
limited, using “m/p_rand/org_2/3_ FEC_ layers” scheme
is surely the best solution. It requires between 42.9%
(no loss) to 47.4% (with losses) less memory than with
the “single/org_2/3 FEC layers” approach. It is in fact
an intermediate solution between the “m/seq” (neither
efficient nor robust in front of losses) and the “m/rand”
extremes.

Finally, sending objects in sequence is definitively a
bad strategy.

5.4 Application to FCAST

Previous results lead us to define three profiles:

e opt_speed to hide processing behind communica-
tions while optimizing reception speed. It is equiv-
alent to “m/rand/org 2”.

e opt_space to reduce the maximum memory re-
quirements, hide processing behind communica-
tions, and spread the CPU load at the receiver.



The price to pay is a slightly more important re-
ception time. It is equivalent to “m/p_rand/org 2"

e opt_cpu in situations where processing is the limit-
ing factor. Without this profile, symbol losses may
occur and would reduce the reception speed It is
equivalent to “single/org-2” with delayed FEC de-
coding (i.e. once all the required symbols of all
blocks have been received) and delayed object de-
livery to the receiving application.

These profiles concern both the source (to define the
object/symbol ordering) and the receiver (to postpone
FEC decoding). Therefore this option must be agreed
using an out-of-band mechanism before the transmis-
sion starts, otherwise the desired feature may not be
achieved (but without compromising the transfer). A
solution if receivers have different desires is to create
three sessions, one per FCAST profile, and to let each
receiver choose the most appropriate one.

Because of size limitations, this paper does not in-
clude the experiments carried out to assess the efficiency
of the FCAST profiles. The results are rather positive
yet. The interested reader is invited to see [14].

6 Conclusions

This paper describes several schemes that we used to
design an efficient multicast file transfer tool, FCAST,
on top of ALC. We show how the Application Level
Framing (ALF) paradigm can be used in this context
to reduce the memory requirements at a receiver and to
hide computation behind communications.

We also discuss the problem of object and symbol
scheduling on the various layers, assuming there is no
real-time constraint. We show that the transmission of
several objects (e.g. resulting from an ALF version of
FCAST) can be made several orders of magnitude more
efficient when using an appropriate scheduling that ran-
domly mixes all the symbols of all the objects.

All of these schemes have been implemented and ex-
periments carried out. Our results lead us to define
three profiles to FCAST: one of them improves the re-
ception speed by hiding computation behind commu-
nications; another one reduces the maximum amount
of memory required by a receiver; and the third one is
dedicated to CPU bounded hosts.

Last but not least the MCL MultiCast Library imple-
menting ALC and the FCAST tool are both distributed
under an Open Source / GNU GPL license and are avail-
able on the author’s home page [13].
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