On the Use of On-Demand Layer Addition (ODL) with
Multi-Layer Multicast Transmission Techniques

Vincent Roca
LIP6 - CNRS, theme Réseaux et Performances, Paris, FRANCE
INRIA Rhéne-Alpes, projet Planete, Grenoble, FRANCE
vincent.roca@inrialpes.fr - http://www.inrialpes.fr/planete/people/roca/

ABSTRACT

This work deals with the multicast transmission of data us-
ing multiple multicast groups. One reason to use multiple
groups is to address the potential heterogeneity of receivers.
But there is a risk that some of the groups are not used and
sending data to a group with no receiver has many costs that
are often underestimated. As IP multicast becomes widely
deployed and used, these issues may well compromise its
scalability.

In this paper we introduce a new protocol, ODL (On De-
mand Layer Addition), which enables a source to use only
the layers that are actually required by the current set of re-
cetwers. We describe its behavior when used with several
kinds of packet scheduling schemes (cumulative or not) and
different scenarios (one-to-many versus many-to-many). We
have implemented the ODL protocol, integrated it in the
MCL multicast library and we report several experiments
that assess its benefits.

1. INTRODUCTION

One trend of research in multicast communications is to
rely on several multicast groups. This is a scalable and ef-
ficient way of sending information to a set of highly het-
erogeneous receivers, e.g. in terms of processing power, of
transmission capabilities, or of power range.

This is used by video applications [5][24]. To accommo-
date the potential receiver heterogeneity, the source uses a
layered data coding and transmits each layer in a separate
multicast group. Users join as many groups as made possible
by their available bandwidth. If the associated congestion
control mechanism indicates that a user should reduce its in-
coming traffic, then he leaves one or more groups. As soon
as all the users behind the bottleneck router have left, this
branch of the multicast distribution tree is pruned, thereby
reducing the load on the router [15][23]. Scalability is guar-
anteed by the fact that adding or dropping a layer is a local
receiver decision that does not require any source implica-
tion (except for some minor synchronization purposes [23]).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

NGC2000 - Second International Workshop on Networked Group Commu-
nications; Stanford University, Palo Alto, California, USA, 8-10 November
2000.

Copyright 2000 ACM 0-89791-88-6/97/05 ..$5.00

ALC (Asynchronous Layered Coding) [13] is a recent scal-
able reliable multicast protocol proposed by the RMT IETF
working group that relies on multiple multicast groups. Un-
like the case of layered video streams, each ALC receiver
must get all the data. ALC can be used by many different
applications for either “on-demand”, “streaming” or “push”
delivery of data. In “on-demand” delivery, data is sent con-
tinuously and receivers arrive at any time. This mode is well
suited to the distribution of popular files (e.g. a video-clip,
the latest Linux distribution, etc.). In “streaming mode” a
receiver typically remains joined for a long period, receiv-
ing many objects (e.g. images) produced in real-time. ALC
builds upon many previous works in the area of multi-layer
data organization schemes [22][18], congestion control for
multi-layer transmission schemes [15][23], and forward error
correction (FEC) [17][14].

By lack of an appropriate mechanism, an application rely-
ing on multi-layer transmission will define a fixed number of
multicast groups, usually given as an argument at start up.
There is a risk that some of these groups are not used by any
receiver, especially with continuous file transmissions (e.g.
the number of receivers may largely vary between peak and
off-peak periods). There is also a risk that “badly educated”
people create sources with a highly overestimated number
of layers.

Minimizing the number of multicast groups defined by a
source is all the more important as these applications are to
become popular. In this paper we introduce a new proto-
col, ODL (On Demand Layer addition), that is well suited
to layered transmission schemes like ALC. It relies on the
presence of a receiver-oriented congestion control scheme for
layered transmissions (e.g. RLM [15], RLC [22]) where each
receiver chooses to add or drop a layer within the fixed set
of available layers. ODL’s goal is to enable the source to use
only the layers that are actually required by the current set
of receivers.

The rest of the paper is organized as follows: we intro-
duce the motivations in section 2. Section 3 details the ODL
protocol under many different circumstances. Section 4 dis-
cusses the initialization of the various protocol timers. Then
section 5 introduces its implementation, and presents sev-
eral experimental results. Section 6 discusses related work.
Finally we conclude.

2. MOTIVATIONS FOR USING ODL
2.1 How Many Layers?

The question: “how many layers should a source use”

turns out to be rather complex as the group membership
is by default not known by the source. Because of the lack
of an appropriate tool, we believe that content providers
will define a (largely overestimated) fixed number of layers,
without bothering whether they will be used or not. On the
opposite, with ODL a source can start with a small num-
ber of layers and progressively add or drop a layer according
to the receiver requirements. Because of various limitations
(e.g. CPU, network access, codec, etc.) the source will usu-
ally define an upper bound to the number of layers it can
offer.

2.2 \Various Costs associated to a Multicast
Group

The packets sent to a group with no receiver are usually
dropped by the first-hop multicast router. But there are
additional costs that are often underestimated: (i) the state
kept by multicast routers and (ii) the useless traffic.

Forwarding State Kept by Multicast Routers:

In order to assess the memory cost of a group in each mul-
ticast router, we analyzed the mrouted (version 3.8) dis-
tribution. We found that a group leads to the allocation
of (more than) 100 bytes of state information, no matter
whether there are receivers beneath this router or not (see
next section). This example is of course highly protocol and
implementation dependent (e.g. [21] discusses techniques to
reduce this cost). Yet it shows that state can be a source
of scalability problems (e.g. for 1,000 groups, at least 100
kilobytes of costly vendor specific memory are necessary).

The Case of Dense-Mode Protocols:

Dense-mode routing protocols, the “old legacy generation
of protocols”, rely on the periodical flooding of data. This
is the case for DVMRP and PIM-DM. This feature greatly
increases the network traffic and the router load even on
branches with no receiver.

A second consequence is that all the routers keep infor-
mation for this group, even if they do not belong to the
multicast distribution tree [1]. For instance, a router run-
ning PIM-DM keeps a context with the source and group
addresses, the state and a timer for each group in “prune
state”.

With this class of protocols ODL avoids both packet trans-
missions and forwarding state for unused multicast groups.

The Case of Sparse-Mode Protocols:

Because of their limitations, dense-mode protocols are pro-
gressively replaced by sparse-mode protocols that rely on an
“explicit join” mechanism. The most popular is PIM-SM.
This protocol first creates a unidirectional (i.e. source de-
pendent) shared (i.e. by all receivers) tree, rooted at a well
known RP (Rendez-vous Point). In a second step, each leaf
router contacts the source to establish a per-source shortest
path tree. If in theory switching from a shared tree to a per-
source tree occurs above some session bandwidth threshold,
in practice it occurs immediately, at the first packet recep-
tion (most vendors have set the threshold to zero kbps) [§].

ODL has little interest in case of a PIM-SM domain in
“shortest path tree” mode since: (i) forwarding state is only
kept along the distribution tree and (ii) without any receiver,
packets are dropped by the first hop router. ODL gains are
only local to the source, the LAN and the first hop router

(fewer packets sent and processed). This is different in “uni-
directional shared tree” mode, as group knowledge is kept
by the RP. In case of an empty group (i.e. when ODL is of
interest) packets are anyway sent to the RP (which may be
located far from the source), thereby creating both state in
the RP/first hop router and useless traffic.

The Case of MSDP for Domain Interconnection:

The evolution of inter-domain multicast led to the devel-
opment of PIM-SM/MBGP/MSDP [1]. The role of MSDP
(Multicast Source Discovery Protocol) is to inform remote
domains of the presence of a source in the local domain.
Whenever a new source becomes active in a given domain,
its local MSDP peer announces its presence (SA message) to
all directly connected MSDP peers, who then forward the
message to other peers. This information is periodically re-
freshed and is also cached to reduce subscription latency [1].
This periodic flooding to the (intentionally limited number
of) MSDP peers, and the information state they keep takes
place even if the group has no member. Using ODL has in
that case a clear advantage.

The Case of Future Multicast Routing Protocols:

Because of its limitations, the PIM-SM/MBGP/MSDP ar-
chitecture is only a medium-term solution. Single source
multicast (e.g. Express [12]) is a good candidate for the
future. It relies on a (root, address) tuple, makes the tree
source rooted, and can be implemented using (slightly mod-
ified versions of) PIM-SM/IGMPv3 [3]. The previous dis-
cussion on using ODL with PIM-SM//per-source tree applies
here also.

The Case of Reflectors and Host-Based Multicast:

But multicast connectivity is fragile and not as widely de-
ployed as expected. There are many reasons for that, in-
cluding a lack of interest from providers, a lack of proper
management tools, important scaling problems, etc. [8]. Us-
ing reflectors [7] as an immediate solution, and host-based
multicast [6] as a longer-term solution offers the possibility
to connect unicast and multicast domains.

or
multicast backbone

multicast capable domain

uni /
multicast capable domain

connexions
e C€ (one per layer)

unicast only domain

Figure 1: Layered source using a remote uni-
cast/multicast reflector.

Let us consider a source located in a unicast domain (fig-
ure 1). This source reaches the multicast backbone through
a remote reflector, located in a multicast capable domain.
Each layer is sent in a separate unicast connection to the re-
flector. Using ODL enables the source to stop transmissions
to the reflector for unused layers. The situation is exactly
the same with host-based multicast.

3. THE ODL PROTOCOL

We assume (i) that each layer is carried on a separate
multicast group. Therefore the source adds or drops a layer

by sending or not packets to a particular multicast address.
Once the source stops sending new packets to a group, the
soft-state kept by multicast routers (section 2.2) for this
group slowly disappears (e.g. mrouted uses a default 5 minute
timer). A receiver adds or drops a layer by joining or leav-
ing the associated multicast group. We also assume (ii) that
transmissions are cumaulative. Section 3.6 analyzes the use
of ODL when these assumptions are not met.

3.1 Sketch of the protocol
ODL has two working modes:

e by default, ODL behaves as a pure end-to-end protocol,
working in a request / response mode. Here ODL has
no requirement, neither on the router functionalities
nor on the multicast routing protocol in use.

e when appropriate, ODL can also poll the first-hop mul-
ticast router. Even in that case, end-to-end requests /
responses are still required during certain stages. Here
some assumptions are made on the first-hop router and
the multicast routing protocol in use (section 3.7).

mcast backbone

receiverl

(5) cancel reply

receiver2

(2) timeout

(4) PRESENT_OK

(a) end-to-end mode

mcast backbone

| receiverl

(1) are groups 1

and 2 prunet:l?/7

pruned group2

receiver2

(2) group 2 pruned

(b) router polling mode

Figure 2: The two working modes of ODL.

ODL relies on both the source and the receiver sides: it is
the receiver’s responsibility to ask for additional layers when
appropriate (e.g. if its congestion control module requests
it) and to respond to QUERY messages. It is up to the source
to create additional layers when requested by a receiver. Of
course the source can refuse (e.g. if its maximum number of
layers has been reached).

In pure end-to-end mode, the source checks periodically
that each multicast group is used by at least one receiver by
sending QUERY messages on each target layer (figure 2 (a)).
If no receiver responds, this (useless) layer is dropped. In
router polling mode, the source polls the first-hop router
that already keeps some information on group membership
(figure 2 (b)). In particular this router can know if the tree
is pruned or not.

ODL is designed so that the feedback is always unicast’ed
to the source. A feedback suppression mechanism is added

in order to avoid source implosion, but unlike protocols like
IGMP, SRM [9], etc. where answers are multicast’ed, ODL
does not require many-to-many multicast.

Synchronous versus Asynchronous Start:

layer_3 .
(highest layer) the source queries then drops layer 2
receivers

request source queries then drops |ayer 0
layer_2 layers ‘ /
layer 1 1/2/3 I
layer_0 \ |]
(base layer) } } }

to (txstart) t1 t2 tinme

low-end receiver R
high-end receiver R1

(a) Synchronous start

Rl requests layers 2 and 3 source queries then drops |ayer 3

AN i

query then drjop layer 2

layer_3
(highest layer|

R2 requests layer 1 query then drolpulayer 1

layer_2 \

layer_1 [
layer 0 [
|
T

(base layer)

continuoustx t1 t2 t3 t4 time

low-end receiver R2

high-end receiver R1

(b) Asynchronous start

Figure 3: Transmissions on each layer with a syn-
chronous or asynchronous start of the receivers;
with ODL only the grey areas are used.

Figures 3 (a) and (b) compare layer management at the
source with and without ODL. The high-end receiver, R;,
joins all four layers, and the low-end receiver, Ry, only joins
the first two layers. We consider two kinds of applications:

e an application doing a one time file transfer (figure 3
(a) where an MMG data organization [4] is assumed):
all the receivers must be ready before the transmission
starts (synchronous start). This is similar to the ALC
“push mode”.

e an application doing continuous file transfers (figure 3
(b)): receivers can arrive at any time (asynchronous
start). This is similar to the ALC “on-demand mode”.

Using ODL enables the source to remain as close as pos-
sible to the actual requirements of the receiver set (in light
grey for R1, and light/dark grey for R2). For instance lay-
ers 2 and 3 are quickly dropped after that R; has finished
receiving the whole file. Without ODL the layers remain ac-
tive (i.e. packets are sent) pointlessly (i.e. no receiver) also
during the periods corresponding to the white areas. Note
that so far we did not assume any latency between the time

Table 1: ODL messages.

type sent by | used by | kind of transmission | description

INFOREQ receiver | source unicast to source a receiver asks for information
INFO source receivers | multicast on layer 0 information on all active layers
LAYER REQ receiver | source unicast to source a receiver asks for a new layer
ADD_LAYER | source receivers | multicast on layer 0 a new layer has been added
DROP_LAYER | source receivers | multicast on layer 0 a layer is dropped

QUERY source receiver | mcast on target layer | does anybody receive this layer?
PRESENT receiver | source unicast to source yes, this receiver uses the layer
PRESENT_OK | source | receivers | mcast on target layer | PRESENT acknowledgment

the last receiver leaves and the time it is detected by the
source (see section 4).

3.2 Detailed Description for the Sending Side
in End-to-End Mode

We first consider the sending side and we assume (i) that
there is only one source and (ii) that receivers are not on
the same host as the source. In particular it means that the
source is not a receiver (these cases are addressed later on
in this paper).

At session start, the source uses a single layer. We assume
that the address of the associated group has been commu-
nicated by some external means.

To know if there is at least one receiver for a given layer,
the source periodically transmits a QUERY message on the
target group. Because transmissions are not reliable, the
QUERY message is sent several times (optimistically only 2
times in the current implementation)’. If no answer (PRESENT
message) is received after a given time, the layer is dropped.
Therefore the source issues a final DROP_LAYER message (to
let everybody know this layer no longer exists) and avoids
sending any packet anymore. The associated multicast tree
slowly disappears as the routers soft-state times out. On
the contrary, if the source receives a PRESENT message, the
layer is kept and an acknowledgment (PRESENT_OK message)
is echoed to the group. In order to detect duplicates, QUERY
messages include an identifier that is written back in PRESENT
and PRESENT_OK messages.

ODL uses two timers at the sending side: (i) the soft-
state_timer (periodicity of the QUERY messages) and (ii) the
drop_timer (waiting time before dropping a layer once the
QUERY has been sent). This is discussed in section 5.

Layer Dependency:

Using a cumulative scheduling scheme means that layer ¢ can
only be dropped if there is no layer > 4. In practice conflicts
often take place. In figure 4 we assume that the last receiver
leaves at time to. For each layer this departure is detected
at the next query stage. Because the layers timers are not
synchronized, layers 0 and 1 must wait that layer 2 has been
dropped before being dropped in their turn.

'1f all the QUERY are lost by all the receivers, the layer is
wrongfully dropped. Interested receivers will ask for it later
on, e.g. when receiving the following DROP_LAYER or a
future INFO.

, QUERY. . . ti meout =>dr opped!
e ——
layer 2 | |
(highest ayer) I |
| QUERY... ti meout =>. . . \ dr opped!
layer_1 IR
1
. QUERY. timeout=>. .. \ dr opped!
layer 0 [oo
(baselayer) | | time
' t_0O: receiver leaves =

Figure 4: Interdependence of layers with a cumula-
tive scheme; lower layers drop is delayed by layer 2.

An Optimization; The Suppression of Signaling on Lower
Layers:

A consequence of layer dependency is the possibility to stop
the polling on lower layers. Only the highest layer is polled,
thereby reducing the total ODL signaling overhead. If the
highest layer is dropped, the source issues QUERY messages
on the remaining layers, drops useless layers (if any) and
only polls the new highest layer.

3.3 Detailed Description for the Receiving Side

A new receiver first joins layer 0, waits a little bit for
information ((INFO message) and sends to the source an
INFO_REQ message if nothing is received. The answer (INFO)
informs each receiver of the current situation: number and
features of the layers in use. The receiver can then join one
or more layers depending on what his congestion control
module says.

A receiver who wants to benefit from an additional layer
not yet available sends a LAYER_REQ message to the source
using unicast. The source replies with an ADD_LAYER mes-
sage if he agrees, with an INFO message (specifying that
the maximum number of layers has been reached) other-
wise. Note that this mechanism only adds a small latency
during the layer addition process, in the order of one RTT
(LAYER_REQ/ADD_LAYER exchange), and the time required to
create the multicast tree is almost the same, with or without
ODL”.

Another major task of a receiver is to answer to QUERY
messages (figure 2 (a)). For the sake of scalability, the
PRESENT message is not returned immediately but after a
random time. At timeout and if no other message has
been received, the receiver sends a PRESENT message in uni-
cast to the source and waits for an acknowledgment. If no

2In fact layer addition latency is essentially delayed by the
congestion control module that dictates when to add a layer.

PRESENT_OK message is received after a given time, then a
new PRESENT message is sent. After a given number of un-
successful tries (e.g. if the connectivity with the source is
lost) the receiver drops the layer.

3.4 The Case of Multiple Sources

The case of many-to-many transmissions is more complex.
In particular the sources can be heterogeneous and can offer
a different number of layers. Therefore ODL must enable an
individual treatment of each source. To do so, the sender’s
private address (address/port number) of a message is al-
ways communicated to the receiver. If the multicast library
(section 5.1) always reads ODL messages using the recvfrom
or recvmsg socket system calls, then the sender’s address is
known and the receiver can reply in unicast. This feature
is used for instance when a receiver requests a layer to a
particular source: the LAYER_REQ is directed to this source
by specifying its private address and using unicast.

3.5 The Case of Receivers on the Same Host
as a Source

A receiver on the same host as a source can usually receive
data at full transmission rate and will therefore request all
the layers. This is a problem if this host is the only one to use
the upper layers as it would defeat ODL. The same situation
occurs if the source is also a receiver. To avoid it, the source
uses a TTL of 0 for layers where all the receivers are local.
Therefore packets never leave the host. But whenever there
is at least one foreign receiver, the TTL value specified at
application start is used instead. The algorithm is given
below:

on receiving a LAYER_REQ message for a new layer:
if (the message comes from the local host)
add layer in ‘‘local transmission mode’’
(i.e. with a TTL of 0);
send ADD_LAYER (TTL of 0);
else
do the normal processing (ADD_LAYER...);
activate the layer;

on receiving a PRESENT message:
if (the message comes from the local host)
note that there is at least one local receiver;
do nothing else yet...
else
do the normal processing
(PRESENT_QOK, reset the drop timer);

on drop_timeout:
if (there is a local receiver)
go into ‘‘local transmission mode’’
(i.e. with a TTL of 0);
else
drop the layer;

Note that this behavior can be generalized to hosts located
at some distance (i.e. within a given TTL scope) from the
source (e.g. on the same LAN).

3.6 The Case of Non Cumulative Packet Sche-
duling Schemes

ODL can be used with non cumulative approaches too.

For instance, with Destination Set Grouping (DSG) [2], data

is sent over separate multicast groups at different rates and

a receiver chooses the appropriate group. To receive data

faster, a receiver changes (instead of adding) of group. If
the new group is not already active, then he first asks for
it with a LAYER_REQ. Because it generates some delay, the
receiver keeps on listening to the previous group until the
new one is available. There are two differences yet: (i) the
ODL signaling previously sent only on the base layer is now
sent to all the groups, and (ii) dropping or adding a group
is immediate as there is no layer dependency.

3.7 Description of ODL in Router-Polling Mode

With a source-rooted tree the first-hop multicast router
can usually say if the tree is pruned or not. Therefore the
source can directly poll this router rather than receivers, us-
ing an extension (to be defined) to IGMP. This extension
is called “reverse-IGMP” (revIGMP) as it works in the op-
posite way (with IGMP the local multicast router collects
information on group membership). The advantages are:

o less traffic (e.g. hardly any QUERY/PRESENT/PRESENT_OK
message)

e 1o risk of source implosion

o takes advantage of information already available

The details of revIGMP, its applicability and limitations are
out of the scope of this paper.

4. ANALYTICAL ANALYSIS OF THE PRO-
TOCOL TIMERS

4.1 The DROP Timer

The drop_timer, maximal waiting time before removing
a layer, depends on:

e the RTT to the farthest receiver: maz_RTT (request
/ response exchange) and

e the maximum time a receiver can wait before answer-
ing to QUERY: Thazwait-

Tdrop = max_RTT + Tmazwait (1)

In practice max _RTT is rather difficult to evaluate [11]
[9]. To avoid this extra complexity®, we define a “reason-
able” constant: reas-maxz_RTT (1 s in the current imple-
mentation) and an adaptive parameter: RF > 1, the Ro-
bustness Factor. RF is controlled by a multiplicative in-
crease/additional decrease (MIAD) algorithm given below
and we use:

max_RTT = RF * reas-max_RTT

3Note that we do not try to find an accurate maximum
RTT estimation (unlike TCP where a weighted average is
used). Having a rough large upper bound is sufficient in our
case and using a MIAD scheme limits the possible flip-flop
behavior of ODL.

the source issues a DROP_LAYER with a new identifier;
if (the source receives no LAYER_REQ with the same
identifier within two max_RTT)
// the drop_timer value was probably correct,
// so decrease RF...
RF = max(RF - add_factor, MINIMUM_RF_VALUE);
max_RTT = RF * reas_max_RTT;
if (the source receives a LAYER_REQ with the same
identifier)
// the drop_timer value was too short,
// so increase RF...
RF = min(RF * mult_factor, MAXIMUM_RF_VALUE);
max_RTT = RF * reas_max_RTT;

4.2 The SOFTSTATE Timer

The softstate_timer is the period between two QUERY
requests. This timer can be managed more or less aggres-
sively.

Aggressive Polling:

An aggressive management scheme tries to minimize the de-
lay between the departure of the last group member and the
layer drop. Because transmissions are faster on higher lay-
ers than on lower ones, it is natural to check the presence
of receivers more frequently on higher layers, i.e. to use a
smaller value for the softstate_timer: Tss(k). We can de-
fine a cost function for layer k: Av_Cost(k), as the average
number of packets sent between the time the last receiver
leaves and the time ODL detects that this layer is no longer
used. Therefore, if we assume a uniform distribution:

(Tss(k) + Tdrop)
2
where rate(k) is the transmission rate for this layer. We

want to keep Av_Cost(k) below a fixed threshold for all lay-
ers: Av_Cost. Thus:

Av_Cost(k) = * rate(k)

2 % Av_Cost

Too (k) = rate(k)

- Tdrop

We don’t want T, (k) to become negative (which means
that the target cost is not feasible for this layer), so we define
a minimum value: min_T;s. Likewise we require that T (k)
remains below a maximum time, max_Tss . It ensures that
an unused multicast group can not last longer than maz T,
seconds. Thus:

2% Av_Cost

rate(k) ~Tarop))

(2)

Tss (k) = min(maz Tss; maz(min Ty

Fixed Rate Polling:

A simpler solution is to use a constant sampling rate in the
[min_Tss; max Tss] interval for all layers, thereby ignoring
their individual features.

4.3 Scalability Management

The ODL feedback suppression mechanism has limitations
in case of very large groups. Several parameters, analyzed
in section 5.5, can influence the average number of PRESENT

messages returned. In order to avoid any risk of source im-
plosion, ODL adapts its QUERY sending rate. This is easily
done by making the lower bound of the softstate_timer
depend on the number of replies obtained: Nyepiies(k) (this
is in practice a weighted average). Let maZ,epises be the
maximum number of replies desired per second. Thus we
must ensure that:

N'replies (k)
Tss (k)

and the new lower bound of equation (2) becomes:

S MaZTreplies

N'replies (k)

max(min_Tss;
MAaZTreplies

®3)

Reducing the polling frequency does not contradict ODL’s
goals. It only happens with large multicast groups for which
the probability of having all the receivers leave simultane-
ously is low in “on-demand” mode.

Another complementary solution is to advertise a new
Tmazwait(k,t+1) in each QUERY message and to make it de-
pend on the previous Nyepiies(k,t). If Nyepiies(k,t) is above
MAZreplies, then Tmazwait(k,t + 1) is increased, thereby re-
ducing the number of replies (figure 8 (b)), otherwise it is
reduced. A MIAD algorithm can be used for that.

5. PARTIAL EVALUATION
5.1 The ODL Building Block

ALC header
‘ hdr_l en ‘ ‘X_flag:1 '
0 8 16 24 32
L‘HEL:Ien ‘ HET=0DL ‘n‘sgtype ‘ '
optional field (type specific)
of variable length

ODL extension header

Figure 5: ODL extension header format appended
to the ALC header.

We have implemented the ODL protocol as a building
block (~1000 lines of C) that we integrated in our application-
level MCL library [19]. This library relies on UDP /multicast
IPv4. The ODL messages are piggy-backed to data packets
thanks to the concept of extension header (figure 5) of ALC
[13]. Any number of ODL headers can be attached as long
as the MTU is not exceeded. This solution greatly reduces
the transmission cost for downward signaling (source to re-
ceivers).

5.2 Test setup

The tests include a source that performs a one-time file
transfer (400 kbytes), uses five layers, a cumulative schedul-
ing scheme, and a synchronous start. The situation is similar
to that of Figures 3 (a). The average cumulative through-
put is respectively 5, 10, 20, 40 and 80 kbytes/s. There
are two receivers: the high-end receiver, Ri, subscribes to
all five layers (0 to 4), and the low-end receiver, R», only
subscribes to the first three layers (0 to 2). Three hosts

connected to an Ethernet LAN are used, one for the source
and the tcpdump tool, the two others for the receivers. The
optimization mentioned in section 3.2 is not enabled.

5.3 Benefits of ODL with Aggressive Polling

Traffic measurement
80000

v ‘from SF‘JUVCG L
70000 f |

60000 ‘

50000 ‘

40000 !

—

30000 |

20000

instantaneous throughput (bytes/s)

S it
10000 ! #

£

0 10 20 30 40 50 60 70 80 90
time (seconds)

(a) without ODL

Traffic measurement
90000

T T
from source —+—

80000

@ Wﬁi Yi# drop a layer :----- }
8 70000 ff i

B

S 60000 | 1

£ \

=

© 50000 -

I} ‘ ‘: :

=y .

§ 40000 L

o “

% 30000 =l

§ 20000 i g i

@ Rl R

10000

0 10 20 30 40 50 60
time (seconds)

(b) with ODL

Figure 6: Traffic at the source without/with ODL.

Figures 6 (a) and (b) show the resulting traffic at the

source. The parameters are: Av_Cost = 40 packets, min_Ts; =

0.2 s, max_Tss = 20 S, Trmazwait = 0.4 s and RF = 1. In
figure 6 (b), the five vertical lines after time 11 s show the
drop of each layer. The isolated points illustrate the sending
of a QUERY message on a layer.

We see that ODL periodic checks are efficient: the higher
the level, the faster the receiver departure is detected and
transmissions stopped. Layer 3 is dropped only a few sec-
onds after that R; has left (at time 10.9 s). An analysis of
tcpdump traces show that only 64 data packets have been
sent during this interval on layer 3, which remains in line
with the [0; 2 * Av_Cost] target. For layers 1 and 0, 65 and
74 useless packets are respectively sent after the departure
of Ry (at time 43.5 s). Once again it remains inferior to the
2 % Av_Cost maximum.

From table 2 we see that ODL reduced by 25.1% the total
number of bytes on the LAN and by 22.5% the total number

of packets. Of course this result greatly depends on the
scenario in use: number and features of the set of receivers.
At the same time ODL’s overhead (i.e. the number of bytes
introduced for ODL signaling) remains very low as it only
represents 0.54% of the total traffic (in bytes). This is largely
due to the fact that ODL messages sent by the source are
often piggy-backed into data packets. Using ODL only on
the highest layer (section 3.2) would further reduce ODL’s
overhead.

5.4 Impacts of the 4v_Cost Parameter

ODL Overhead
35 29
sl] 28 N

ODL Relative Gains

25
2
15
1
05

27
26
25
24
23

0 22
0O 10 20 30 40 50 60 70 80 0O 10 20 30 40 50 60 70 80

Av_Cost Av_Cost

Gains in %

Overhead in %

(a) Overhead (b) Gains

Figure 7: ODL’s overhead versus gains as a function
of the Av_Cost parameter.

We carried out the same experiments while varying the
Awv_Cost parameter which controls the query frequency. The
overhead introduced by ODL and its benefits are shown in
figures 7(a) and (b). As the Av_Cost parameter increases,
the overhead goes asymptotically to zero (fewer queries).
This overhead is anyway very small, below 1% of the total
amount of data sent as soon as Av_Cost > 20 packets.

The “gains” curve is more complex. As expected, in the
[6; 50] interval the smaller the Av_Cost parameter, the faster
the detection of unused layers. This is no longer true above
60. The reason is the following: queries are sent every
mazx Tss seconds on layer 0 when Av_Cost > 60 packets.
It turns out that a query is sent on layer 0 immediately after
the departure of receiver Ry. Therefore the source is imme-
diately informed (instead of waiting an additional maz T,
period) and drops layer 0. (in fact layer dependencies (sec-
tion 3.2) may delay a bit the effective drop of layer 0)

5.5 Scalability of the Feedback Suppression
Mechanism

We have simulated the scalability of ODL’s feedback sup-
pression mechanism. The major parameters are:

o the mazimum waiting time, Tmagwait, before answering
to a QUERY. Each receiver is assigned a waiting time
uniformly distributed in the [0; Thacwait] interval.

o the mazimum unidirectional delay, maz_delay: For
each receiver we chose a delay uniformly distributed in
the [0; max_delay] interval. We assume that paths are
symmetric (i.e. RTT = 2+delay)* and use max_delay =
500ms (1 second RTT) to consider the (rather unfa-
vorable) possibility of very far nodes.

“The presence of asymmetric paths is not meaningful for
this kind of simulation

Table 2: Detailed measures without and with ODL, Av_Cost = 40 packets.

without ODL with ODL
Total traffic from source 2,176,710 bytes or 3,951 pkts | 1,631,425 bytes, or 3,061 pkts
(data+ODL, including UDP/IP hdr)
Total traffic to source (ODL N/A 2,720 bytes, or 48 pkts
replies, including UDP/IP hdr)
Total ODL overhead N/A 8,776 bytes, or 0.54%
Gains made possible by ODL N/A 25.1% (bytes), or 22.5% (pkts)
o the internal time tick interval:. Time is discrete within the higher the Thazwait/maz_delay ratio, the better the ef-
the MCL library. Therefore the timer controlling the ficiency of feedback suppression.

sending of a PRESENT message has a limited granularity. . .
The higher the timer precision, the lower the number 5.6 Discussion of the results

of PRESENT messages sent simultaneously.
o the smaller the Av_Cost parameter, the higher the chan-

ces of a fast detection of unused layers. But it remains

probabilistic and using longer query periods also in-
(max_delay=500ms, Tmaxwait=2000ms, tick=10ms) creases the chances of unpredictable results. There is a
strong analogy with the signal sampling theory. Unfor-
tunately in our case the maximum “signal” frequency
and thus the optimal sampling rate is not known!

120

100

80

e Anyway the gains made possible by ODL are signifi-
60 cant, even if they greatly depend on the configuration.
On a LAN, with aggressive polling, we observed an
| average 25% reduction in the number of bytes sent.
20 1 With a WAN configuration the benefits mentioned in
ﬂﬂﬂ i section 2 also apply.

0

40

min/average/max number of PRESENT sent

0

100 200 300 400 500 600 700 800 900 1000

number of group members e Simulations have shown that basic feedback suppres-
sion is efficient. Section 4.3 suggests two additional
(a) as a function of the number of group improvements.
members
6. RELATED WORK
oo (max_elay=500 ms, tick=10 ms, 100 members) Dynamic source-oriented adaptation:

9% Dynamic source adaptation has often been proposed. For in-
8 stance RTCP (RTP Control Protocol) [20] returns feedback
o information to the source(s). Its goals are to “monitor the
quality of service” and to “convey information about the
participants in an on-going session”. ODL only addresses
one particular issue not covered by RTCP, so both proto-

60
50

40

30

min/average/max number of PRESENT sent

" cols bring separate benefits.

0 Tl el Tm1reT [24] describes the SAMM (Source Adaptive Multi-layered

o AaABRRRRNRRRIRAARA Multicast) algorithm. The source adjusts dynamically the
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 number (like ODL) and the individual rate of each layer of

Tmaxwait (ms)

a layered video stream thanks to feedback information sent
by the receivers and/or routers. Unlike ODL, SAMM mixes
both the adaptation and congestion control functionalities,
it requires that routers implement some form of priority-
based packet discarding and perform feedback merging.

(b) as a function of the Tmaxwait pa-
rameter

Figure 8: Min/average/max number of PRESENT

messages sent. Membership size estimation:
Several mechanisms have been proposed to estimate the size
Figure 8 (a) illustrates this scalability for a 2 second maxi- of a multicast session. [5] introduces a probabilistic polling
mum waiting time (ratio Tmaezwait/maz_delay = 2000/500 = method through several polling rounds, each with a higher
4). For each x-axis value, 1000 different random topologies reply probability. [16] describes a single polling round tech-
are created. With 100 members, there are between 1 and nique. [10] adds refinements to these works. The EXPRESS
18 PRESENT messages with an average of 7.7, which remains single-source multicast routing protocol [12] advocates the
acceptable. More important, the curve shape does not show use of a router support for counting. Yet one possible im-
any exponential increase but stabilizes. Figure 8 (b) studies plementation of this service [3] does not mention this pos-

the effect of Thagwait for a fixed number of 100 members: sibility. ODL does not care about the (estimated) number

of members and only returns a boolean answer: “yes or no
there is at least one receiver” which is much simpler.

In fact ODL can also be associated with a protocol giv-
ing an estimation of the number of receivers (e.g. if it is
required by another building block). As long as this estima-
tion is above a given threshold, ODL is useless. As soon as
it falls below this threshold, ODL is enabled for a rapid and
accurate behavior when the last receiver leaves.

7. CONCLUSIONS

In this paper we have: (i) discussed the issue of idle mul-
ticast groups (i.e. when there is no receiver currently in-
terested in), and (ii) introduced a new protocol: ODL that
enables a source to be informed in real-time of the pres-
ence and possibilities of receivers. ODL follows either an
end-to-end or a direct router polling approach and is very
beneficial to multi-layer multicast transmission schemes, be
they cumulative (e.g. ALC) or not (e.g. DSG). It avoids
the use of idle groups whose cost is often under-estimated:
state kept in multicast routers, periodic tree management
traffic (lood/prune of dense-mode protocols, SA messages
of MSDP, etc.), useless traffic with unicast/multicast reflec-
tors. This is of much importance to guaranty the scalability
of IP multicast as it becomes widely deployed and used.

We have implemented ODL (available on the author’s
home page), integrated it within our MCL multicast library
[19] and made several experiments to assess its benefits.

8. ACKNOWLEDGMENTS

The author thanks L. Vicisano for his comments and the
idea of “reverse-IGMP” and the anonymous reviewers.

9. REFERENCES

[1] K. Almeroth. The evolution of multicast: from the
mbone to inter-domain multicast to internet2
deployment. IEEE Network, Special Issue on
Multicasting, January 2000.

[2] M. Ammar and L. Wu. Improving the performance of

point to multi-point arq protocols through destination

set splitting. In JEEE INFOCOM’92, May 1992.

S. Bhattacharyya and C. Diot. Deployment of

PIM-SO at Sprint, March 2000. Work in Progress

<draft-bhattach-diot-pimso-00.txt>.

[4] S. Bhattacharyya, J. Kurose, D. Towsley, and
R. Nagarajan. Efficient multicast flow control using
multiple multicast groups. In IEEE INFOCOM’98,
February 1998.

[5] J. Bolot and T. Turletti. Scalable feedback control for
multicast video distribution in the internet. In ACM
SIGCOMM’9/, September 1994.

[6] Y-H Chu, S. Rao, and H. Zhang. A case for end
system multicast. In ACM SIGMETRICS, June 2000.

[7] T. Cicic and H. Bryhni. Multicast-unicast reflector,
January 0000. unpublished document, available at
URL: http://www.ifi.uio.no/ tarikc.

[8] C. Diot, B. Levine, B. Lyles, H. Kassem, and
D. Balensiefen. Deployment issues for the ip multicast
service and architecture. IEEE Network, pages 78-88,
January 2000.

[9] S. Floyd, V. Jacobson, S. McCanne, C. Liu, and
L. Zhang. A reliable multicast framework for

3

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

24]

light-weight sessions and application level framing. In
IEEE SIGCOMM’95, 1995.

T. Friedman and D. Towsley. Multicast session size
membership estimation. In IEEE INFOCOM’99,
March 1999.

M. Handley, B. Whetten, R. Kermode, S. Floyd,

L. Vicisano, and M. Luby. The Reliable Multicast
Destgn Space for Bulk Data Transfer, March 2000.
Work in Progress,
<draft-ietf-rmt-design-space-01.txt>.

H. Holbrook and D.R. Cheriton. Ip multicast
channels: Express support for large-scale single-source
applications. In ACM SIGCOMM’99, September 1999.
M. Luby, J. Gemmell, L. Vicisano, L. Rizzo,

J. Crowcroft, and B. Lueckenhoff. Asynchronous
Layered Coding (ALC): a massively scalable reliable
multicast protocol, July 2000. Work in Progress:
<draft-ietf-rmt-pi-alc-01.txt>.

M. Luby, J. Gemmell, L. Vicisano, L. Rizzo,

J. Crowcroft, and B. Lueckenhoff. Reliable multicast
transport building block: Forward Error Correction
codes, July 2000. Work in Progress:
<draft-ietf-rmt-bb-fec-01.txt>.

S. McCanne, V. Jacobson, and M. Vetterli.
Receiver-driven layered multicast. In ACM
SIGCOMM’96, October 1996.

J. Nonnenmacher and E. Biersack. Optimal multicast
feedback. In IEEE INFOCOM’98, February 1998.

L. Rizzo and L. Vicisano. Effective erasure codes for
reliable computer communication protocols. ACM
Computer Communication Review, 27(2), April 1997.
L. Rizzo and L. Vicisano. Reliable multicast data
distribution protocol based on software fec techniques.
In Fourth IEEE Workshop on the Architecture and
Implementation of High Performance Communcation
Systems (HPCS’97), Greece, June 1997.

V. Roca. A library for heterogeneous multicast
distributions: concepts, architecture and use, January
2000. Work in Progress,

http://www.inrialpes.fr /planete/people/roca/.

J. Rosenberg and H. Schulzrinne. Sampling of the
Group Membership in RTP, February 2000. Request
For Comments 2762.

D. Thaler and M. Handley. On the aggregatability of
multicast forwarding state. In IJEEE INFOCOM’00,
March 2000.

L. Vicisano. Notes on a cumulative layered
organisation of data packets across multiple streams
with different rates. Research Note Note RN/98/25,
University College London (UCL), May 1998.

L. Vicisano, L. Rizzo, and J. Crowcroft. Tcp-like
congestion control for layered multicast data transfer.
In IEEE INFOCOM’98, February 1998.

B. Vickers, C. Albuquerque, and T. Suda. Adaptive
multicast of multi-layered video: Rate-based and
credit-based approaches. In IEEE INFOCOM’98,
February 1998.

