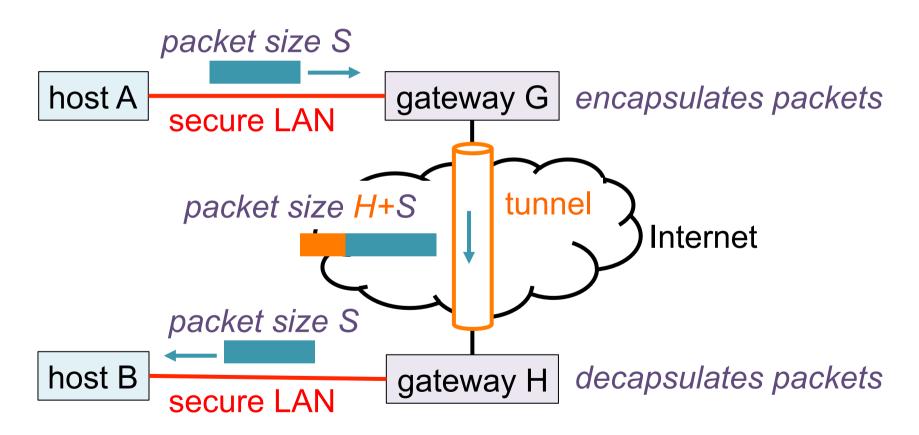
Too Big or Too Small? The PTB-PTS ICMP-based Attack against IPsec Gateways

Ludovic Jacquin
Vincent Roca
Jean-Louis Roch

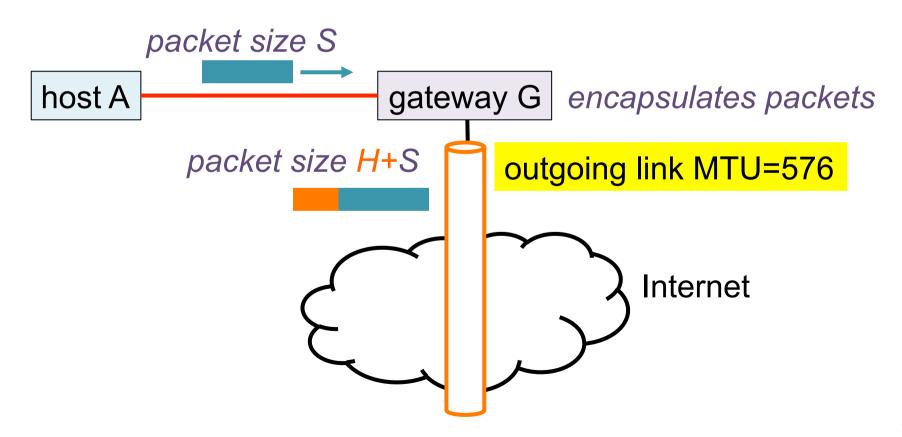
Globecom'14, Austin, December 2014



Packet Too Big (PTB) or Packet Too Small (PTS)? The underlying idea...

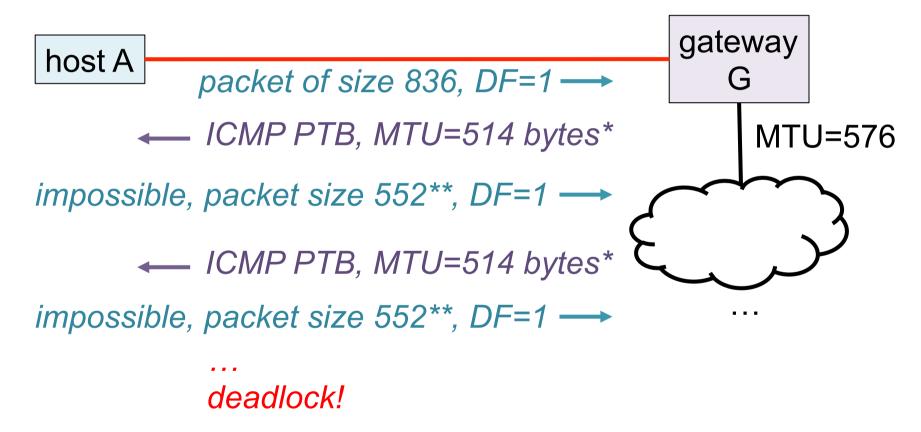
About packet sizes and tunnel

two gateways establish an IPsec tunnel to connect two remote LANs (or sites)


About packet sizes and tunnel... (cont')

- each link has a Maximum Transmission Unit (MTU)
 - Omaximum allowed frame size on that link
 - Oe.g. 1500 bytes for Ethernet (i.e., 1460 b. or less at TCP level)
- Path MTU (PMTU) is the min. MTU along the path
- a packet larger than a link's MTU is either
 - Odropped and an error ICMP "Packet Too Big" (PTB) message containing the MTU is returned to sender, or
 - **Ofragmented** if feasible (iff. IPv4 with DF bit clear)
- each link MUST guaranty a minimum MTU
 - OIPv4 576 bytes
 OIPv6 1280 bytes
 - **Oessentially here for performance reasons**

The issue


- what happens if G's outgoing link is already at MTU 576 bytes (IPv4)?
 - Othen we need H+S ≤ 576, which implies that S < 576...

The issue... (cont')

 we observed, through experiments, that A and G don't understand each other

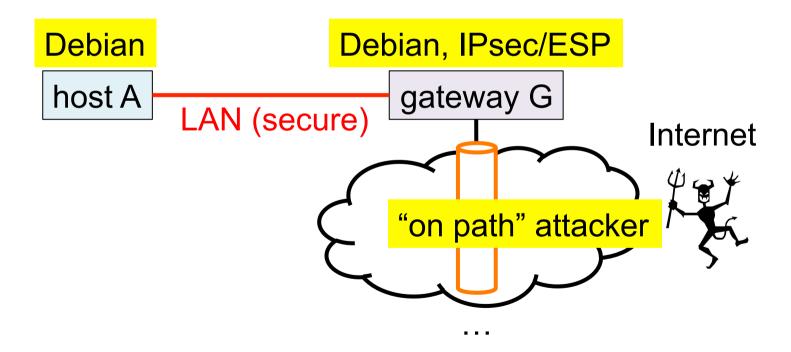
^{* 514} bytes because of IPsec ESP header

^{** 552} is minimum PMTU value on Debian/Linux 6

The issue... (cont')

• the reality is slightly more complex...

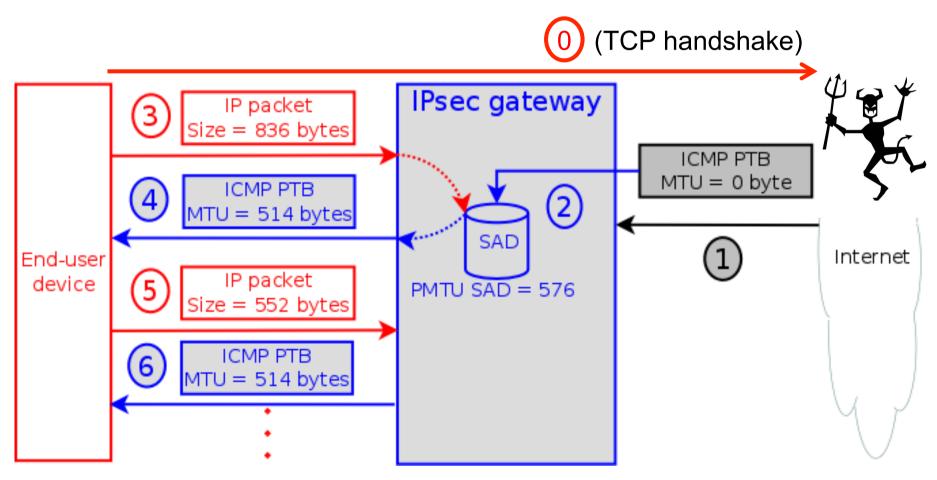
- Odoes A use:
 - OPMTUd (Path MTU discovery) (default)
 - based on probing with DF=1, listening to ICMP PTB
 - **OPLPMTUd** (Packetization Layer PMTUd)
 - TCP-level (or similar) probing mechanism, taking advantage of TCP ACK. ICMP PTB messages are totally ignored
- ois it a TCP or UDP flow?
 - no delivery guaranty with UDP!
- ois it IPv4 or IPv6?
 - IP fragmentation prohibited from IPv6



Details of our IPsec/ESP exploit

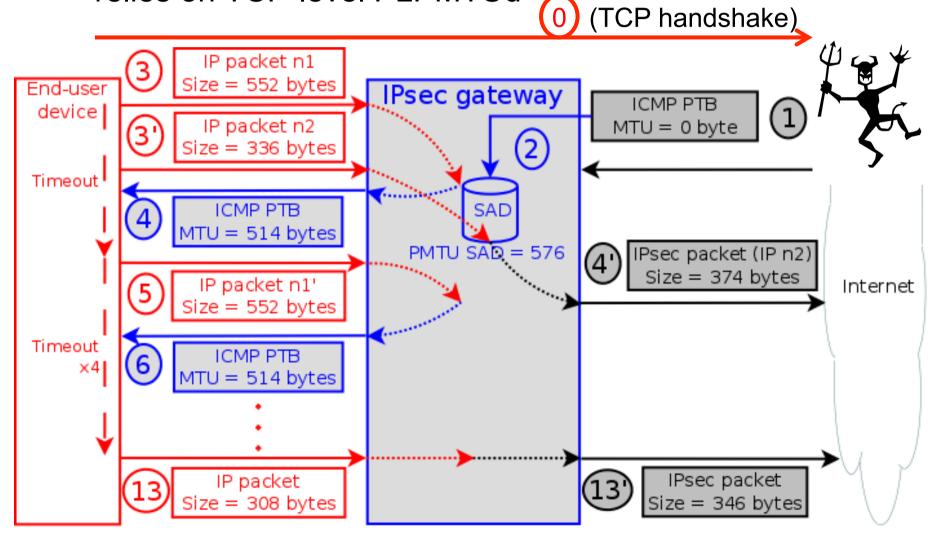
Description of exploit

- IPsec configuration based on-the-shelf components
 - Ostable Debian "Squeeze" distribution
 - Oend-host, gateway and IPsec default configuration


Description of exploit... (cont')

- launching the attack to gateway G
 - Othe attacker needs to be on the IPsec tunnel path
 - Oeavesdrops a tunneled packet, then
 - Oforges an ICMP PTB ("Pkt Too Big") message that contains a copy of the eavesdropped packet
 - needed to bypass IPsec security WRT. ICMP error messages
 - the attacker can be a compromised router...
 - on a simple host attached to a non-encrypted WiFi
 - Oif a user uses an IPsec VPN to his/her home network, and is attached to this non-encrypted WiFi, then we can attack the remote IPsec gateway
 - a single "well formed" ICMP PTB packet is sufficient to launch the attack!

TCP/IPv4, PMTUd configuration


on host A, TCP fetches the local MTU updated by the PMTUd, but does not go below 552 bytes

TCP/IPv4, PLPMTUd configuration

On host A, TCP ignores local host MTU configuration and relies on TCP-level PLPMTUd

Results

TCP, IPv4, PMTUd	DoS: no connection possible any more
TCP, IPv4, PLPMTUd	major performance impacts: 6.5s initial freeze, then tiny packets
UDP, IPv4, PMTUd	major performance impacts: tiny packets
*, IPv6, *	not tested

 yes, it works pretty well, with impacts that depend on the exact configuration

Conclusions...

To conclude

- a highly effective attack
 - oa **single** packet is sufficient to launch it
- the problem may be more serious than just an IPsec DoS
 - **ambiguity** in the way minimum MTU should be handled in presence of a tunnel, no matter the tunnel type
 - **To be confirmed**

To conclude... (cont')

- which solution to the problem?
 - Ogateway G should not accept ICMP error feedbacks?
 - Odon't agree, ICMP is useful per se and so is PMTUd in highly dynamic networks to find the right PTMU in a Layer-4 independent way
 - gateway G should not accept MTU=576 as it knows it's incompatible with tunneling?
 - **OYES, but what about MTU=676, just a little bit larger?**
 - Owell, it will be accepted, and still negatively impact performance, even if a less severe way (no DoS)...
 - gateway G should be able to explain host A that using a lower value than 576 is valid in this case?
 - **OYES, but it remains tricky... What if there's a 2nd tunnel?**

To conclude... (cont')

- which solution to the problem... (cont')
 - gateway G should always be able to fragment?
 - Oeven if DF=1? Even with IPv6? MAY BE... but it's tricky!
 - **OBTW**, there's a Cisco IOS 12.2(11)T note explaining DF should be ignored!
 - ICMP PTB error messages coming from Internet should be confirmed with a separate mechanism
 - Ocould be a probing scheme similar to what PLPMTU does
 - Oof course a powerful attacker on the path could identify these probes and drop them...
 - Obut an active attack that modifies the flow is easier to spot!
 - Othat's for future work...