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INRIA Rhône-Alpes, Plaǹete research team, France,{firstname.name}@inria.fr

Abstract— This work focuses on the LDPC codes for the
packet erasure channel, also called AL-FEC (Application-Level
Forward Error Correction codes). Previous work has shown that
the erasure recovery capabilities of LDPC-triangle and LDPC-
staircase AL-FEC codes can be greatly improved by means of a
Gaussian Elimination (GE) decoding scheme, possibly coupled to
a preliminary Zyablov Iterative Decoding (ID) scheme. Thanks
to the GE decoding, the LDPC-triangle codes were very close
to an ideal code. If the LDPC-staircase performances were also
improved, they were not as close to an ideal code as the LDPC-
triangle codes were.

The first goal of this work is to reduce the gap between the
LDPC-staircase codes and the theoretical limit. We show that a
simple modification of the parity check matrix can significantly
improve their recovery capabilities when using a GE decoding.
Unfortunately the performances of the same codes featuring an
ID are negatively impacted, as well as the decoding complexity.
The second goal of this work is therefore to find an appropriate
balance between all these aspects.

Index Terms— AL-FEC codes, erasure channel, LDPC-
staircase, hybrid iterative decoding/Gaussian elimination

I. I NTRODUCTION

This work focuses on the design of LDPC large block
FEC codes for the packet erasure channel (or similarly the
Bit Erasure Channel, BEC). Since these codes are often used
within the application (or transport) layer, they are usually
called AL-FEC.

AL-FEC codes are commonly implemented as software
codecs. This is a key advantage that provides a lot of flexibility.
Indeed, the block size (i.e., the numberk of source symbols
in the source block that is FEC encoded) and the code rate
can be easily tailored to the application requirements, just on
time. Besides these codes usually take advantage of the host
memory, a plentiful resource, whereas hardware codecs (e.g.,
implementing physical layer FEC codes) are limited by the
available chipset memory. This feature enables in particular
LDPC codes to work efficiently on very large objects and
encoding blocks.

FEC codes for the erasure channel are therefore the corners-
tone of many content delivery protocols and systems. More
precisely, AL-FEC codes are a key building block of the
FLUTE/ALC protocol stack designed by the Reliable Multi-
cast Transport (RMT) working group of the IETF. The LDPC-
staircase codes considered in this work have recently been
standardized by the RMT working group in RFC 5170 [11]
as one AL-FEC scheme among others (e.g., Reed-Solomon

and Raptor codes). Since FLUTE/ALC are integrated in the
DVB IP Datacasting service for reliable file delivery, AL-FEC
codes are naturally a key building block for DVB systems.
Additionally, AL-FEC codes can also be used at the link layer,
as in in the MPE-FEC layer of DVB-H systems or the MPE-
IFEC layer of DVB-SH systems. In that case they are known as
the Upper Layer FEC codes, or UL-FEC (here “upper” must be
understood as being above the physical layer). More generally,
all the transmission systems that behave as an erasure channel
can take advantage of AL-FEC codes.

We have shown in [5] that the erasure recovery capabilities
of the LDPC-triangle and LDPC-staircase codes [10][11] can
be greatly improved by means of a hybrid Zyablov Itera-
tive Decoding (ID) [14]/Gaussian Elimination (GE) scheme.
Thanks to this hybrid decoding scheme, the erasure recovery
capabilities of LDPC-triangle codes were very close to that
of an ideal code. However, there was still a gap between the
performances of the LDPC-staircase and that of ideal codes.

A first goal of this work is to further improve the perfor-
mances of LDPC-staircase codes. More precisely, this work
studies the influence of the source node degree on the erasure
recovery capabilities of the LDPC-staircase codes featuring
a hybrid decoding scheme. We show that the performances
can easily approach the theoretical limits. Unfortunatelythe
performances of these codes featuring an ID are negatively
impacted, as well as the decoding complexity. A second goal
of this work is therefore to find an appropriate balance between
all these aspects and to provide practical recommendationson
how to use these codes.

The remaining of this paper is organized as follows :
Section II introduces some related works. Then section III
introduces the LDPC codes considered and the hybrid deco-
ding scheme used. Section IV gives an account of performance
measurements. Finally we give practical recommendations on
the use of these codes and we conclude.

II. RELATED WORKS

As explained above, we comprehensively studied the use
of a hybrid ID/GE scheme with LDPC-staircase and triangle
codes in [5]. Independently and in parallel, the authors of
[7][8] did the same with different LDPC codes and, non
surprisingly, came to the same conclusions.

Improved approaches for GE decoding of LDPC codes are
presented in the following patent description [12] and in [3].
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Thanks to a procedure called symbol deactivation in [12] and
reference variables declaration in [3], the GE is applied ona
reduce linear system. The remaining variable are then deduced
by substitution.

In [4] a scheme called In-place algorithm is presented,
which uses a Gaussian elimination for decoding LDPC codes
and other binary linear block codes on the BEC.

In [2] and [1] the authors introduce a Generalized Iterative
Decoding method for LDPC codes. At each iteration a linear
system of size p (the order of the decoder) is solved. This
method reduces the complexity since the decoder solves seve-
ral smaller linear systems instead of a big one. This method
can be seen as an hybrid decoder : decoding starts with a
decoder of order 1 (which is a standard ID) and the order of
the decoder is increased until the decoding succeeds.

In our work, we decided to focus on two well known,
non patented decoding techniques for the erasure channel.
However, additional work is still needed to further improve
the decoding performances and some of the above references
might be useful to that purpose. This is left to future works.

III. T HE LDPC-STAIRCASECODES AND THEHYBRID

ID/GE DECODING SCHEME

We start by describing the LDPC codes considered, as well
as the hybrid ID/GE scheme.

A. The LDPC-staircase Codes

The LDPC-staircase codes [6][11] are very simple LDPC
codes that, by design, feature a very fast encoding. Their parity
check matrix H, of sizen− k rows for n columns, is built as
follows : H is the concatenation of a left sub-matrixH1, of
sizen− k rows for k columns (i.e., the source symbols), and
a right sub-matrixH2, of sizen − k rows for n − k columns
(i.e., the parity symbols).

With the codes considered, theH2 sub-matrix has a “stairca-
se” structure (also called double diagonal) structure. It means
that each parity symbol is the XOR sum of the previous parity
symbol plus a very small number of source symbols. The
H1 sub-matrix is filled in a fully regular way, thanks to the
following algorithm :

– step 1 : insert N1 1-s randomly but evenly into each
column ;

– step 2 : check that there are at least two1-s per row. If
not, add one or two1-s randomly to these rows until the
condition is satisfied ;

Because of this second step, the average number of1-s per
column in theH1 matrix (i.e., the source node degree) can be
greater than the specified N1 parameter with small code rates.

In [10] the N1 value was fixed and set to 3 because the ID
algorithm shows its optimal performance with this value, while
keeping the encoding/decoding complexity to a minimum. As
we will see later on, this choice is no longer appropriate when
a GE scheme is used. In RFC 5170, N1 is a parameter that is
now communicated to the decoders and whose default value is
3. The interested reader is invited to refer to [11] for a detailed
specification of LDPC-staircase codes.

B. The Hybrid ID/GE Scheme

The ID algorithm has a very low complexity but it is known
to be suboptimal in terms of erasure recovery capabilities,
especially with regular LDPC codes. On the opposite, the GE
algorithm can solve any non-singular linear system at the price
of a higher algorithmic complexity.

In [5] we proposed a hybrid decoding scheme that works
as follows :

– start decoding with the ID algorithm ;
– then, if it fails and if it is known that no additional symbol

will be received, switch to the GE algorithm ;
This hybrid approach :

– significantly reduces the average decoding complexity,
since the complex GE is only used when needed, over
a system of linear equations that has been simplified (up
to a certain point that depends on the actual channel loss
probability) by the ID ; and

– achieves the optimal erasure recovery capabilities made
possible by the underlying FEC codes.

The choice of switching to GE can also depend on additional
parameters. For instance, a receiver might decide that a GE
will only be used if the simplified system (i.e., after ID) has
a size inferior to a certain threshold. This threshold can take
into account the processing capabilities of the terminal, or the
remaining battery capacity, or the estimated decoding time.
This flexibility is another key benefit of this hybrid decoding
scheme.

IV. RESULTS

We now analyze the performances of the LDPC-staircase
codes, both from an erasure recovery capability point of view
and from a decoding complexity point of view. Our goal is
to be able to provide guidelines for an optimal use of these
codes.

A. Experimental Setup

These tests use the high performance, open-source, LDPC
C++ codec, version 2.1 [13], for which we added a GE scheme
in addition to the existing ID.

Once encoding has been performed, the source and repair
symbols are transmitted in a fully random order. A loss proba-
bility is then applied, leading to the removal (i.e., erasure) of a
certain number of symbols. The receiving application submits
each received symbol to the decoder. This application stops
either when the decoding finishes or when all symbols have
been received and submitted to the decoder. The decoding
status (success or failure) is then determined. Note that there
is no explicit loss model (e.g., random or per burst erasures)
because shuffled transmissions are not affected by this model.
The loss probability (for a given code rate) is the only
parameter that needs to be considered.

In the following experiments, we consider that the decoder
uses :

– either a GE-only scheme : this is useful to appreciate
the maximum erasure recovery capabilities of LDPC-
staircase codes ;
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– or a hybrid decoding scheme : this is useful to appreciate
the decoding complexity, depending on the symbol loss
probability ;

– or an ID-only scheme : this is useful to appreciate the
impacts of a choice for N1 on decoders that do not feature
(or use) any GE ;

B. Erasure Recovery Capabilities with the GE Scheme
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Fig. 1. Inefficiency ratio w.r.t. the N1 parameter (object composed of 1,000
symbols).
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Fig. 2. Inefficiency ratio w.r.t. the code rate (object composed of 1,000
symbols).

We start by giving an account of experiments meant to
assess the erasure recovery performances when a receiver uses
a GE-only decoding scheme or a hybrid decoding scheme
(the initial use of an ID scheme does not impact the erasure
recovery performances).

This erasure recovery capability can be evaluated by means
of the average (plus the 99% percentiles above or below this
average) ”inefficiency ratio”, which is the ratio of the number
of symbols needed for decoding to complete successfully over
the number of source symbols. We sometimes consider the
”overhead”, i.e., the inefficiency ratio minus 1, expressedin
percent.

The erasure recovery capability can also be evaluated by
means of the decoding failure probability as a function of the
loss probability. This is useful to evaluate the error floor.

For the experiments that evaluate the inefficiency ratio as a
function of either the N1 value, or the code rate, or the object
size,10

3 tests are performed for each set of parameters. For
the experiments that evaluate the decoding failure probability
as a function of the loss probability,10

6 tests are performed for
each set of parameters in order to have the required precision.

Fig. 1 and Fig. 2 show that the inefficiency ratio decreases
very quickly as N1 increases. There is therefore an incentive
to increase the N1 value. However, it can be noticed that
all the curves converge as the code rate approaches zero,
because the N1 parameter that is used in the first step of the
parity check matrix creation algorithm is no longer sufficient
to guaranty that all equations contain at least two1-s. As
a consequence, the second step of the parity check matrix
creation algorithm, which does not depend on N1, becomes
predominant (Section III-A).
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Fig. 3. Decoding failure probability w.r.t. the erasure probability (object
composed of 1,000 symbols).

In Fig. 3 we see that increasing N1 improves the perfor-
mance of the code in the waterfall region as well as in the
error floor region. For instance (see Table I), with code rate
2/3 (resp. 2/5), using N1=5 makes the error floor lower than
10

−4 for a 2.21% overhead (resp. 4.41%), while the average
overhead amounts to 0.63% only (resp. 2.04%), which is a
key achievement.

code average overhead for a loss rate for a
rate overhead failure prob.≤ 10

−4 failure prob.≤ 10
−4

2/3 0.63% 2.21% 31.9%
2/5 2.04% 4.41% 58.2%

TABLE I

AVERAGE OVERHEAD AND MAXIMUM OVERHEAD FOR A FAILURE

PROBABILITY LOWER THAN 10−4 AS A FUNCTION OF THE CODE RATE

(OBJECT COMPOSED OF1,000SYMBOLS, N1=5).

Finally, Fig. 4 shows, when N1=5, the performances of the
LDPC-staircase codes as a function of the object size. If, non
surprisingly, these codes perform well for big objects, we also
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Fig. 4. Inefficiency ratio w.r.t. the object size (N1=5).

see that the same is true for small objects (of size 250 and
500 source symbols) where the performance penalty remains
relatively limited.

C. Decoding complexity

We now give an account of experiments meant to assess
the decoding complexity for receivers that feature a hybrid
ID/GE scheme. In these tests, the object is composed of 1,000
source symbols, each symbol being 1024 byte long, and the
code rate is set to 2/3. These experiments are performed on a
Linux PC using a 2.6.18-6/64 bit Debian operating system and
featuring a Dual Core Intel Xeon 5120/1.86GHz (1066MHz)
processor. For each point 200 tests are performed and we
plot the minimum/average/maximum decoding times (or the
corresponding bit rate)when decoding succeeds.

For comparison purposes, we also use the excellent Reed-
Solomon open-source C codec designed by L. Rizzo for
GF(28) [9], which has been widely used in the community.
Because of the intrinsic limitations of a Reed-Solomon codec
working on GF(28), the source object is partitioned into several
blocks such that :k ≤ n ≤ maxn = 255, using the block
partitioning algorithm standardized for FLUTE/ALC.

The results, in terms of decoding time (logarithmic scale)
or decoding throughput (linear scale) are shown respectively
in Fig. 5 and Fig. 6. Non surprisingly, the N1 parameter has
major impacts on the decoding complexity. This is caused by
several phenomenons :

– the decoding complexity of the ID depends on the number
of variables in each equation, which determines the
number of XOR and elementary matrix management
operations that are needed during decoding. This is the
reason why the curves for low loss probabilities (i.e.,
when an ID always succeeds) are not superposed ;

– the decoding complexity of the GE depends on the
size of the system of linear equations. With higher loss
probabilities, the ID turns out to be inefficient. Therefore
the decoding complexity directly derives from the system
complexity over which a GE is performed. In that case,
by increasing N1, we increase the number of1-s in the

matrix and therefore the number of operations needed by
the GE algorithm to diagonalize the matrix ;

The decoding complexity also depends on the experienced
loss rate :

– the average decoding complexity depends on the proba-
bility that a GE is needed. By increasing N1, we decrease
the probability that the very fast ID be successful, and a
GE is more often needed. This is visible in the curves :
with low loss probabilities, the curve is almost flat, mea-
ning that ID is always sufficient. Then there is a knee and
the average decoding complexity increases progressively
since the GE scheme is more and more often needed.

– there is relationship between the loss probability and
the size of the system that needs to be solved with a
GE. However, it also depends on the loss model, and in
particular what symbols have been erased.

Nevertheless, even if the decoding complexity of the LDPC
decoder increases with N1 and with the loss probability, our
decoder is, on average, at least one order of magnitude faster
than the reference Reed-Solomon codec :

– Reed-Solomon : 54 Mbps on average (reference) ;1

– LDPC-staircase, N1=5, low loss probability, where ID
is always successful : 1.75 Gbps (32.4 times faster) on
average ;

– LDPC-staircase, N1=5, high loss probability, where GE
is absolutely needed : 550 Mbps (10.2 times faster) on
average ;

Let us now assume that N1=5 (which is often a good choice,
but not necessarily, see section V). Fig. 7 shows that in all
situations, LDPC-staircase case are significantly faster than
Reed-Solomon codes over GF(2

8). Of course, the larger the
object, the more costly the Gaussian elimination. We see in
particular that even with objects of size 4,000 source symbols
(with 1024 byte symbols), LDPC-staircase codes remain faster
than Reed-Solomon and provide significantly better erasure
recovery capabilities. If decoding complexity is an issue with
such a large object, choosing a smaller N1 value remains
possible.

D. Erasure Recovery Capabilities with the ID Scheme

Finally we give an account of experiments meant to assess
the performance of decoders that are limited to ID (no matter
the reason, e.g., because they don’t have the needed processing
capabilities or they need to enter power-save mode). These
tests are carried out under the same conditions as in sec-
tion IV-B.

Fig. 8, 9 and 10 should be compared to their GE counter-
parts, i.e., respectively Fig. 1, 2 and 3. As we already said,
N1 has globally a negative impact on the performances of the
ID scheme, and Fig. 8 and 9 both show that the inefficiency
ratio quickly increases with N1. However, Fig. 10 also show
that increasing N1 greatly improves the performances in the
error floor region. In particular, using N1=5 seems to offer

1Since the transmission order is randomized, the average percentage of
repair symbols received is constant, no matter the loss probability, and only
depends on the code rate. The Reed-Solomon decoding time, which depends
on the number of source symbols to recover, is therefore constant during these
tests.
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a good balance. This is a good point that can compensate,
up to a certain point, the overall erasure recovery capability
degradation.

V. PRACTICAL RECOMMENDATIONS

Thanks to the previous tests, we can now draw some general
guidelines on how to choose the N1 parameter :

– when it is known thatall the receivers feature an ID-
only scheme, usingN1 = 3 (the default value) is a good
solution, unless we want to favor a low error floor. In
that case, usingN1 = 4 or N1 = 5 is often a good
alternative.

– when it is known thatsome receivers feature an ID-only
scheme, the sender should use a N1 value that leads to

good results with both decoders.N1 = 4 or N1 = 5 are
often appropriate.

– when it is known thatall receivers feature a hybrid
decoding scheme, the sender should use a N1 value like
N1=5 that leads to excellent erasure recovery capabilities,
with a very small error floor, without impacting too
seriously the decoding complexity.

– when the decoding complexity is the main issue, using
the default N1=3 value remains acceptable with certain
code rates. For instance, with a code rate equal to0.8 or
higher, few differences will be seen in practice in terms
of erasure recovery capabilities, and using N1=3 keeps
the decoding complexity to a minimum.

– when the code rate is very small, equal to0.25 or lower,
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(b) object composed of 1,000 symbols (reminder).
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(c) object composed of 2,000 symbols.
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Fig. 7. Bitrate w.r.t. the loss probability for various object sizes (hybrid ID/GE scheme, code rate 2/3, N1=5).

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2  4  6  8  10  12  14  16  18  20

m
in

 9
9%

co
nf

./a
ve

r/
m

ax
 9

9%
 c

on
f. 

in
ef

fic
ie

nc
y 

ra
tio

N1

code_rate=2/3
code_rate=2/5

Fig. 8. ID-only decoder : inefficiency ratio w.r.t. the N1 parameter (object
composed of 1,000 symbols).

the N1 parameter has little impact on the parity check
matrix creation algorithm, and therefore on the resulting
performances.

In all cases, using a GE (in particular as part of a hybrid
scheme) remains efficient even with small objects, composed
of a few hundreds of symbols only (which is not true with
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Fig. 9. ID-only decoder : inefficiency ratio w.r.t. the code rate (object
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ID). Therefore the“number of symbols of an encoding symbol
group” parameter (G) specified in [11] (i.e., the number of
encoding symbols per packet) should always be set to 1.
Said differently, with a GE decoding, there is no benefit in
artificially increasing the number of symbols in the block by
reducing their size.
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Fig. 10. ID-only decoder : decoding failure probability w.r.t. erasure
probability (object composed of 1,000 symbols).

VI. CONCLUSIONS

This work focuses on LDPC-staircase codes that are now
an IETF standard (RFC 5170 [11]). We have shown that these
codes, when associated to a hybrid ID/GE scheme, approach
the performances of ideal codes. It has been made possible
by the use of the N1 parameter, that controls the source node
degree.

For instance, with a code rate 2/3, an object composed
of 1,000 symbols and N1=5, the average decoding overhead
amounts to 0.63%, and a decoding failure probability less
than 10

−4 is achieved with an overhead equal to 2.21% (or
equivalently loss rate 31.9%).

Even if using a GE scheme has an impact on the decoding
complexity, the hybrid decoder remains relatively fast. During
our tests (i.e., an object composed of 1,000 symbols, code rate
2/3, N1=5), our LDPC-staircase codec is, on average, between
32.4 times (iterative-only decoding) and 10.2 times (GE-only
decoding) faster than the reference Reed-Solomon C codec
over GF(28).

To conclude, this work shows that the LDPC-staircase
codes coupled with a hybrid ID/GE decoder are simple yet
efficient codes, that feature at the same time : good erasure
recovery capabilities, extremely fast encoding, decodingtimes
that remain at least an order of magnitude faster than that of
the reference Reed-Solomon codec and, last but not least, the
possibility to trade erasure recovery capabilities for decoding
complexity at any time.
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