;“ Wireless Personal Communications 29: 221-232, 2004.
‘. © 2004 Kluwer Academic Publishers. Printed in the Netherlands.

Cryptographically Generated Addresses for Constrained Devices*

CLAUDE CASTELLUCCIA

INRIA Rhone-Alpes 655, avenue de I’ Europe 38330 Montbonnot, France
E-mail: claude.castelluccia@inria.fr

Abstract. Cryptographically Generated Addresses (CGAs) have been designed to solve the so-called IPv6 Address
Ownership problem. The current IETF CGA proposal relies on RSA signature. Generating an RSA signature is
quite expensive and might be prohibitive for small devices with limited capacities. For example, a 1024-RSA
signature requires approximately 1536 modular multiplications.

In this paper, we propose a new CGA scheme whose verification requires fewer than 10 modular multiplications.
We achieve this performance gain by (1) selecting an efficient signature scheme, namely the small prime variation of
the Feige-Fiat-Shamir scheme and (2) tuning the cryptographic parameters of this signature scheme to the security
strength of the CGA (i.e. the size of the hash function used to generate it).

Keywords: CGA, IPv6 security, mobile IPv6, address ownership

1. Introduction

A Cryptographically Generated Address (CGA) [1, 2] is an IPv6 address whose Interface
Identifier (the 64 lower bits) is generated by hashing the address owner’s public key. A host
proves ownership of a CGA address by proving that it knows the private key associated with
it. This is typically achieved by signing a challenge.

CGAs have generated a lot of interests lately at the IETF (Internet Engineering Task Force)
and is currently being standardized [1, 3]. Several working groups, such as Mobile IP' or
SEND?, are considering to use CGAs to solve various IPv6 security problems. CGAs have
also shown to be very useful in mobile ad-hoc environments because they do not rely on any
public key infrastructure or third trusted party [4, 5]. They can also be used to bootstrap a
security association between two nodes as shown in [1, 6, 7].

However, in wireless environments, nodes tends to have limited capacities (CPU, battery)
and the signature cost (generation and verification) to prove or verify a CGA can sometime be
overwhelming. In particular, RSA-based CGAs are very demanding for the provers because
signing with RSA is very costly. A more efficient scheme is required.

In this paper, we propose a new CGA scheme that uses a variation of the Feige-Fiat-Shamir
signature [8]. We show that with this scheme a CGA proof of ownership requires fewer than
10 modular multiplications (when precomputation is used) for the prover and two modular
multiplications (and a hash computation) for the verifier. For the same level of security, an RSA-
based CGA scheme respectively requires 1536 and two modular multiplications. We achieved

*Work performed while the author was visiting UC, Irvine, USA.
I1p Routing for Wireless/Mobile Hosts WG, http://www.ietf.org/html.charters/mobileip-charter.html.
2 Securing Neighbor Discovery WG, http://www.ietf.org/html.charters/send-charter.html.

222 C. Castelluccia

this performance gain by: (1) selecting an efficient signature scheme, namely the small prime
variation of the Feige-Fiat-Shamir scheme and (2) tuning the cryptographic parameters of this
signature scheme to the security strength of the CGA address (i.e. the size of the hash function
used to generate it).

2. IPv6 Cryptographically Generated Addresses
2.1. OVERVIEW

CGAs have been proposed to solve the IPv6 address ownership problem [9], and are generally
useful to secure address auto-configuration and redirect operations in numerous protocols [1—
3, 10]. For example, in Mobile IPv6 [11], a node starts using its home address, and, each
time it moves to a different link, it issues a Binding Update that specifies its current address.
The issue is in handling these Binding Updates securely. Why should the correspondent node
believe the mobile node when it claims that it does, in fact, own the home address contained
in the binding update? The risk is that this mobile node could be issuing a redirect for another
node’s home address in order to redirect its packets. Ignoring this address ownership problem
can lead to denial-of-service (DoS) and unauthorized redirect attacks.

The current Mobile IPv6 specification uses a procedure called Return Routability Test to
authorize the establishment of the binding between a home address and a care-of address. This
procedure enables the correspondent node to verify that the mobile node is really addressable
at its claimed care-of address as well as at its home address. This is done by testing whether
packets addressed to the two claimed addresses are routed to the mobile node. The mobile
node can pass the test only when it is able to supply proof that it received certain data which
the correspondent node sends to those addresses. However, this solution is known to be weak
since it does not protect against an attacker who can eavesdrop packets sent between the mobile
node and its home agent and packets sent between the mobile node and its correspondent node.
In contrast, CGAs provide a much stronger solution.

CGAs are also very useful in securing IPv6 neighbor and router discovery procedures [10].
For example, in IPv6, after a node auto-configures an IPv6 address it needs to run a duplicate
address detection (DAD) protocol to verify that its address is not being used by another node
on the network. This protocol is susceptible to Denial of Service attacks because any malicious
node can pretend to own this address. Similarly, a node that changes its IPv6 address can send
a redirection message to the routers. But, why should the routers believe that this message was
originated by the owner of the address being redirected? With a CGA, a node can actually
prove that it owns its address. This proof can be used to resolve conflicts when two nodes
claim to own the same address and to avoid redirection attacks.

A CGA scheme associates a public-private key pair, referred in this paper as PK/SK, to
each host and derive its IPv6 addresses from it [1, 2]. A CGA is a valid IPv6 address. The
top 64 bits are the host’s routing prefix as in [12]. The bottom 64 bits, the Cryptographically
Generated Host Identifier (CGHID), are derived from the host’s public key as follows:

CGHID = hash(PK||networ k_prefix) (D)

Where hash(-) is a hash function, such as SHA1 [20], network_prefix is the host’s network
prefix and PK is the public key associated with the host.

Cryptographically Generated Addresses for Constrained Devices 223

These addresses and identifiers have two very important properties:

1. They are statistically unique, because of the collision-resistance property of the crypto-
graphic hash function used to generate them.

2. They are securely bound to a given node: the node can prove ownership of its CGA by
publishing its public key, PK, and signing a challenge with its private key, SK. Any other
node can verify the ownership of the CGA by verifying that the address was generated from
PK and that the signature is valid. The prover’s public key does not need to be certified.
As a result, CGAs do not require any centralized security service such as a public key
infrastructure or a key distribution center.

These characteristics (1) make CGAs a very scalable naming system, and (2) provide an
auto-configurable and solid foundation for nodes to engage in verifiable exchanges with each
other.

2.2. SECURITY
There exist two possible ways for an attacker to steal an existing CGA address:

1. The attacker can retrieve the private key associated with the public key used to generate
the target CGA. This attack is very difficult to perform if the underlying signature scheme
is secure.

2. The attacker can find a public/private key pair whose public key hashes to the target CGHID.
This attack is probably easier since the size of the CGHID is limited to 59 bits. The security
of a CGA can actually be increased by using two hash functions [3]. The first one is used
to create the CGHID as described above. The second one, of size 12 x sec where sec is
an integer, is used to increase artificially the cost of brute-force attacks. This hash must
result in 12 x sec zeros. This proposal adds some burden to the address configuration
process because a host has to find a public key that hashes, with the second function, to
12 x sec zeros. However, it increases the CGA security considerably because, in addition to
matching the CGHID with the first hash function, an attacker must now match the 12 x sec
zero bits with the second hash.

3. Proposal Description

The current IETF CGA solution is based on the RSA signature scheme [3]. However, as
shown in Section 5.1, the cost of generating a signature is high and might be prohibitive for
constrained devices.

We propose anew CGA scheme that uses the small prime variation of the Feige-Fiat-Shamir
signature scheme [8, 13, 14]. As we will see, the use of this scheme has several benefits: (1)
It requires less processing power from the signer and verifier. (2) Its security (and therefore
cost) can be adjusted to the size of the hash used to generate the CGA Interface ID. Tuning
the size leads to a better security/performance trade-off.

The rest of this section reviews the Feige-Fiat-Shamir (FFS) signature scheme, its small
prime variation (MFFS) and then describes our new CGA proposal.

224 C. Castelluccia

3.1. THE FEIGE-FIAT-SHAMIR (FFS) SIGNATURE SCHEME

As other signature schemes, the FFS has three steps: (1) the key generation, (2) the signature
generation and (3) the signature verification steps.
Each of these three steps is described below:

1. Key Generation. To generate its public and private keys, entity A should do the following:
(a) Generate random distinct secret primes p, ¢ and formn = p X q.
(b) Select a positive integer k and distinct random integers sy, 52, ... , 5y € Z;.
(c) Compute v; = sj_zmodn, 1<j<k.
(d) A’s public key is the k-tuple (v, v, ... , vr) and the modulus n; A’s private key is the
k-tuple (s1, $2, ... , Sg).
2. Signature Generation. To sign a message, m, entity A should do the following:
(a) Select a random integerr, 1 <r <n — 1.
(b) Compute u = r*modn.

(c) Compute e = (ey, €2, ... , ex) = h(m||u); each e; € {0, 1}.
(d) Compute s = r -]—[1;:1 sj" modn.

(c) A’s signature for m 1is (e, s).
3. Signature Verification. To verify A’s signature (e, s) on m, B should do the following:
(a) Obtain A’s authentic public key (vy, vy, ... , v;) and the modulus 7.
(b) Compute w = s -]_[];:1 v}/ modn.
(¢) Compute ¢’ = h(m || w).
(d) Accept the signature if and only if e = ¢€’.

The FFS scheme has been proved secure in the random oracle model. In fact [15] proves
that if an existential forgery of the FFS signature is possible with non negligible probability,
then factorization of the RSA moduli can be performed in polynomial time.

3.2. THE SMALL PRIME VARIATION OF THE FEIGE-FIAT-SHAMIR
SIGNATURES

Micali and Shamir proposed a variation of the Feige-Fiat-Shamir signature scheme that aims to
reduce the signature verification time and the size of the public key [8]. We refer to this scheme
as the MFFS scheme in the rest of this paper. This variation only affects the key generation
phase. The signature generation and verification phases are the same as in Section 3.1.

In the new scheme, to generate its public and private keys, entity A should do the following:

. Generate random distinct secret primes p, g and formn = p x q.
. Select a positive integer k and a set of k distinct small primes vy, va, ..., v € @, (i.e. all
the v; have a square root in Z).
3. Selects one of the four square roots s; of vj_1 mod n foreach j, 1 < j <k, ie.
s; = (v;))""* mod n.
4. The sy, s2,..., s form A’s private key. The public key consists of n and the value v,
V2, Uk,

[\

The signature generation performance remains unchanged but signature verification be-
comes much more efficient since multiplications only involve small factors. Moreover, for the
same reason, this variation reduces the public key size significantly.

Cryptographically Generated Addresses for Constrained Devices 225

3.3. THE MFFS-CGA SCHEME

In our proposal, a host A computes its CGA and related materials as follows:

1. A computes two large prime numbers p and ¢ and computes n = p X q.

2. It generates its CGA address as follows:
CGHID = hash(n | net_prefix), where net_prefix is its home network prefix.
Note that this definition is the same as the standard CGA scheme (described in Section 2)
if n is replaced by PK. An RSA public key is defined by the tuple (e, n) where e is the
public exponent and 7 is the modulus. However it is often recommended, for performance
reasons, to use ¢ = 3. Therefore, even in the RSA-CGA scheme, the CGHID can be
defined as hash(n | prefix), without losing any security. As a result, the same CGA address
can be used for the two schemes. This is important for compatibility. For example if, for
a given CGA, a host (the prover) supports both RSA and MFFS schemes but the verifier
only supports the RSA-CGA scheme, then the verifier and prover can agree on using RSA.
However, if the verifier does also support MFFS, the prover and verifier can agree on using
the MFFS-CGA scheme. Compatibility between the RSA-CGA and MFFS-CGA schemes
can therefore be achieved.

A CGA scheme based on the standard Feige-Fiat-Shamir signature using the above CGA
definition would be insecure. In fact, as described in Section 3.1, the factorization of 7 is not
needed in order to compute a valid private and public key pair. As a result, a malicious party
could trivially pretend to own any CGA address since it can generate a valid public/private
key pair for it. With the standard Feige-Fiat-Shamir signature scheme, a CGA address must
also use the public key v; in the address generation phase.

3. It selects a positive integer k and the k first small prime numbers, v;, that belongs to O,
(i.e. v; are quadratic residues in Z; or in other words have square roots in Z).

Note that since 7 is the product of two prime numbers, p and ¢, the number of quadratic
residues in Z; is equal to 1/4 x (p — 1) x (¢ — 1) which is approximatively equal to
1/4 x n. Therefore, on average, one out of every four prime numbers is a quadratic residues
inZ;.

4. It computes its private key s; from the v; as explained in Section 3.2.

When a node needs to prove the ownership of its address, it sends a message that contains
its public key and its modulus n and signs this message with it private key using the MFFS
scheme as in the standard CGA scheme [3]. When the verifier receives the packet, it verifies
that (1) the CGA was generated from the prover’s public key (included in the message) and
(2) that the signature is correct. This protocol can easily be extended with a Diffie-Hellman
exchange if necessary (see [1] for more details about the protocol).

4. Security Analysis

CGA addresses prevents from address-spoofing (and impersonation). It is important to realize
that nothing prevents a malicious host from generating a fake CGA address and using it.
However it is very difficult for a malicious to pretend to own someone-else’s address (i.e. to
steal an address).

There are essentially three ways a malicious host can steal a MFFS-CGA address and
impersonate its victim:

226 C. Castelluccia

1. By factorizing n: A malicious node that can factorize n can compute a valid public/private
key pair for the modulus 7 and therefore steal the CGA address derived from it. However if
the size of n is large (i.e. 1024 bits), finding the factorization of # is considered to be very
difficult.

2. By computing the square root of the public key: A node that can compute the square root of
the public key can retrieve the corresponding private key. In the MFFS scheme, the private
key is composed of the first k prime numbers that are in Q,. Computing the square root of
a random number modulus a large composite number, without knowing its factorization, is
considered to be a difficult problem [16]. Although it has not been proved, the computation
of the square root of a small prime number modulus a large composite number is also
believed to be difficult [8].

3. By finding a public/private key pair whose public key (n’, v) hashes to the victim’s CGA:
If the CGHID length is large enough (as explained in Section 2.2) this should not be
a problem. Note that increasing the CGHID length only affects the performance of the
MFFS-CGA Generation phase. The performance of the MFFS-CGA proof of ownership
generation and verification (which are performed on-line and are therefore critical) are
unaffected.

4. By forging a MFFS signature: A malicious node can impersonate a node (i.e. pretend to
own the node’s CGA) by forging a signature. The probability of forging a signature for an
arbitrary message is 1/2¢71, i.e. an adversary would have to try, on average, 2~ random
values r to find a forged signature. Therefore the larger £ is, the more difficult it is to forge
a MFFES signature. A natural tendency would be to choose a large number for k. However,
it is useless and actually harmful to over-dimension k in a MFFS-CGA for at least two
reasons:

(a) The security of a CGA depends on the CGHID size i.e. the size of the hash used to
generate the Interface Identifier. This size is 59 + 12 x sec as shown in Section 2.
Consequently it is useless to use a value of k larger than 59 + 12 X sec since the
attack on the CGA hash function, described above, would then be easier and would
probably become the target of the attacker. The parameter £ must therefore be set to
59+ 12 x sec.

(b) As shown in Section 5.1, the performance of MFFS depends on the value of k. A large
value for k increases the signature security but degrades significantly its performance.

5. Performance Evaluation
5.1. PROCESSING PERFORMANCE

To prove ownership of a CGA, the prover has to sign a message, such as a Mobile IP Bind-
ing Update. To verify ownership of a CGA, a verifier has to compute the hash of a public
key and to verify a signature. As we will see later in this section, the cost of the hash is
negligible compared to the cost of verifying or generating a signature. As a result, the cost
of a CGA scheme depends directly on the performance of the underlying signature. In the
rest of the section, we compare the performance of the RSA, DSA and MFFS signature
schemes.

In the MFFS scheme, signing and verifying a message only require (k/2 + 1) modular
multiplications. Moreover, the signing performance can be improved with precomputation, as

Cryptographically Generated Addresses for Constrained Devices 227

Table 1. Modular multiplications

Algorithm Sign Verify
RSA 1536[0] 2

|n| = 1024 mod 1024 mod 1024
DSA 2[240] 480

lgl = 1024 mod 160 mod 1024
|pl = 160

MFFS 31[1] 1-2

k] =59 mod 1024 mod 1024
MFFS 37[1] 1-2

k| =171 mod 1024 mod 1024
MFFS 8[1] 1-2

k| =59y =4 mod 1024 mod 1024
MFFS 9[1] 1-2

k| =Ty =4 mod 1024 mod 1024

suggested in [17]. In fact, to sign a message a prover computes s = 7.]_[];:1 sjf modn. Since the
s/s do not change from message to message, and the e;-s are either zero or one, the different pos-
sible products]_[];.:1 s;’ can be precomputed and stored by the signer. For large k, it might not
be practical to precompute all these values. Instead the s; can be partitioned into smaller sets of
y elements and precomputes each of them. For example, if each subset contains four elements
(i.e.y = 4), the first subset will contain all the possible products of s|" x 55> X553’ X 54*, the second
subset all the possible products of 55> x s¢° x 577 x s¢* and so on. The number of modular multi-
plications to sign a message can then be reduced by k/y. The storage costisthenk/y x (27 —1)
products, i.e. k/y x (2 — 1) x |n| bits. For example, if |n| is 1024, k is 59 and y is 4, the signature
generation time is reduced by four for an extra cost of 226.3 kbits (i.e. about 28 kBytes) of data
memory.

Table 1 compares the number of modular multiplications required by RSA, DSA and MFFS
(and its optimizations) to generate and verify a signature. These estimates, which were derived
from [18], have been obtained from naive algorithms and can therefore be optimized. All the
multiplications are 1024-bit modular multiplications except for DSA that uses 160-bit modular
multiplications for signing. The values within brackets indicate the numbers of multiplications
that can be precomputed. Verification with MFFS requires one modular multiplication and &k /2
simple (i.e. non-modular) multiplications with small factors. The total cost is equivalent to 1
or 2 modular multiplications [18].

These results show that our MFFS-CGA scheme is much more efficient than an RSA or
DSA-based scheme. A host can prove ownership of its CGA with fewer than 10 modular mul-
tiplications (with precomputation). Indeed, a MFFS signature generation requires, on average,
k /2 modular multiplications. With precomputation, this cost can be reduced to k/y i.e. to fewer
than 10 modular multiplications when |k| = 71 and y = 4. Address ownership verification
only requires 2 modular multiplications.

To verify these results, we implemented the MFFS signature scheme under OpenSSL
(Openssl,). We then measured the performance of the key generation, signature generation
and signature verification phases for different values of k and size of n. We compared these
results with the ones obtained with RSA and DSA (with precomputation).

228 C. Castelluccia

Table 2. Performance comparison-1024 bits

Algorithm KeyGen (s) Sign (us) Verify(us)

RSA 0.261 7279 298
DSA 1.7 57.5 3612
MFFS 1.73 1040 (828) 187
k| = 56

MFFS 2.16 1669 (845) 207
k| =72

MFFS 2.6 1810 (950) 222
k| = 88

MFFS 3.0 1966 (1088) 242
k| = 104

MFFS 3.56 2297 (1292) 257
k| = 120

Table 3. Performance comparison-2048 bits

Algorithm KeyGen (s) Sign (us) Verify (us)

RSA 1.88 39873 627
DSA 17 62.5 11926
MFFS 10.5 3559 (1889) 385
k| = 56

MFFS 13.0 4608 (2534) 406
k| =72

MFFS 15.0 5433 (3408) 430
k| = 88

MFFS 18.0 6562 (3607) 448
k| = 104

MFFS 19.6 7262 (4031) 481
k| = 120

These measurements were performed on a 1.2 MHz Pentium III-M with 256 MB of RAM.
Tables 2 and 3 display the results we obtained respectively for |n] = 1024 and |n| = 2048.
For the MFFS measurements, values within parentheses in the sign column indicate the costs
to sign a message when the precomputation optimization is used.

The results show that:

— DSA signature generation cost is very low but its verification cost is overwhelming. DSA is
probably not a good candidate for a CGA scheme since it puts too much burden on the CGA
verifier. This is not desirable since (1) in many CGA applications, such as Secure Neighbor
Discovery [10], a given CGA proof can be verified by several verifiers and (2) this high cost
could be used to perform some DoS attacks on the verifiers.

— RSA signature verification cost is very low but its signature generation cost is overwhelm-
ing. This is not desirable either since CGA’s provers are often mobile nodes with limited
capacities (energy, processing).

— MFES scheme provides the best signature generation/verification cost trade-off. MFFS
signature generation is more expensive than DSA but much cheaper than RSA. Its signature

Cryptographically Generated Addresses for Constrained Devices 229

Table 4. SHA1 performance

Len (bytes) Time (us)
100 6
300 9
500 12

verification cost is very low and even lower than RSA verification cost. If we compare the
sum of the costs of signing and verifying a signature, i.e. cost (sign) + cost (verification),
for a CGA size of 72 bits (k = 72) and a modulus of 1024 bits, this cost is equal to 1052 us
for MFFS (with precomputation), 7577 us for RSA and 3669 us for DSA. Therefore, a
MFFS-CGA scheme is respectively 7 and 3.5 times more efficient than a RSA-CGA and a
DSA-CGA scheme. For a modulus of 2048 bits, this cost increases to 40500 us for RSA,
11988 s for DSA and 2940 us for MFFES. In this case, a MFFS-CGA scheme is respectively
18 and 6 times more efficient than an RSA-CGA and a DSA-CGA scheme.

— RSA key generation cost is much lower than DSA and MFFS costs. However, the keys can
be precomputed off-line (for example when the node is charging its battery) or by a trusted
device (for example, the host’s home agent). Therefore, this cost is not critical.

Table 4 displays the cost of SHAT1 for different input message sizes. These results confirm
our initial assumption that the cost of the hashing in a CGA verification is negligible compared
to the cost of the associated signature generation and verification.

5.2. BANDWIDTH COST

In this section, we compare the bandwidth and storage costs of each signature scheme.

In the MFFS scheme, the public key is composed of the value n and of the k& small prime
numbers v;. Since each prime will require around 2 bytes, the size of the public key is equal
to |n| + 16 x k bits. The private key size is equal to |n| X |k| bits and the size of a signature is
(|n| + k) bits.

In comparison:

— RSA public key, private key size and the signature size is |n].
— DSA public key size is 2 x |p| (where |p| is typically 1024), the private key size is |q|
(where |¢| is typically 160) and the signature size is 2 x |g| (i.e. 320).

Table 5 provides a comparison of the public key (PK), private key (SK) and signature sizes
(Sig.) of the RSA, DSA and MFFS signature schemes for |n| = 1024 and different values
of k.

The DS A-based solution leads to shorter signatures than MFFS and RSA. MFFS requires
a larger private key than RSA and DSA. However, since the private key is never sent, this has
no effect on the bandwidth. The public key of DSA and MFFS are comparable and about the
double of the RSA’s public key size. However, as mentioned in [8], the public key size in the
MFFS scheme can be reduced to 1024 bits using the perturbation method. With this method,
n is defined as the product of two primes p and ¢ such that p is congruent to 3 mod 8 and ¢q is
congruent to 7 mod 8. Then, it is guaranteed that for any x € Z; either x, —x, 2x or —2x is
a quadratic residue. As a result, the k£ small primes used in MFFS can just be the first £ prime
numbers. Since they are universal, they do not need to be part of the public key and, as a result,

230 C. Castelluccia

Table 5. Bandwidth cost (bits)

Algorithm PK SK Sig. PK+Sig. Stor.
RSA 1024 1024 1024 2048 1024
|n| = 1024
DSA 2048 160 320 2368 160
Ipl =160
MFES 1968 (1024) 60416 1083 (1091) 3051 (2115) 60416
k| =59
MFFES 2160 (1024) 72704 1095 (1103) 3255 (2127) 72704
k| = 71
MFFS 1968 (1024) 60416 1083 (1091) 3051 (2115) 286976
k| =59,y =4
MFFS 2160 (1024) 72704 1095 (1103) 3255 (2127) 345349
lkl =71y =4

the public key is only composed of the modulus 7. If we note v; (fori =1, ..., k) the first k

primes, then for any v; either v;, —v;, 2.v; or —2.v; is a quadratic residue. The corresponding
private key component, s;, can then be set to the inverse square root of this quadratic residue.
Since the signer will either use v;, —v;, 2.v; or —2.v; and the verifier will always use v;,
there will be an error between the signature computed by the signer and the one computed
by the verifier. Indeed, the verifier will compute the value w’ = s -]_[];.:1 vj’ modn, whereas
the correct value is w = s? - 1_[/;:1((—l)bf.(—2)"f.vj)"fm0dn, where b; and ¢; are either O or
1 according whether v;, —v;, 2.v; or —2.v; was used to generate the signature. To solve this
problem, the signer sends together with its signature the value the verifier must multiply w’ to
recover w. This value is equal to]_[];:1 (= 1)Pi (=2)%)% . This optimization reduces the public
key size to 1024 but increases the signature size by 1+ log,(k) bits, i.e. by 8 bits when & is
smaller than 128.

Note that in a CGA-based protocol, a node proves the ownership of its address by signing a
challenge and including its public key in the reply. The verifier can then verify that the signature
is fresh and that the IPv6 address was generated from the public key included in the reply. As
a result, when comparing the performance bandwidth of different schemes it is important to
compare the sum of the public key and the signature sizes. Table 5 compares these values for
the different signature schemes (the values within the parentheses are the performance when
the above perturbation optimization is used). The results show that the RSA-based solution has
similar bandwidth performance than the optimized MFFS scheme. The DSA-based scheme
requires a bit more bandwidth because of the large public key size.

Table 5 also displays the storage cost (stor.) of each signature scheme (this cost includes
the secret key and the precomputation storage costs). These results show that an MFFS-based
solution requires more storage memory than an RSA or DSA-based solution. For the most
memory expensive solution (FFS with |k| = 71 and y = 4), 42 k Bytes of storage memory
is required. Given that current PalmPilot comes with at least 2 MB of RAM? and considering
the significant gain in performance, we believe that this cost is quite acceptable.

3 http://www.palmos.com/dev/tech/hardware/compare.html.

Cryptographically Generated Addresses for Constrained Devices 231

6. Conclusions and Future Work

This paper proposes an efficient CGA protocol that is based on the small prime variation of
the Feige-Fiat-Shamir signature scheme.

The security strength of a CGA can be tuned by varying the length of the hash function
(59 + 12 x sec bits) used to generate the CGA from the Public Key [3]. With our proposal,
the strength (and consequently the cost) of the associated signature is adjusted to the CGA
strength. This leads to a very efficient CGA scheme. With the proposed scheme, a node can
prove ownership of its address with fewer than 10 modular multiplications. In comparison, an
RSA-based solution requires 1536 modular multiplications.

Although our scheme improves the performance of the RSA-based scheme it does not
reduce the bandwidth overhead. A CGA scheme based on a signature scheme that uses small
keys and signatures might be worthwhile studying from an energy prospective. Indeed it has
been shown that the wireless transmission of one bit can require over 1000 times more energy
than a single 32-bit computation [19]. Reducing the number of operations is therefore not
sufficient, it is also necessary to reduce the number of transmitted bits. A CGA scheme that
uses small key and signature might therefore result in a more energy-efficient solution. Our
future work will consider the use of the elliptic curve digital sigdature algorithm (ECDSA) for
CGA. Signature schemes based on elliptic curves are attractive for this application because
they usually lead to much smaller key and signature sizes.

Acknowledgements

The author would like to thank Hahnsang Kim, Gabriel Montenegro, Pekka Nikander, Gene
Tsudik, Shouhuai Xu and the anonymous reviewers for their helpful comments and suggestions
about this work. The author is particularly grateful to one of the reviewers for suggesting the
use of the perturbation optimization to reduce the public key size.

References

1. G. Montenegro and C. Castelluccia, “Statistically Unique and Cryptographically Verifiable (SUCV) Identifiers
and Addresses”, in NDSS’02, February 2002.

2. G. O’Shea and M. Roe, “Child-Proof Authentication for MIPv6 (CAM)”, ACM Computer Communications
Review, April 2001.

3. T. Aura, “Cryptographically Generated Addresses (CGA)”, in 6th Information Security Conference (ISC’03),
Bristol, UK, October 2003.

4. C. Castelluccia and G. Montenegro, “Protecting AODVng Against Impersonation Attacks”, ACM Mobile
Computing and Communications Review, July 2002a.

5. C. Castelluccia and G. Montenegro, “Dynamic and Secure Group Membership in Adhoc and Peer-to-Peer
Networks”, ACM Mobile Computing and Communications Review, July 2002b.

6. R. Bobba, L. Eschenauer, V. Gligor and W. Arbaugh, “Bootstrapping Security Associations for Routing in
Mobile Ad-hoc Networks”, May 2002.

7. S. Capkun, J.P. Hubaux and L. Buttyan, “Mobility Helps Security in Ad Hoc Networks”, in Proceedings of
MobiHOC 2003, Annapolis, p. 11, June 2003,

8. A. Micali and A. Shamir, “An Improvement on the Fiat-Shamir Identification and Signature Scheme”, in
CRYPTO ’88, 1988, pp. 244-247.

9. P. Nikander, An Address Ownership Problem in IPv6, IETF, Draft-nikander-ipng-address-ownership-00.txt,
February 2001.

232 C. Castelluccia

10.

11.

12.

13.

14.
15.

16.
17.

18.

19.

20.

J. Arkko, T. Aura, J. Kempf, V. Mntyl, P. Nikander and M. Roe, “Securing IPv6 Neighbor and Router Discov-
ery”, in Wireless Security Workshop (WiSe2002), Atlanta, GA, September 2002.

D. Johnson, C. Perkins and J. Arkko, Mobile IP for IPv6, IETF, draft-ietf-mobileip-ipv6-24.txt, June 2003,
(work in progress).

T. Narten and R. Draves, Privacy Extensions for Stateless Address Autoconfiguration in IPv6, IETF, RFC3041,
January 2001.

A. Fiat and A. Shamir, “How to Prove Yourself: Practical Solutions to Identification and Signature Problems”,
in Advances in Cryptology: Proc. Crypto’ 86, Springer, pp. 186—-194, 1986.

U. Feige, A. Fiat and A. Shamir, “Zero Knowledge Proofs of Identity”, Journal of Cryptology, 1988.

D. Pointcheval and J. Stern, “Security Proofs for Signature Schemes”, Lecture Notes in Computer Science,
Vol. 1070, p. 387+, 1996.

A.J. Menezes, P.C. Van Oorschot and S.A. Vanstone, Handbook of Applied Cryptography, CRC Press, 1997.
C. Wong and S. Lam, “Digital Signatures for Flows and Multicasts”, IEEE/ACM Transactions on Networking,
ACM Press, Vol. 7, 1999.

G. Poupard and J. Stern, “On the Fly Signatures Based on Factoring”, in ACM Conference on Computer and
Communications Security, pp. 37-45, 1999. “OpenSSL projet, http://www.openssl.org/,”.

K. Barr and K. Asanovic, “Energy Aware Lossless Data Compression”, in Proceedings of MobiSys 2003, San
Francisco, May 2003.

NIST, http://www.itl.nist.gov/fipspubs/fip180-1.htm, NIST, FIPS PUB 180-1: Secure Hash Standard, April
1995.

Claude Castelluccia is aresearch scientist at INRIA, France. He is currently visiting the Secure
Computing and Networking Center of the University of California at Irvine. His research
interests are in mobile, wireless and secure networking. Claude Castelluccia hold a MSEE from
Florida Atlantic University and a Ph.D. in Computer Science from INRIA Sophia-Antipolis.

