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Abstract

Wireless sensor networks (WSNs) are ad-hoc net-
works composed of tiny devices with limited compu-
tation and energy capacities. For such devices, data
transmission is a very energy-consuming operation. It
thus becomes essential to the lifetime of a WSN to min-
imize the number of bits sent by each device. One well-
known approach is to aggregate sensor data (e.g., by
adding) along the path from sensors to the sink. Ag-
gregation becomes especially challenging if end-to-end
privacy between sensors and the sink is required. In
this paper, we propose a simple and provably secure
additively homomorphic stream cipher that allows ef-
ficient aggregation of encrypted data. The new cipher
only uses modular additions (with very small moduli)
and is therefore very well suited for CPU-constrained
devices. We show that aggregation based on this ci-
pher can be used to efficiently compute statistical val-
ues such as mean, variance and standard deviation of
sensed data, while achieving significant bandwidth gain.

1 Introduction

Wireless sensor networks (WSNs) are becoming in-
creasingly popular in many spheres of life. Application
domains include monitoring of the environment (such
as temperature, humidity and seismic activity) as well
as numerous other ecological, law enforcement and mil-
itary settings.

Regardless of the application, most WSNs have two
notable properties in common: (1) the network’s over-
all goal is typically to reach a collective conclusion re-
garding the outside environment, which requires detec-
tion and coordination at the sensor level, and (2) WSNs
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act under severe technological constraints: individual
sensors have severely limited computation, communica-
tion and power (battery) resources and need to operate
in settings with great spatial and temporal variability

At the same time, WSNs are often deployed in
public or otherwise untrusted and even hostile en-
vironments, which prompts a number of security is-
sues. These include the usual topics, e.g., key manage-
ment, privacy, access control, authentication and DoS-
resistance, among others. What exacerbates and dis-
tinguishes security issues in WSNs is the need to minia-
turize all security services so as to minimize security-
induced overhead. In other words, if security is a neces-
sary hindrance in other (e.g., wired or MANET) types
of networks, it is much more so in WSNs. For ex-
ample, public key cryptography is typically ruled out
as are relatively heavy-weight conventional encryption
methods.

Security in WSNs is a popular research topic and
many advances have been reported on in recent years.
Most prior work has focused on ultra-efficient key man-
agement, authentication, routing and DoS resistance
[1, 2, 3, 4]. An overview of security related issues and
services required for WSNs is provided by Perrig, et al.
in [5].

On the other hand, a lot of attention has been de-
voted to communication efficiency issues. Since data
transmission is a very energy-consuming operation, in
order to maximize sensor lifetime, it is essential to min-
imize the sheer number of bits sent by each sensor de-
vice. One natural and well-known approach involves
aggregating sensor data as it propagates along the path
from the sensors to the so-called sink – a node that col-
lects sensed data. Of course, aggregating data is not
quite equivalent to collecting individual sensor read-
ings. In some applications, e.g., perimeter control, ag-
gregation is useless since only individual sensor read-
ings are of interest. However, many WSN scenarios
that monitor an entire micro-environment (e.g., tem-
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perature or seismic activity) do not require information
from individual sensors but, instead, put more empha-
sis on statistical quantities, such as mean, median and
variance.

Although simple and well-understood, aggregation
becomes problematic if end-to-end privacy between
sensors and the sink is required. If we assume that
all sensors are trusted, sensors could encrypt data on
a hop-by-hop basis. For an intermediate sensor (i.e.,
one that receives and forwards data), this would en-
tail: 1) sharing a key each neighboring sensor, 2) for
each downstream1 neighbor, decrypting the received
encrypted value, 3) aggregating all received values, and
4) encrypting the result for transmission upstream.
Though viable, this approach is fairly expensive and
complicated. The former because of having to decrypt
each received value before aggregation and the latter –
due to the overhead imposed by key management.

Furthermore, hop-by-hop encryption assumes that
all sensors are trusted with the authenticity and pri-
vacy of other sensors’ data. This assumption may be
altogether unrealistic in some setting, whereas, in oth-
ers, trust can be partial, i.e., intermediate nodes are
trusted with only authenticity or only privacy.

Alternatively, if a single global key was used by
all sensors, by subverting a single sensor node the
adversary could learn measured values of any and all
nodes in the network. Since only the sink should gain
an overview of WSN measurements, this approach is
not attractive.

Contributions: In this paper, we focus on efficient,
bandwidth-conserving privacy in WSNs. More specif-
ically, we blend inexpensive encryption techniques
with simple aggregation methods to achieve very
efficient aggregation of encrypted data. To assess the
practicality of proposed techniques, we evaluate them
and present very encouraging results which clearly
demonstrate appreciable bandwidth conservation and
small overhead stemming from both encryption and
aggregation operations.

Organization: In the next section we discuss some
background and the assumptions about our system
model. Then, Section 3 describes the problem state-
ment along with the security model. Next, Section
4 describes our homomorphic encryption scheme, fol-
lowed by Section 5 which describes how to utilize this
encryption scheme in a WSN. Performance is analyzed
and results are discussed in Section 6. Related work is
summarized in Section 7 and Section 8 concludes this

1We use the terms downstream and upstream to mean away
and towards the sink, respectively.

paper.

2 Background

In this section we describe the key features of,
and assumptions about, the network and provide an
overview of aggregation techniques.

2.1 Wireless Sensor Networks (WSNs)

A WSN is an ad-hoc network composed of a mul-
titude of tiny devices with limited computation and
energy capacities. One commonly cited WSN applica-
tion is monitoring the environment. This may include
sensing motion, measuring temperature, humidity, etc.
Data monitored by the sensors is sent to a sink (usu-
ally a more powerful device), that is responsible for
collecting the information.

The ad-hoc nature of a WSN implies that sensors
are also used in the network infrastructure, i.e., not
just sending their own data and receiving direct in-
structions but also forwarding data for other sensors.
When sensors are deployed, a delivery tree is often built
from the sink to all sensors. Packets sent by a sensor
are forwarded to the sink by the sensors along the de-
livery tree.

Sensor nodes come in various shapes and forms,
however, they are generally assumed to be resource-
limited with respect to computation power, storage,
memory and, especially, battery life. A popular exam-
ple is the Berkeley mote [6]. One common sensor fea-
ture is the disproportionally high cost of transmitting
information as compared to performing local compu-
tation. For example, a Berkeley mote spends approx-
imately the same amount of energy to compute 800
instructions as it does in sending a single bit of data
[6]. It thus becomes essential to reduce the number of
bits forwarded by intermediate nodes, in order to ex-
tend the entire network’s lifetime. The sink node acts
as a bridge between the WSN and the outside world.
It is typically a relatively powerful device, such as a
laptop computer.

2.2 Aggregation in WSN

Aggregation techniques are used to reduce the
amount of data communicated within a WSN and thus
conserves battery power. Periodically, as measure-
ments are recorded by individual sensors, they need to
be collected and processed to produce data representa-
tive of the entire WSN, such as average and/or variance
of the temperature or humidity within an area. One
natural approach is for sensors to send their values to
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certain special nodes, i.e., aggregators. Each aggrega-
tor then condenses the data prior to sending it on. In
terms of bandwidth and energy consumption, aggrega-
tion is beneficial as long as the aggregation process is
not too CPU-intensive.

The aggregators can either be special (more pow-
erful) nodes or regular sensors nodes. In this paper,
we assume that all nodes are potential aggregators and
that data gets aggregated as they propagate towards
the sink. In this setting, since sensors have very lim-
ited capabilities, aggregation must be simple and not
involve any expensive or complex computations. Ide-
ally, it would require only a few simple arithmetic op-
erations, such as additions or multiplications.2.

We note that aggregation requires all sensors to send
their data to the sink within the same sampling pe-
riod. This either requires the sensors to have (at least
loosely) synchronized clocks or the ability to respond
to explicit queries issued by the sink.

One natural and common way to aggregate data is to
simply add up values as they are forwarded towards the
sink. Of course, this type of aggregation is useful when
the sink is only interested in certain statistical measure-
ments, e.g., the mean or variance of all measured data.
As noted in Section 1, some WSN applications require
all sensor data and therefore can not benefit from ag-
gregation techniques. Similarly, applications requiring
boundary values, e.g., min and/or max, are obviously
not a good match for additive aggregation.

With additive aggregation, each sensor sums all val-
ues, xi, it receives from its k children (in the sink-
rooted spanning tree) and forwards the sum to its par-
ent. Eventually, the sink obtains the sum of all values
sent by all n sensors. By dividing the sum by n, i.e.,
the total numbers of sensors, it computes the average
of all measured data.

This simple aggregation is very efficient since each
aggregator only performs k arithmetic additions3. It is
also robust since there is no requirement for all sensors
to participate as long as the sink gets the total number
of sensors that actually provided a measurement.

Additive aggregation can be also used to compute
the variance, standard deviation and any other mo-
ments on the measured data. For example, in case
of variance, each aggregator not only computes the
sum, S =

∑k

i=1 xi, of the individual values sent by
its k children, but also the sum of their squares:
V =

∑k
i=1 x2

i . Eventually, the sink obtains two values:
the sum of the actual samples which it can use to
compute the mean and the sum of the squares which

2This is indeed what we achieve in this work.
3We assume that an aggregator has its own measurement to

contribute; thus k additions are needed.

it can use to compute the variance:

V ar = E(x2) − E(x)2; where
E(x2) = (

∑n
i=1 x2

i )/n and E(x) = (
∑n

i=1 xi)/n

3 Goals and Security Model

In this work we are primarily concerned with data
privacy. Our goal is to prevent a passive attacker
(eavesdropper) from gaining any information about
sensor data. An attacker is assumed to be global, i.e.,
able to monitor any location in the network or even
the entire WSN. Furthermore, we assume the attacker
is able to read the internal state of some sensors.

The above assumption might seem far-reaching since
a global attacker could very well measure the data by
itself. However, even an omni-present attacker may
simply not have the means to install its own sensors, es-
pecially considering that sensors do not always measure
relatively simple phenomena (such as ambient temper-
ature); they can be used to monitor more difficult-to-
measure factors, such as radiation level, water salin-
ity, or air pollution. Moreover, a resource-limited at-
tacker with knowledge of the WSN topology could sim-
ply position itself at or near the sink and thus obtain
(by eavesdropping) all information about the measured
data.

In light of our requirement for end-to-end privacy
between the sensors and the sink, additive aggregation,
although otherwise simple, becomes problematic. This
is largely because popular block and stream ciphers,
such as AES [7] or RC5 [8], are not additively homo-
morphic. In other words, the summation of encrypted
values does not allow for the retrieval of the sum of the
plaintext values.

To minimize trust assumptions we assume that each
of the n sensors share a distinct long-term key with the
sink. This key is originally derived4 from the master
secret, which is only known to the sink. We denote the
sink’s master secret as K and the long-term sensor/sink
shared key as Ki, where the subscript 0 < i ≤ n
uniquely identifies a particular sensor. This way, the
sink only needs to store a single master secret and all
long-term keys can be recomputed as needed.

Even though we are advocating for end-to-end en-
cryption, we assume hop-by-hop authentication. As op-
posed to encryption, authentication schemes that allow
for aggregation seem to be very difficult, and perhaps
impossible, to design. Furthermore, even if such an
aggregate scheme existed, it is not clear how useful it
would really be in practice, since in a WSN an attacker

4For example, using a pseudo-random function (PRF).
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can easily affect the aggregate by just affecting the en-
vironment being sensed (i.e. for example by artificially
increasing the temperature around a sensor). Note that
such an attack does not require the attacker to compro-
mise any node. As explained in [9], other techniques
are needed to verify the plausibility of the resulting ag-
gregate and to increase the aggregation resiliency. In
WSNs, authentication does not provide data authentic-
ity, but can instead be used to enforce access control,
i.e. to prevent unauthorized nodes from injecting fake
packets in the networks. This access control can effi-
ciently be performed with hop-by-hop authentication
and does not require end-to-end authentication.

4 Additively Homomorphic Encryp-

tion

In this section we describe the notion of homomor-
phic encryption and provide an example. We then pro-
ceed to present our additively homomorphic encryption
scheme along with its security analysis. This encryp-
tion technique is very well-suited for privacy-preserving
additive aggregation.

4.1 Homomorphic Encryption

A homomorphic encryption scheme allows arith-
metic operations to be performed on ciphertexts. One
example is a multiplicatively homomorphic scheme,
whereby the multiplication of two ciphertexts followed
by a decryption operation yields the same result as,
say, the multiplication of the two corresponding plain-
text values. Homomorphic encryption schemes are es-
pecially useful in scenarios where someone who does
not have decryption keys needs to perform arithmetic
operations on a set of ciphertexts. A more formal de-
scription of homomorphic encryptions schemes is as fol-
lows.

Let Enc() denote a probabilistic encryption scheme.
Let M be the message space and C the ciphertext
space such that M is a group under operation ⊕ and
C is a group under operation ⊗. Enc() is a (⊕,⊗)-
homomorphic encryption scheme if for any instance
Enc() of the encryption scheme, given c1 = Enck1(m1)
and c2 = Enck2(m2), there exists a key k such that

c1 ⊗ c2 = Enck(m1 ⊕ m2)

In other words, the result of the application of function
⊕ on plaintext values may be obtained by decrypting
the result of ⊗ applied to the corresponding encrypted
values.

A good example is the RSA cryptosystem[10] which
is multiplicatively homomorphic. The RSA encryption

function is Enc(m) = me = c (mod n) and the cor-
responding decryption function is Dec(c) = cd = m
(mod n) where n is a product of two suitably large
primes (p and q), e and d are encryption and de-
cryption exponents, respectively, such that e ∗ d = 1
(mod (p − 1)(q − 1)).

Given two RSA ciphertexts c1 and c2, corresponding
to respective plaintexts m1 and m2, it is easy to see
that c1c2 ≡ me

1m
e
2 ≡ (m1m2)

e (mod n). Hence, one
can easily compute the multiplication of the ciphertexts
(c1c2) to obtain the ciphertext corresponding to the
plaintext m = m1m2 (mod n).

4.2 Proposed Encryption Scheme

We now introduce a simple additively homomorphic
encryption technique. Its security analysis is provided
in Appendix A. The main idea of our scheme is to re-
place the xor (Exclusive-OR) operation typically found
in stream ciphers with modular addition (+).

Additively Homomorphic Encryption Scheme

Encryption:

1. Represent message m as integer m ∈ [0, M − 1] where
M is large integer.

2. Let k be a randomly generated keystream, where k ∈
[0, M − 1]

3. Compute c = Enc(m, k, M) = m + k (mod M)

Decryption:

1. Dec(c, k, M) = c − k (mod M)

Addition of Ciphertexts:

1. Let c1 = Enc(m1, k1, M) and c2 = Enc(m2, k2, M)

2. For k = k1 + k2, Dec(c1 + c2, k, M) = m1 + m2

We assume that 0 ≤ m < M . Due to the commu-
tative property of addition, the above scheme is addi-
tively homomorphic. In fact, if c1 = Enc(m1, k1, M)
and c2 = Enc(m2, k2, M) then c1 + c2 = Enc(m1 +
m2, k1 + k2, M).

Note that if n different ciphers ci are added, then M
must be larger than

∑n

i=1 mi, otherwise correctness is
not provided. In fact if

∑n
i=1 mi is larger than M ,

decryption will results in a value m′ that is smaller
than M . In practice, if p = max(mi) then M should
be selected as M = 2dlog2(p∗n)e.

The keystream k can be generated by using a stream
cipher, such as RC4, keyed with a node’s secret key si

and a unique message id. This secret key pre-computed
and shared between the node and the sink, while the
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message id can either be included in the query from
the sink or derived from the time period in which the
node is sending its values in (assuming some form of
synchronization).

5 Aggregation of Encrypted Data

As previously noted, efficient aggregation in WSNs
becomes very challenging when end-to-end privacy of
data is required. One solution is to disregard aggre-
gation altogether in favor of privacy, i.e., for sensor
nodes to forward their own encrypted measurements,
as well as measurements received from their children,
upstream. The sink, upon receiving as many data pack-
ets as there are responding sensors, proceeds to decrypt
all ciphertexts and sums them up in order to compute
the desired statistical measurements. We term this ap-
proach as No-Agg. This approach has two obvious dis-
advantages. First, because all packets are forwarded
towards the sink, a lot of bandwidth (and hence power)
is consumed. Second, as illustrated later in Section 6.2,
there is an extreme imbalance between sensors in terms
of the amount of data communicated. Sensors closer to
the sink send and receive up to several orders of mag-
nitude more bits than those on the periphery of the
spanning tree.

A second approach, that does not achieve end-to-
end privacy but does aggregate data, is a hop-by-hop
(HBH) encryption method, which is also used for com-
parison between aggregation methods in [11]. In HBH
all nodes create pair-wise keys with their parents and
children during a boot strapping phase. When answer-
ing a query, nodes decrypt any packets sent to them,
aggregate this data together with their own before re-
encrypting the aggregated result and forwarding this
to their parent. This approach is obviously more band-
width efficient than No-Agg, as no packet is sent twice.
However, there is an associated cost involved with the
decryption and encryption performed at every non-leaf
node in the WSN which increases their energy con-
sumption (see [11]). More importantly, from a privacy
perspective, the HBH scheme leaves nodes vulnerable
to attacks because their aggregated data will appear
in plaintext (i.e., no end-to-end privacy). Especially
nodes closer to the sink become attractive targets for
an attacker, as their aggregated values represent a large
portion of the data in the WSN.

We instead propose an end-to-end privacy preserv-
ing aggregation approach (denoted as AGG) in which
each sensor encrypts their sensed data using the en-
cryption scheme presented in Section 4.2. Since this
scheme is additively homomorphic, values can be added
(aggregated) as they are forwarded towards the sink.

The sink can then retrieve from the aggregate it re-
ceives the sum of the samples and derive certain statis-
tical data. AGG retains the positive qualities of both
the No-Agg (end-to-end privacy) and HBH (energy ef-
ficient) solutions.

5.1 Computing Statistical Data

In this section, we show how the new additively ho-
momorphic encryption scheme can be used to aggre-
gate encrypted data such that the sink can still com-
pute the average and variance.

5.1.1 Computing the Average

When using our scheme, each sensor encrypts its data
xi to obtain cxi

= Enc(xi, ki, M). M needs to be
chosen large enough to prevent an overflow so it is
set as M = n ∗ t. Each ciphertext cxi

is therefore
log(M) = log(t) + log(n) bits long.

The sensor then forwards cxi
to its parent, who ag-

gregates all the cxj
’s of its k children by simply adding

them up (this addition is performed modulo M). The
resulting value is then forwarded. The sink ends up
with value Cx =

∑n
i=1 cxi

(mod M). It can then com-
pute Sx = Dec(Cx, K, M) = Cx − K (mod M), where
K =

∑n

i=1 ki, and derive the average as follows: Avg
= Sx/n.

5.1.2 Computing the Variance

As mentioned previously, our scheme can also be used
to derive the variance of the measured data.

In this case, each sensor i must compute yi = x2
i ,

where xi is the measured sample, and encrypts yi to
obtain cyi

= Enc(yi, k
′
i, M

′). It must also encrypt xi

as explained in the previous section. M ′ needs to be
chosen large enough to prevent an overflow so it is
set to M ′ = n ∗ t2. Each ciphertext cyi

is therefore
log(M ′) = 2 ∗ log(t) + log(n) bits long. The sensor
forwards cyi

, together with cxi
, to its parent. The size

of the resulting data is 3 ∗ log(t) + 2 ∗ log(n). The
parent aggregates all the cyj

of its k children by sim-
ply adding them up. It also aggregates, separately,
the cxj

, as explained in the previous section. The
two resulting values are then forwarded. The sink
ends up with values Cx and Cy =

∑n

i=1 cyi
(mod M).

Cx is used to compute the average Av. Cy is used
to compute the variance as follows: The sink com-
putes Vx = Dec(Cy, K ′, M) = Cy − K ′ (mod M),
where K ′ =

∑n

i=1 k′i. The variance is then equal to
Vx/n − Av2.
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5.2 Robustness

si+1 si+2 si+k

Sink

...

sj+1 sj+2 sj+k

...sm+1 sm+k

......

...

Figure 1. Multi-level WSN model with nodes of degree k

An important consequence of using our proposed en-
cryption scheme for aggregation in WSNs is that the
sink node needs to be aware of the encryptors id’s such
that it can regenerate the correct keystream for decryp-
tion purposes.

Because WSNs are not always reliable, it cannot be
expected that all nodes reply to all requests. Therefore
there needs to be a mechanism for communicating the
id’s of the non-responding nodes to the base station.
The simplest approach, and the one we used in our
evaluation, is for the sensors to append their respective
node id’s to their messages5.

6 Analysis

In this section, we compare the bandwidth of our
proposed AGG protocol with the No-Agg (forward-
ing data packets) and HBH (hop-by-hop encryption
and aggregation) approaches, as described in section 5.
The overall bandwidth in the WSN and the number of
bits sent by individual nodes are measured for different
WSN tree like topologies. Below we describe the spe-
cific network model that we use in our measurements.
The comparisons will be made for the two following
cases: (1) the sink is only interested in the average
value and (2) the sink is interested in the average and
variance values.

5Depending on the number of nodes that respond to a query,
it could be more efficient to communicate the id’s of nodes that
successfully reported values

6.1 Network Model

We envision a multi-level network tree in which there
exist numerous sensor nodes and only one sink node.
To simplify the model, we assume a balanced k-ary
tree, as depicted in figure 1. Let t denote the range of
possible measurement values collected by a sensor (i.e.,
if a sensor can measure temperatures between 0 and 99
Fahrenheit, then t = 100).

We will analyze the communication bandwidth in
the proposed WSN model from two perspectives: (1)
the number of bits sent per node at different levels in a
3-ary tree and (2) the total number of bits transmitted
throughout the WSN for 3-ary trees of various height.
These measurements will be carried out for the three
models that we are considering, namely No-Agg, HBH
and AGG.

Next we describe how to calculate the number of bits
sent per node for each of these schemes. We choose
the packet format used in TinyOS [12] which is the
operating system running on the Berkeley motes that
we envision as the sensor platform. The packet header
is 56 bits and the maximum supported data payload is
232 bits.

For the No-Agg scheme, a node only needs log(t)
bits to encode its sensed data. In addition, all internal
nodes need to forward the packets sent to them by their
children, and the number of packets received grows ex-
ponentially (in k) as we move higher in the tree (i.e.
closer to the sink).

In the HBH approach, the number of bits sent de-
pends upon the node’s level in the WSN tree. Leaf
nodes only send log(t) bits (same as in No-Agg), while
nodes higher up in the tree will have aggregated data
and therefore need to send more bits. Additionally,
when the variance is also requested, the aggregating
nodes need to keep track of this value separately, and
use approximately log(n′t) bits to encode the value,
where n′ is the number of nodes aggregated so far.

With our AGG scheme, the number of bits sent by a
node depends on the size of the modulus M used in the
additive encryption scheme. Its size can be computed
as the maximum possible aggregate value, which in this
model turns out to be M = n∗t, i.e. all sensors measure
the largest possible reading. Therefore, when encoding
the average, each node uses log(M) = log(t) + log(n)
bits. When the variance is also desired, a node needs to
send the ciphertext corresponding to x2. This requires
an extra log(n∗ t2) = 2∗ log(t)+ log(n) bits. Addition-
ally, an aggregator needs to append to the aggregate
the id’s of its children that did not reply to the query.
These id’s have to be propagated up to the sink along
with the aggregate.
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Table 1. Number of bits sent per node for each level in a 3-tree of depth 7, where the measured value range of 27

Levels Num Nodes A (0%) A (10%) A (30%) AV (0%) AV (10%) AV (30%) HBH-A HBH-AV No-Agg

1 3 75 950 2700 100 975 2725 73 97 68859
2 9 75 366 950 100 392 975 72 94 22932
3 27 75 172 366 100 197 392 70 91 7623
4 81 75 107 172 100 132 197 68 87 2520
5 243 75 85 108 100 111 132 67 84 819
6 729 75 78 85 100 103 110 65 81 252
7 2187 75 75 75 100 100 100 63 63 63

6.2 Numerical Results

In this section, we compare the performance of the
No-Agg, HBH and AGG according to the following two
criteria: (1) The forwarding cost per node i.e. the num-
ber of bits forwarded by node at each level of the de-
livery tree. (2) The overall bandwidth gain achieved
achieved by HBH and AGG over the No-Agg scheme.

Forwarding Cost per node (fairness)

Table 1 shows the number of bits sent per node at each
level in a 3-degree tree of height6 7 when t = 128 (the
network is for example monitoring temperatures that
range between 0 and 128 degrees).

For the No-Agg approach it becomes obvious from
the results that there is a widely differing data commu-
nication load amongst sensors at different levels (nodes
at level 7 send 3 orders of magnitude less data than
those at level 1). Because the nodes closer to the sink
have to send such significantly larger amounts of data
than their descendants, they use up their batteries and
die sooner. Should a level of nodes in the tree stop
functioning, then the whole WSN stops functioning as
well. Therefore, nodes would have to either be swapped
around manually or replaced upon failure, both tasks
being quite impractical when considering the number
of nodes at the various levels.

The table shows a steady increase of bits per node
for the HBH approach, both for the average (HBH-A)
as well as the average and variance data (HBH-AV).
Notice the relatively dramatic increase in bits transmit-
ted between nodes at level 7 and 6 for HBH-AV. This
is due to that the leaf nodes need not send a cipher-
text representing x2 (needed for the computation of the
variance), where x represent their measured value, as it
can be computed by their parents. Because packets are
not forwarded as in No-Agg, we observe a significant
reduction in bits sent per node at all non-leaf levels.

For the AGG we considered tree scenarios: (1) all

6The sink is at level 0 in the tree

the nodes reply7, (2) 90% of the nodes reply8 and (3)
70% of the nodes reply9).

In the first scenario, there is a constant number of
bits sent by each node at each level in the tree. How-
ever, this number of bits is larger than even the max-
imum for any HBH approach, due to the size of the
modulus M . As previously explained, the number of
bits sent by the leaves is larger with the aggregation
methods (AGG-A: 56+log(t)+log(n) = 75 bits, AGG-
AV: 56+3∗ log(t)+2∗ log(n) = 100 bits) than when no
aggregation is used (56 + log(t) = 63 bits). However,
aggregation distributes the load evenly over all nodes,
regardless of their distance to the sink. We believe this
to be an attractive property in WSNs. In the second
and the third scenarios, the number of bits processed
by each node gets larger the closer it gets is to the
sink. This is the result of appending the id’s of the
non-responding children to the aggregate. As we move
up the tree the list of non-responding nodes increases.

Bandwidth Gain

Tables 2 displays the bandwidth transmission gain of
the HBH and AGG schemes over the No-Agg scheme
using a 3-degree WSNs of various heights. We con-
sider the gains when (1) only the average is computed
and (2) both the average and variance are computed
10. These gains are obtained by computing the to-
tal bandwidth costs, CHBH , CAGG and CNo−Agg , by
adding, for each of these schemes, the total number of
bits forwarded by each node of the network. The band-
width gain of HBH and AGG are respectively defined
as CNo−Sgg/CHBH and CNo−Agg/CAGG.

7Referred to in the tables as A(0%) when only the average
is computed and as AV (0%) when the average and variance are
computed.

8Referred in the table as A(10%) when only the average is
computed and as AV (10%) when the average and variance are
computed.

9Referred in the table as A(30%) when only the average is
computed and as AV (30%) when the average and variance are
computed.

10We remind the reader of that in the No-Agg scheme, no extra
values need to be sent when the variance needs to be computed.
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Table 2. WSN bandwidth performance gain of the AGG and HBH schemes when aggregating the (1) Average and (2) Average
and Variance for a 3-tree and t = 27 = 128

Levels Num Nodes A (0%) A (10%) A (30%) HBH-A AV(0) AV(10) AV(30) HBH-AV

3 40 2.42 2.39 2.34 2.58 1.89 1.87 1.84 2.24
4 121 3.20 3.13 3.01 3.50 2.46 2.40 2.37 3.02
5 364 3.96 3.82 3.6 4.46 3.03 2.98 2.84 3.84
7 3280 5.46 5.13 4.58 6.41 4.1 3.9 3.6 5.52
8 9841 6.22 5.72 4.95 7.39 4.59 4.3 3.85 6.37

For example, in a 3-tree of height 5, there are 364
nodes, and when only computing the average value,
AGG-A achieves a factor of 3.96 speedup over No-Agg,
i.e. approximately 4 times less bits are sent across
the network. As expected, HBH-A and HBH-AV have
better performance than both AGG-A and AGG-AV,
respectively, although they both outperform No-Agg.
The biggest draw for using AGG over HBH is that of
end-to-end privacy. With HBH , it is enough for an
attacker to compromise one node close to the sink to
gain a large picture of the aggregated data in the WSN.
This is because each node in HBH stores the secret key
needed for decryption (and encryption), leaving them
vulnerable. On the other hand, nodes in AGG do not
store sensitive key material and the only data an at-
tacker can learn is a single sensor’s individual reading.

The results shown in this section are very encour-
aging since they confirm that aggregation is a useful
technique for reducing the total bandwidth usage and
can therefore extend the overall lifetime of the network.

7 Related Work

The problem of aggregating encrypted data in
WSNs was partially explored in [11]. In this paper, the
authors propose to use an additive and multiplicative
homomorphic encryption scheme to allows aggregation
of encrypted data. While this work is very interest-
ing, it has several important limitations. Firstly, it
is not clear how secure the encryption scheme really
is. Secondly, as acknowledged by the authors, the en-
cryption and aggregation operations are very expensive
and therefore require quite powerful sensors. Finally,
in the proposed scheme, the encryption expands the
packet size significantly. Given all these drawbacks,
it is questionable whether aggregation is still benefi-
cial. In contrast, our encryption scheme is proven to
be secure and is very efficient. Encryption and aggre-
gation only requires a small number of single-precision
additions. Furthermore, our encryption scheme only
expands packet sizes by a small number of bits. As a
result, it is well adapted to WSNs consisting of very
resource constrained sensors.

In [13], Hu and Evans propose a protocol to securely
aggregate data. The paper presents a way to aggre-
gate MACs (message authentication code) of individ-
uals packets such that the sink can eventually detects
non-authorized inputs. This problem is actually com-
plementary to the problem of aggregating encrypted
data, we are considering in this paper. The proposed
solution introduces significant bandwidth overhead per
packet. Furthermore, it requires the sink to broadcast
n keys, where n is the number of nodes in the net-
work, at each sampling period. This makes the pro-
posed scheme non-practical.

Although not related to data privacy, in [14] Przy-
datek, et al. present efficient mechanism for detecting
forged aggregation values (min, max, median, average
and count). In their setting, a trusted outside user
can query the WSN. The authors then look into how
to reduce the trust placed in the sink node (base sta-
tion) while ensuring correctness of the query response.
Another work by Wagner [9] examines security of ag-
gregation in WSNs, describing attacks against existing
aggregation schemes before providing a framework in
which to evaluate such a scheme’s security.

8 Conclusion

This paper proposes a new homomorphic encryption
scheme that allows intermediate sensors (aggregators)
to aggregate the encrypted data of their children with-
out having to decrypt them. As a result, even if an
aggregator gets compromised, the attacker won’t be
able to eavesdrop on the data and aggregate, resulting
in much stronger privacy than an aggregation scheme
relying on by hop-by-hop encryption.

We evaluate the performance of our scheme. We
show, as expected, that our scheme is slightly less
bandwidth efficient than the hop-by-hop aggregation
scheme described previously. However it provides a
much stronger level of security. The privacy protection
provided by our scheme is in fact comparable to the pri-
vacy protection provided by a scheme that would use
end-to-end encryption and no aggregation (i.e. the ag-
gregation is performed at the base station). We show
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that our scheme is not only much more bandwidth-
efficient than such an approach, but it also distributes
the communication load more evenly amongst the net-
work nodes, resulting in an extended longevity of the
WSN.

One limitation of our proposal is that the identi-
ties of the non-responding nodes (or responding nodes,
whichever is expected to be smaller) need to be sent
along with the aggregate to the sink. If the network is
unreliable, this can represent an important overhead.
It is therefore important to devise methods for reduc-
ing this cost. We plan to pursue this topic in our future
work.
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A Security Analysis of Encryption

Scheme

Our additive homomorphic encryption scheme is
very similar to a xor-based stream cipher and its se-
curity can be proven using a similar proof.

The security relies in two important features: (1)
the keystream changes from one message to another
and (2) all the operations are performed modulo a in-
teger M . These two features protect our scheme from
frequency analysis attacks. In fact, it can be proven
that our scheme is perfectly secure.

Theorem 1 The previous encryption scheme is per-
fectly secure.

Proof:
For plaintext space M , keystream space K,
let K = |M |, m ∈ [0, M − 1], c ∈ [0, M − 1].
Set k∗ = c − m (mod M). Then:

Prob
k←K

[Enc(k, m, M) = c] = Prob
k←K

[k + m = c (mod M)]

= Prob
k←K

[k = c − m (mod M)]

= Prob
k←K

[k = k∗]

If we assume that the maximum number of cipher-
texts to be added is n and that each plaintext is l-
bit long, we must have M = 2l+dlog(n)e, i.e., |M | =
l + dlog(n)e. If ci = (mi + ki), then the probabil-
ity that ci ∈ [0, 2l − 1] is twice the probability that
ci ∈ [2l, M − 1]. More specifically, we have:
Prob
k←K

[k = k∗] = 1/(2l + M) if c > 2l and Prob
k←K

[k =

k∗] = 2/(2l + M) if c < 2l.
Since these two equations hold for every m ∈ M, it

follows that for every m1, m2 ∈ M we have

Prob
k←K

[Enc(k, m1, M) = c] = Prob
k←K

[Enc(k, m2, M) = c]

which establishes perfect security of our scheme.
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