
Combining control and data abstraction in the verification of hybrid
systems

Xavier Briand
INRIA Grenoble – Rhône-Alpes, France

Email: xavier.briand@inria.fr

Bertrand Jeannet
INRIA Grenoble – Rhône-Alpes, France
Email: bertrand.jeannet@inria.fr

Abstract

We address the verification of hybrid systems built
as the composition of a discrete software controller in-
teracting with a physical environment exhibiting a con-
tinuous behavior. Our goal is to attack the problem of
the combinatorial explosion of discrete states that may
happen if a complex software controller is considered.
We propose as a solution to extend an existing abstract
interpretation technique, namely dynamic partitioning,
to hybrid systems described in a symbolic formalism.
Dynamic partitioning allows to finely tune the tradeoff
between precision and efficiency in the analysis. We show
the effectiveness of the approach by a case study that com-
bines a non trivial controller specified in the synchronous
dataflow programming language Lustre with its physical
environment.

1. Introduction

Hybrid systems combine discrete behaviors and con-
tinuous behaviors. They are suitable to model physical
phenomena interacting with a software controller part
with discrete behavior. The primary motivation of this
work is the analysis of Lustre synchronous dataflow
programs interacting with a physical environment. Lus-

tre [16] is a domain-specific language for programming
control-command systems that periodically sample in-
puts from their environment, compute outputs and move
to a new internal state.

Even if the differential equations or inclusions defining
the continuous behaviors are relatively simple, the com-
bination with a large discrete space makes the analysis
unmanageable in most of the cases.

Verification of hybrid systems focuses mainly on the
analysis of the continuous behavior: the values of non-
numerical variables are encoded in the control structure.
Invariants for numerical variables are then defined for
each corresponding control point (see Fig. 1(a) for a
small illustration). This may result in a combinatorial
explosion of the number of control points, a well-known
problem in the verification of finite-state systems. More-
over, compared to the case of purely discrete systems,

b0 b1 b0 b1

b0 b1 b0 b1

x:=y:=0

x:=x+2

y:=y+1

x:=x+1

y:=y+1

y≥0 ∧ 2x=3y

y≥0 ∧ 2x=3y+4 y≥1 ∧ 2x=3y+1

y≥1 ∧ 2x=3y+3

(a) fully explicit control structure

b0=b1

b0 #=b1

x:=y:=0
b0:=b1:=ff

b0 := not b0;
x := if b0

then x+1
else x+2;

b1 := not b1;
y := y+1;

(b0 =b1) ∧ (y≥0 ∧ x≥y)

(b0 #=b1)∧
(y≥0 ∧ x≥y + 1)

(b) partially explicit control structure

Figure 1. Associating invariants to control location. The
boxes formula give the invariant computed for each location
with a linear relation analysis

hybrid systems makes this combinatorial explosion even
more difficult to tackle because invariants are more
complex properties (e.g., convex polyhedra) rather than
a boolean value (a state is reachable or not).

This paper proposes to extend the principle of dy-
namic partitioning to hybrid systems. The initial motiva-
tion for this technique [24], [23], based on abstract inter-
pretation [10], was to apply linear relation analysis [12],
[18] to dataflow synchronous programs manipulating
Boolean and numerical variables. The idea is to consider
more general and less detailed control structures, such as
the one depicted on Fig. 1(b). Fig. 1 illustrates the less
precise invariants obtained by the analysis if we merge
the locations according to the property b0=b1.

The term “dynamic” refers to the ability of incremen-
tally refining such a control structure in order to reach a
sufficient precision for the verification goal. The refine-
ment is performed in conjunction with a combination of

141978-1-4244-4807-4/09/$25.00 ©2009 IEEE

forward and backward analysis, so that only states that
potentially belong to a counter-example are considered
in the refinement process.

Since the first papers on the verification of such sys-
tems ([17], [2], [20]), the approaches based on the use
of convex polyhedra and on the resolution of fixpoint
computations are still of interest. Convex polyhedra
are indeed able to infer subtle relationship between
the variables of a system [11]. An obvious limitation
of convex polyhedra is that they cannot provide good
approximations of non convex invariants. The HyTech

tool [19] solves this problem by using unions of convex
polyhedra, but it results a possibly non-terminating (and
more costly) analysis, unlike the abstract interpretation
approach of [18]. As an alternative, [4], [5] suggest to
approximate subsets of Rn with unions of hypercubes,
using efficient algorithms. A strength of this method
is the ability to have canonical representation of non-
convex sets and to handle more complex differential
equations. However, a combinatorial explosion of the
numbers of hypercubes may arise. Ellipsoid methods
have also been proposed [25]. Presented as a successor of
HyTech, the PHAver tool offers sophisticated refine-
ment techniques for representing non-convex invariants
by unions of polyhedra and for approximating on-the-
fly linear differential equations by simpler piecewise-
constant polyhedral inclusion that can be treated di-
rectly with convex polyhedra. Convergence of compu-
tations can be achieved by various heuristics.

As mentioned in [13], HyTech and PHAver fail
when dealing with large discrete space because only con-
tinuous behaviors are treated symbolically. [13] proposes
a fully symbolic technique based on backward (greatest)
fixpoint computation, in which sets of states are repre-
sented exactly with a variant of Boolean circuits mixing
Boolean variables and linear constraints. The technique
does not guarantee termination (on unbounded time
intervals), and relies on a sophisticated semi-canonical
representation rather than on approximations to address
the efficiency issue. In the case of discrete systems,
[8] adopts a similar approach by combining BDDs and
Presburger formulas in disjunctive normal forms.

This paper. We present here a way to combine effi-
ciently discrete and continuous behavior for the verifi-
cation of hybrid systems obtained as the composition
of a physical environment and a software controller, as
illustrated in section 2.

From a specification point of view, we present in
section 3 a flexible model for hybrid systems which
is more symbolic in a number of aspects. Some usual
constraints are relaxed, like the requirement that in-
variants and guards should be convex. One can also
combine freely numerical and non-numerical variables

in formulas. In particular, our model allows us to embed
dataflow Lustre programs.

Section 4 reminds the principles of dynamic parti-
tioning developed in [23]. In this context, section 5
extends the technique of [23], [22] for computing post
and preconditions induced by the continuous behavior
in a partitioned abstract domain. Integrated in our tool
NBac, this extension allows to inherit the features of
dynamic partitioning for hybrid systems.

We illustrate in section 6 with experiments the poten-
tial of our approach. We first performed various analysis
on the example presented in section 2, and we then
tackled a very detailed model of the famous steam-
boiler specification of R. Abrial [1]. Such a system could
hardly be handled without treating symbolically the
discrete state-space, due to the complexity of its discrete
behavior.

2. Connecting a Lustre program to a hy-
brid environment

Fig. 2 shows a model of a system composed of a Lus-

tre disk controller interacting with a physical environ-
ment, the disk motor device (hybrid system). Fig. 2(a)
depicts the behavior of the disk motor. It emits its speed
on the input channel, and obeys to the command received
with the output channel, but may diverge slightly from
the ideal behavior (parameter ε).

Fig. 2(c) depicts the disk controller. It receives the
speed of the disk and emits appropriate signals plus and
minus to maintain the motor speed within a specified
range (here [8, 12]). This program is embedded in a hy-
brid automaton which receives the speed on the channel
input, computes the reaction of the Lustre controller
and stores the computed outputs in internal variables,
before emitting them on channel output. Fig. 2(b) depicts
the property observer. d is the time during which the
speed has been outside [8, 12]. We want to check if
d ≤ 8 always holds. As initially the speed is 0, the
controller should put the motor speed in the desired
range quickly enough, and control it properly afterward.
The process of Fig. 2(d) forces the synchronizations on
channels input and output to take place in the right
order, within specific time intervals. We model thus the
reaction time of the controller, and variations in the
sampling period and the reaction time. The parameters
are ε, m, M, Im,Om,OM .

3. Symbolic Hybrid Automata (SHA)

We introduce a symbolic model for hybrid systems,
which allows to manipulate symbolically the notions of
locations and location invariants. Thus we can avoid the

142

case (mode) of

idle : −ε ≤ ṡ ≤ ε
plus : M − ε ≤ ṡ ≤ M + ε
minus : −m − ε ≤ ṡ ≤ −m + ε

s : real
mode : {idle,plus,minus}

s:=0
mode:=idle

sync input(speed)
speed=s ?

sync output(pp,mm)
mode := if pp then plus

else if mm then minus
else idle

(a) Environment: disk motor device emits the speed of the disk
on channel input and reacting to the controller (channel output)

if s ≤ 8 ∨ s ≥ 12 then ḋ = 1 else empty

if s ≥ 8 ∧ s ≤ 12 then ḋ = 0 else empty

d : real
d:=0

s ≥ 8 ∧ s ≤ 12 ?
d := 0s ≤ 8 ∨ s ≥ 12 ?

(b) Property observer on the physical environment: d counts the
delay for which the speed s has been outside the desired range.

oplus : bool
ominus : bool

sync input(speed)
(oplus,ominus) := lusprog(speed)

sync output(pp,mm)
pp = oplus ∧ mm = omoins ?

node lusprog(speed:real) returns (plus,moins : bool);
let

plus = speed <= 8.0;
moins = speed >= 12.0;

tel

(c) Lustre controller embedded in a process. It emits plus and
minus commands to the physical device.

if t ≤ IM then ṫ = 1 else empty

if t ≤ OM then ṫ = 1 else empty

if t ≤ 1 then ṫ = 1 else empty

t : real
0 ≤ t ≤ IM ?

sync input(–)
t ≤ IM ?

sync output(–,–)
Om ≤ t ≤ OM ?

t = 1 ? t:=0

0 IM Om OM 1 t

input output

(d) Scheduler defining the scheduling above

Figure 2. A disk controller connected to its environment,
and a property observer.

state-explosion problem in the specification and we delay
this question to the analysis.

From a computational point of view, the expressive-
ness of SHA is identical to linear hybrid systems. How-
ever, from a specification language point of view, SHA
are more expressive in so far as they allow much more
compact descriptions.

3.1. The SHA model

A symbolic hybrid automaton (SHA) H =
(V, Init ,∆H , DH) is defined by a set V of variables
of different types that evolves from initial state Init
according either to discrete and instantaneous changes
(with assignments) specified by ∆H or to continuous
evolutions specified with a global, conditional differential
inclusion DH . Conditional differential inclusions are
expressions as [if b then dx=dy+1 else dx=dy]
(Boolean variable b encodes two traditional locations
with the universe as invariant), or as [if x>=2 then

dx=dy+1 else dx=dy], which specifies two traditional
locations with both invariants and differential inclusions
(we have an implicit transition when x = 2: trajectories
cross the frontier of the two regions). More precisely:

1) V is a finite set of variables partitioned into variables
of any type VQ (subject to discrete behaviors) and real-
value variables VX (continuous behavior). Q (resp. X)
denotes the set of valuations of variables in VQ (resp.
VX). S = Q × X is the set of states of the system and
Init ⊆ S the initial states. Notice that we do not restrict
a priori the types of the variables in VQ, as the software
controller part may manipulate variables of any type.

2) Discrete change of the system are defined by the
finite set ∆H of transitions. In a discrete transition
δ = (σ, p, G, A) ∈ ∆H , σ is an action carrying a tuple of
communication parameters p = 〈p1, . . . , pk〉. The guard
G ⊆ S × Pσ is a predicate on the variables and the
communication parameters (Pσ denotes the set of val-
uations of parameters). The assignment A : S×Pσ → S
defines the evolution of the values of variables during the
discrete transition.

3) Continuous evolution is defined by DH : Q×X → 2X .
DH associate to each discrete state q ∈ Q a differential
inclusion ẋ(t) ∈ D(q, x(t)). The constraints on the
derivatives of continuous variables D is a function of
any state rather than a function on discrete locations
and its guards can specify implicitly traditional location
invariants. This symbolic specification of the continuous
evolution make easier the abstraction of complex differ-
ential equations by simpler piecewise-constant polyhe-
dral inclusions [19] (Fig. 4 illustrates this point).

SHAs can be composed in parallel and communicate
by rendez-vous on valued channels. The corresponding
product is classical and is not detailed here.

143

x ≥ 0

x2 ≥ 2x1

b1 ∧ b2 b1 ∨ b2

false

(a) Boolean function

b

x1 ≥ 0

−x2 x2 − 1

3x2

(b) Numerical function

x ≥ 2

x ≥ 1

∅ 1 ≤ ẋ ≤ 2

x ≥ 3

2 ≤ ẋ ≤ 3 ∅
(c) Derivative function

Figure 3. Conditional functions

Syntax of expressions. Functions and formulas in-
volved in the definition of hybrid automata will be
conditional functions, represented with binary decision
diagrams (MTBdds [7]) built on elementary predicates
(Boolean variables or linear constraints) and elementary
functions/sets (Boolean formulas, linear expressions, dif-
ferential inclusions), as in [22], c.f. Fig. 3.

For differential inclusions, in this paper we consider
only linear hybrid systems, that is, hybrid systems
with constant differential inclusion (conjunction of linear
constraints on derivatives, like 1 ≤ ẋ + 2ẏ ≤ 3).
This excludes affine differential equations of the form
ẋ = x. They can however be approximated by piecewise
constant differential inclusions. Notice that tools like
PHAVer internally perform such approximations.

3.2. Behavior of SHA

The run of a SHA H is composed of a succession of
discrete and continuous transitions. The global transi-
tion relation is →=→c ∪ →d is defined as follows.

Discrete transition relation. The discrete transition
relation →d⊆ S × S induced by ∆H is defined by:

(σ, p, G, A) ∈ ∆H , vp ∈ Pσ, (s, vp) ∈ G ∧ s′ = A(s, vp)
s →d s′

Continuous transition relation. We note FT the set
of functions f : [0, T] → X piecewise C1, i.e. there is
a finite sequence T0 = 0 < T1 < . . . < Tn = T such
that f is continuously derivable on]Ti, Ti+1[and have a
left limit in Ti and a right limit in Ti+1. The continuous
transition relation→c⊆ S×S induced by the conditional
differential inclusion DH is defined by:

q ∈ Q, f ∈ FT , T ≥ 0, f(0) = x ∧ f(T) = x′

∀t ∈ [0, T] : ḟ(t) ∈ DH(q, f(t))
s = (q, x) →c s′ = (q, x′)

Remark that if DH(s) = ∅, there is no possible con-
tinuous transition from s, so the time cannot elapse any
more. This allows to implement the traditional notion of
invariants. For instance, [if x>=2 then dx=dy+1 else

empty] specifies that as long as x ≥ 2, the time can elapse
and x and y will evolve according to the differential
inclusion, otherwise the time is blocked, because there
is no possible valuation of the derivatives, only discrete
transitions may be taken. The linear hybrid automata
defined in [2] are SHA where the valuations of discrete
variables Q are the locations. For each location q ∈ Q,
λx.D(q, x) ∈ {∅, Cq}. The set {x | D(q, x) -= ∅} corre-
sponds to the usual notion of invariant of the location
q, and Cq corresponds to the derivative constraints
associated to location q.

We illustrate with the example below the expressive-
ness and compactness of SHA (although the primary
motivation for such a symbolic model is to implement the
ideas developed in the introduction regarding symbolic
verification techniques). The automaton of Fig. 4(a)
can be abstracted by the automaton of Fig. 4(b). This
requires however the duplication of discrete transitions,
sometimes with guards modifications (incoming transi-
tions), whereas our model enables a more straightfor-
ward specification of the abstraction, Fig. 4(c).

1≤x≤3

ẋ=x

x := y x := y+z

(a) Automaton

1≤x≤2

1≤ ẋ≤2

2≤x≤3

2≤ ẋ≤3
x=2 ?

y≤2 ?
x := y

y≥2 ?
x := y

y+z≥2 ?
x := y+z

y+z≤2 ?
x := y+z

(b) Classical abstraction ([19])

if x < 1 then empty
else if x < 2 then 1 ≤ ẋ ≤ 2
else if x < 3 then 2 ≤ ẋ ≤ 3
else empty

x := y x := y + z

(c) Abstraction with SHA

Figure 4. Hybrid automaton and its abstraction in 2
different models

We introduce also few additional notations, used be-
low for reachability analysis. We call T -trajectories the
functions ν : [0, T] → S such that ν(t) = (q, f(t))
for some q and we note TT the set of T -trajectories.
Moreover, the postcondition (resp. precondition) opera-
tor and the reachability (resp. coreachability) operators

144

are defined as:

post(X) = {s′ | s ∈ X ∧ s → s′} (1)
pre(X) = {s | s′ ∈ X ∧ s → s′} (2)

reach(X0) = lfp(λX.X0 ∪ post(X)) (3)
coreach(X0) = lfp(λX.X0 ∪ pre(X)) (4)

4. Abstract interpretation and dynamic
partitioning

We want to check an invariance property on an hybrid
system, or equivalently to show that some states cannot
be reached. If BAD ⊆ S denotes such states, we expect

reach(Init) ∩BAD = ∅ or coreach(BAD) ∩ Init = ∅

As the sets reach and coreach are not computable for
the considered systems, we will use approximation tech-
niques using the abstract interpretation framework of
[23], that we remind in this section.

Base abstract domain. The idea of abstract inter-
pretation is to replace the powerset of states 2S (on
which the fixpoint Eqns. (3) and (4) are defined) by a
simpler abstract domain A in order to achieve reasonable
performance of the resulting abstract analysis, without
being too imprecise either.

An abstract value a ∈ A is essentially a specific subset
of the state-space S / Bn × Rm (enumerated variables
× numerical variables). Here we make the choice that an
abstract value

a = (B, P) ∈ A = 2B
n

× Pol(Rm)

is the conjunction of a Boolean formula B (represented
with BDDs) and a m-dimensional convex polyhedron P .
The concretization function γ is defined by γ(B, P) =
{(b, r) | b ∈ B ∧ r ∈ P}. Such an abstract value forgets
the relations between variables of different types, which
is a quite rough approximation.

An alternative could be to consider the much more
precise domain A′ = Bn → Pol(Rm), in which a convex
polyhedra is associated to each discrete state, but this
does not address the combinatorial explosion problem.
In addition, none of these two solutions can represent
non-convex invariants for numerical variables.

Partitioned abstract domain. The idea of dynamic
partitioning is to partition the efficient but not very
precise abstract domain A in order to improve its expres-
siveness [23]. Intuitively, partitioning allows to introduce
case reasoning by distinguish different situations. More
formally, let π : K → A be a finite partition of S
into abstract values, i.e., K is a finite set, k -= k′ ⇒
π(k)1 π(k′) = ⊥, and S =

⋃

k∈K γ(π(k)). A partitioned
abstract value is then a function f : K → A satisfying

BadInit

(a) Reachability analysis

c̄ c
c̄

Init Bad

(b) Coreachability analysis

c̄ c
Init Bad

(c) Refinement

Figure 5. Analysis on partitioned domain and partition
refinement

f 3 π. Its meaning is defined by the concretization
function

γπ : Aπ = (K → A) −→ 2S

f 5−→
⋃

k γ(f(k))
This allows to manipulate bounded and canonical unions
of abstract values, and in particular to represent non-
convex numerical invariants. The reachability Eqn. (3)
is typically abstracted into an equation system

Y (k) = Y
(k)
0 6

⊔

k′→k

postk
′,k

α (Y (k′)) Y (k) 3 π(k) (5)

The abstract interpretation framework ensures that we
can compute iteratively the reachability set in the (par-
titioned) abstract domain, using widening for ensuring
convergence. We obtain an overapproximation reach $ ⊇
reach of the concrete reachability set.

Partition refinement. The more the partition π is
detailed, the more the abstraction Aπ is precise, but
also costly. The idea, illustrated on Fig. 5, is then to
start with a simple partition, to perform reachability
and coreachability analysis, and to intersect their result
in order to focus on states and transitions that possibly
belong to a counter-example, Fig. 5.(b). If this set is
empty, the property is proved. Otherwise, we refine the
partition and we start a new analysis cycle. Contrary to
most predicate abstraction refinement techniques, that
are based on the search of concrete counter-examples
[3], our refinement technique can be viewed as based
on abstract counter-examples, that is, it tries to remove
paths from initial to bad states. In a partition member,
a condition (like the condition c in Fig. 5.(b)) that
separates different behaviors (in terms of abstract tran-
sitions) is a good candidate for partition refinement, as it
allows to remove some transition paths in the partition.
For instance, the refinement depicted on Fig. 5.(c) makes
clear that one cannot go in one step from the partition

145

-4 -3 -2 -1 0 1 2 3 4

-4
-3
-2
-1
0
1
2
3
4

(a) X(x, y)

-4 -3 -2 -1 0 1 2 3 4 5 6
-2
-1
0
1
2
3
4

(b) postbest
α

(X)

-4 -3 -2 -1 0 1 2 3 4 5 6
-2
-1
0
1
2
3
4

(c) postcart
α

(X)

The polygons in medium/dark grey
are the images of the polygons ob-
tained by intersecting X with the
conjunctions of conditions, and the
polygon in light grey is their convex
hull (which is the final result). The
dark grey part depicts post(X,Y)
with Y = {(x, y) | y < 0}.

-4 -3 -2 -1 0 1 2 3 4 5 6
-2
-1
0
1
2
3
4

(d) postcart
α,x≥0(X)

Figure 6. Computation of discrete postcondition

member labelled by c̄ to the bad states, something which
appeared as possible in Fig. 5.(a). [23] proposes several
refinement heuristics on this basis.

Dynamic partitioning and predicate abstraction.
Predicate abstraction consists in abstracting an (hybrid)
system with an abstract finite automaton, by partition-
ing the state-space of the original system according to
a set of formulas, and then abstracting accordingly its
transition relation [15]. The abstract system is then
checked by classical finite-state exploration techniques.
As the choice of a suitable partition is of crucial im-
portance (as in dynamic partitioning), refinement tech-
niques have been developed, both for non-hybrid or
hybrid cases [9], [3], based on concrete counter-examples.
Predicate abstraction can be seen as an instance of
dynamic partitioning, where the base abstract domain is
the simple lattice {⊥,8} with ⊥ ! 8: the fixpoint com-
putation on the abstract finite automaton can only show
that an abstract state is either non-reachable (⊥) or
possibly reachable (8). In contrast, dynamic partitioning
makes use of more sophisticated abstract domains like
convex polyhedra [24], which allows a full range of
properties lying between ⊥ and 8 to be discovered by
the fixpoint computation.

In some intuitive way, the “cleverness” of predicate
abstraction is mainly located in the generation of a
detailed partition by the refinement process, whereas
dynamic partitioning relies less on a detailed partitioning
and more on propagation of symbolic properties during
fixpoint computations.

Computing discrete post- and pre- conditions.
We very briefly sketch with an example the technique
described in [22] for computing discrete postconditions in
a partitioned system, which is needed to solve Eqn. (5).
Assume we have a transition

x′ = fx = if x ≥ 0 then x + 2 else x
y′ = fy = if y ≥ 0 then y else (if x ≥ 0 then y − 1

else − y)

and the polyhedra X depicted on Fig. 6.(a). The best
correct approximation of post(X) is obtained by con-
sidering all the conjunctions of numerical conditions, in
order to reduce the computation to a combination of
convex polyhedra operations, Fig. 6.(b):

postbest

α (X)=∃x∃y(X({y<0,x<0}({x′=x,y′=−y} *

X({y<0,x≥0}({x′=x+2,y′=y−1} *

X({y≥0,x<0}({x′=x,y′=y} *

X({y≥0,x≥0}({x′=x+2,y′=y})

However, this solution is exponential in the number of
variables v and of conditions in functions fv. An alter-
native is to update separately each variable, Fig. 6.(c):

postcartα (X)=∃x∃y
(

(

X({x<0}({x′=x} * X({x≥0}({x′=x+2}
)

(
(

X({y<0,x<0}({y′=−y} * X({y<0,x≥0}({y′=y−1} *

* X({y≥0}({y′=y}
))

This solution is linear in the number of variables (but
still exponential in the number of conditions). To im-
prove its precision, we can factorize the test on x ≥ 0,
which appears in both functions fx and fy, Fig. 6.(d):

postcartα,x≥0(X)=∃x∃y
(

(

(X({x<0}({x′=x}) ((X({x<0,y<0}({y′=−y} *

X({x<0,y≥0}({y′=y})
)

*
(

(X({x≥0}({x′=x+2}) ((X({x≥0,y<0}({y′=y−1} *

X({x≥0,y≥0}({y′=y})
))

(6)

On a partitioned system, one intersects the results of
elementary postconditions with the destination partition
member before taking their convex hull. For instance,
if we take Y = {(x, y) | y < 0}, then postbest

α (X, Y) !

postcartα,x≥0(X, Y) (depicted in dark grey on Figs. 6(b)(d)),
although postbest

α (X) = postcartα,x≥0(X).
[22] develops such techniques in the more general case

in which Boolean and numerical variables/conditions are
freely combined, in order to tune the tradeoff between
efficiency and accuracy of computations.

Extension to SHA. The methodology described above
can be applied to the verification of hybrid systems:
the precondition and postcondition operators should just
take into account continuous behaviors in the partitioned
domain. In classical (linear) hybrid automata, it is quite
straightforward [2]: a change of mode requires a discrete
transition, and in each mode the constraints on deriva-
tives are constant: only trajectory segments that are line
segments need to be considered.

In the SHA model, a change of mode can occur
during continuous evolutions: the trajectory segments to
consider will be slightly more complex. This will be the
object of section 5 where we focus on the continuous
postcondition. Even if the formulas for this operator are

146

intuitive, the topological aspects on the frontier separat-
ing 2 partition members have to be taken into account
carefully. We will first compute the exact postcondition
for the ideal case and then apply the approximation
techniques sketched above for the discrete postcondition.

5. Computing continuous postconditions

5.1. The case of purely continuous state-

space

We consider a SHA H without discrete state-space:
S = X = Rm. We fix a partition X =

⋃

k∈K Xk of
the state-space into convex polyhedra, that defines a
partitioned abstract domain. We note F i,j the frontier
(X i ∩ X̄j) ∪ (X̄ i ∩ Xj) (X̄ i is the adherence of X i,
see [21]). We first decompose general trajectories into
sequences of simpler ones, that are included in pairs of
connected regions in the partition, and ”crosses” only
once the frontier.

Definition 1 (Simple trajectories): We note S i,j
T the

subset of T -trajectories f ∈ TT (see section 3.2), named
simple (T, i, j)-trajectories, where there exists a dura-
tion, noted Tf , such that f([0, Tf [) ⊆ X i, f(Tf) ∈ F i,j

and f(]Tf , T]) ⊆ Xj. "

We then define a timed postcondition operator for these
simple trajectories:

posti,j(Z) =
{

f(T) | T ≥ 0, f ∈ Si,j
T , f(0) ∈ Z

}

Full trajectories will be taken into account by iterating
the application of posti,j for i, j ∈ K, during the iterative
solving of Eqn. (5).

Exact postcondition. We give now an exact value of
posti,j in a particular case. We assume here that the
evolution function D : X → 2X can have only two values
∅ or Di on each partition member X i i.e. there exists
Ii ⊆ X i such that:

D(x) =

{

Di if x ∈ Ii

∅ if x ∈ (X i \ Ii)
(7)

Moreover, we assume that Di is closed and convex and
Ii is convex. In order to compute posti,j , we show below
that only trajectories composed of 2 line segments need
to be considered (or 1 if i = j).

Definition 2 (2-Line trajectories): We note Li,j
T the

subset of f ∈ Si,j
T , named 2-line (T, i, j)-trajectories,

where there exists di ∈ Di and dj ∈ Dj such that
ḟ([0, Tf [) = {di} and ḟ(]Tf , T]) = {dj}. "

Proposition 1 (Straightening trajectories): Suppose
f ∈ Si,j

T . Then there exists g ∈ Li,j
T such that Tf = Tg,

f(0) = g(0), f(Tf) = g(Tf) and f(T) = g(T). "

Hence, the timed postcondition operator can be written:

posti,j(Z) =
{

f(T) | T ≥ 0, f ∈ Li,j
T , f(0) ∈ Z

}

X(1)

X(2)

X(3)

(a)

∅
X(1) X(2)
x ≤ 0 x > 0

(b)

X(1) X(2)
x < 0 x ≥ 0

(c)

Figure 7. Examples of postcondition posti,j

We can now give a formulation of posti,j with the time
elapse operator [18] in the case where I i and Ij are
convex polyhedra.

Theorem 1: Let Z ↗Di

be the set {z +dt | z ∈ Z, d ∈
Di, t ≥ 0}. Then posti,j(Z) =

[

(

[

(Z ∩Ii) ↗Di]

∩
[

Īi∩F i,j ∩ Īj
]

)

↗Dj

]

∩Ij (8)

"

If the sets Z, Di and Dj are convex polyhedra (rather
than general convex sets), all the operations are im-
plemented without approximation by standard convex
polyhedra operations, as described in [18]. Fig. 7 gives
examples. Notice the influence of the configuration at
the frontier on the result (Fig. 7(b), 7(c)).

Approximating the postcondition. If we withdraw
the assumption that D is constant on each partition
member, it is hopeless to give an exact and computable
formulation of posti,j . This indeed reduces to the com-
putation of post in a non-partitioned system, which has
been shown to be computable only if X = R2 [6].
Nevertheless, we can consider two solutions:

1) Refine the partition and go back to the situation of
the previous section.

2) Replace the function D : S → 2X by a suitable
overapproximation.

For the first case, remark that D is expressed by a
conditional function and then, such a finite partition
exists. Nevertheless, this solution may require a very
detailed partition, which induces an expensive analysis.
The second solution we will describe is more flexible and
more general: if the partition is not detailed enough, it
induces approximations, however those can be controlled
and improved by refining the partition. We suggest the
following approximation: we define an operator posti,j

α

obtained by applying Eqn. (8) with:

Dk = Convex(D(Xk)) and Ik = Convex(Supp(D)∩Xk)

for k ∈ {i, j}, where D(X)
def
= {D(x) | x ∈ X},

Supp(D)
def
= {x | D(x) -= ∅}, and Convex(X) denotes

the smallest convex set containing X .

147

b1

ẋ1 = 1
ẋ2 = 3 b3

ẋ1 = 1
ẋ2 = −4 x1 > 0

n ≥ 0

ẋ1 = 3
ẋ2 = 1

ẋ1 = 3
ẋ2 = −1

n ≥ 0

ẋ1 = 4
ẋ2 = 1

ẋ1 = 4
ẋ2 = −1

b1 ∧ b2 ∧ x1 ≤ 0

S(1)

b2 ∧ b3 ∧ x1 > 0

S(2)

b1 ∧ b2
x1 = −3

−1 ≤ x2 ≤ 1
n = x2

Z

b1 ∧ b2 ∧ b3
0 < x1

−x1/4 ≤ x2 ≤ −x1/4 + 1
n = 1 + x1 + 4x2

post1,2
α (D ↓ n ≥ 0)(Z ∩ (n ≥ 0))

b1 ∧ b2 ∧ b3
0 < x1

x1/4 ≤ x2 < x1/4 + 1
n = −1 + x1 − 4x2

post1,2
α (D ↓ n < 0)(Z ∩ (n < 0))

b1 ∧ b2 ∧ b3
0 < x1

−x1/4 + x2 − 1 ≤ n ≤ x1/4 + x2 + 1
−1 ≤ n ≤ 1

post1,2
α (D)(Z)

(a) D((b, n, (x) (b) Splitting or not w.r.t. n ≥ 0 in postcondition

Figure 8. Different approximations of post1,2
α (D)(Z). D↓c denotes the function D partially evaluated on the condition c.

If D is constant and has a convex support on each
partition member, post i,j

α = post i,j . Thus the approxi-
mations in posti,jα will be controlled by the fineness of
the partition and will be improved during the partition
refinement process. Algorithmically, if D is defined by a
conditional function, Fig. 3(c), we just have to compute
the convex hull of a finite set of convex polyhedra.

5.2. Integrating the discrete state-space.

Now we consider the general case where S = Q× X .
We fix a partition S =

⋃

i Si of S into abstract values
that are the conjunction of a Boolean formula and a
convex polyhedra. For the sake of simplicity, we assume
that there is no real variable in Q, so that an abstract
value Z can be decomposed as Z = 〈ZQ, ZX〉 ∈ A.

Exact postcondition. We assume first that D : S →
2X is constant on each partition member. In Eqn. (7), we
now have, for each i, I i = Ii

Q×Ii
X . Moreover, we take into

account the fact that the discrete state-space does not
evolve when the time elapses, that is, a trajectory which
belong to Si∪Sj is necessarily included in

(

Qi ∩Qj
)

×X .
Then, similarly to Eqn. (8), we have:

posti,j(Z) =
〈

ZQ ∩ Ii
Q ∩ Ij

Q
[(

[

(ZX ∩ Ii
X) ↗Di]

∩
[

Ii
X ∩ F i,j ∩ Ij

X

]

)

↗Dj
]

∩ Ij
X

〉

(9)

Approximating postcondition. If D is not constant
on each partition member, we approximate it as for the
purely numeric case. We again take into account the fact
that the discrete state-space does not evolve when the
time elapses, but in a more subtle way. We define an

operator posti,jα obtained by applying Eqn. (9) with:

Di = Convex
(

D
(

Si∩(Ij
Q×X)

))

, Ii
Q =

[

Supp(D)∩Si
]

Q

and Ii
X = Convex

([

Supp(D) ∩ Si ∩ (Ij
Q ×X)

]

X

)

and conversely for Dj , Ij
Q and Ij

X . The resulting operator
is denoted posti,jα (D)(Z) and is illustrated on Fig. 8.

Now, on the discrete state-space we can also reason by
cases, by splitting the argument Z according to discrete
conditions (if then else or ite) which do not depend on
variables involved in continuous evolution, similarly to
Eqn. (6). If such a condition c appears in the conditional
function D, we decompose the postcondition as follows:

posti,jα

(

ite(c, D+, D−)
)

(Z) =

posti,jα (D+) (Z ∩ !c") 6 posti,jα (D−) (Z ∩ !¬c")

where !c" is the set of states satisfying c. This operator
is more precise, as illustrated on Fig. 8. we control the
tradeoff between precision and efficiency by the depth of
such decomposition.

6. Experiments

The technique presented in section 5 for computing
continuous postconditions (and preconditions) has been
implemented in the NBac tool [23]. NBac implements
the principles of dynamic partitioning. It begins with
a rough initial partition and alternates analysis and
automatic partition refinement steps until proving the
property, as described in section 4. NBac is connected
to an input automaton language (implementing the SHA
model) and to the Lustre compiler.

We first illustrate the usefulness of partitioning ac-
cording to numerical constraints (similar observations

148

[0, IM] [Om,OM] Options Success ? Partition size Comments
loc/trans

1 [0, 0] [0, 0] no refinement no 7/13 ideal instantaneous reaction
2 [0, 0] [0, 0] guided ref. wrt. oplus, ominus, mode no 20/70
3 [0, 0] [0, 0] as 2 + automatic ref. yes 57/149 ref. wrt. s ≥ 8 and s ≤ 12 (mainly)
4 [0, 0] [0.6, 0.7] as 3 yes 58/233
5 [0, 0.59] [0.6, 0.7] as 3 yes 86/304
6 [0, 0] [0.9, 0.9] as 3 no 21/42 partition simplified at the end
7 [0, 0] [k, k] as 3 (yes) 24/52 k<0.8 inferred necessary condition
8 [0, 0] [0.0, 0.0] only automatic ref. yes 40/119 to be compared to 3
9 [0, 0.59] [0.6, 0.7] only automatic ref. yes 235/850 to be compared to 4

Table 1. The disk controller’s analysis (see Fig. 2) with m = M = 2 and ε = 0.8

Assumptions Success Max Alternative
partition size

1min no failure yes, 44s 218/751 33s+105s, 1212/3809
1max – yes, 81s 338/1188
2min possible failure of pump 0 yes, 235s 879/3297 3m+14m, 4964/20122
2max – yes, 138s 557/2083
3min possible failure of steam flow device yes, 43s 218/751 33s+105s, 1212/3809
3max – yes, 82s 338/1188
4min possible failure of water level device, during at most 20s separated

by at least 40s
yes, 24m 314/1157 25m + >60m, >6201/28209

4max – yes, 91m 296/1137

Table 2. Analysis of the steamboiler case study of [1]. The full system has around 90 Boolean state variables, 3
continuous and 2 discrete real state variables. Depending on the assumption on the environment, many Boolean variables

remain constant). The Lustre code has about 500 LOC.

have been made in the context of predicate abstraction
[3]). We analyzed the system described in Fig. 2. We
verify that the disk motor speed is never more than 8
consecutive time units outside the desired range. Thus,
we already need to partition the state-space according
to a numerical constraint (d ≥ 8) in order to separate
“good” and bad sets of states. We start all analyses with
the control structures of the scheduler and the prop-
erty observer process made explicit in the partitioned
abstract domain. Tab. 1 gives the experiments’ results
for various parameters and options. Lines 1–3 show that
we need to refine the partition wrt. numerical constraints
in order to prove the property. Lines 3–5 illustrate that
more nondeterminism in the scheduler requires more
partition refinement steps. We fail to show the property
if Om = OM = 0 .9 (line 6). We then find a necessary
condition, k < 0.8, on the parameter k = Om = OM
(line 7) for the property to hold. Thus we are able to
analyze the influence of the reaction delay between input
and output of the discrete controller. Lines 8–9 show the
analysis without initial guided refinement: the results are
comparable (line 8) or worse (line 9).

We now show that if we treat the discrete part symbol-
ically, we can scale up wrt. the complexity of the discrete
controller. The case-study is the steam-boiler controller
of J.-R. Abrial [1]. We implemented faithfully the orig-
inal specification of [1] in Lustre (with 3 pumps and
without initialization phase). Hybrid automata model
the behavior of physical quantities and the scheduler
depicted on Fig. 2(d) (with IM = Om = OM = 0 as in

[1]). The controller can enable or disable 0,1,2 or 3 pumps
at each step, and takes into account detected failures. It
needs some kind of anticipation, as there is a delay when
switching up a pump. The first versions of the controller
were wrong and required some refinements to be correct
(limit cases were detected using a Lustre simulator and
a discrete version of the environment).

Tab. 2 presents experimental results when we verify
that the water level q stays in [M1, M2]. This property is
decomposed into two properties (minimal and maximal
bound) for each assumptions. “Max partition size” refers
to the maximal size of the partition in the course of
the refinement process. We used the control structure
of the hybrid part of the system as the initial partition,
and then relied on the automatic refinement heuristics
described in [23] (except for assumption 4, where we
guided the first steps). In the experiment 4, the most
complex one, the number of refinement step is compa-
rable to the other experiments, but the analysis time is
much higher. This is essentially due to more complex
BDDs and convex polyhedra computations.

As comparison, we depict in column “Alternative”
the time and max. partition size obtained by first
performing a Boolean analysis, then refining the par-
tition according to all Booleans, and last analyzing
(and refining) the resulting partition. This technique is
always more expensive (by factor of 3-4), or even fails
for the assumption 4. You can find these experiments
at http://pop-art.inrialpes.fr/people/bjeannet/nbachybrid/

nbachybrid.html. These experiments raise also some is-

149

sues. It appears first that the widening in some cases
looses important information, which causes further re-
finement steps. The guided widening technique of [14]
improves the precision, but makes the analysis much
more expensive. It is also difficult to analyze on ex-
amples how the refinement proceeds wrt. the original
Lustre program, because our tool exploits a lower-level
representation of the Lustre program that looses its
structure. As a consequence, we plan to connect our tool
directly to the Lustre language in order to implement
more sophisticated refinement techniques and to identify
more easily performance bottlenecks.

7. Conclusion

The symbolic model for hybrid systems (SHA) allowed
us to embed directly higher-level Lustre program in
hybrid automata and also to implement an analysis
technique which can combine symbolically both the
discrete and the continuous behavior. We define and
implement in NBac the abstract postcondition induced
by this symbolic setting. We succeed to prove the global
safety property of a very faithful implementation of the
steamboiler case study, for various assumptions on the
environment and possible failures (occurrences and/or
duration). The alternative technique that enumerates all
reachable Boolean valuations before analyzing numerical
variables proved to be much slower, or impractical in
complex cases.

We insist on the fact that previous attempts to ver-
ify hybrid models of this case study focused on the
physical model of the devices and did consider a very
simplified version of the software controller. Besides the
limitations of the used verification methods, they could
hardly specify a detailed model without relying on a real
programming language like Lustre.

References

[1] J.-R. Abrial, E. Brger, and H. Langmaack, editors.
Formal Methods for Industrial Applications: Specifying
and Progr. the Steam Boiler, volume 1165 of LNCS, 1996.

[2] R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger,
P. Ho, X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine.
The algorithmic analysis of hybrid systems. Theoretical
Computer Science B, 138:3–34, 1995.

[3] R. Alur, T. Dang, and F. Ivancic. Counter-example
guided predicate abstraction of hybrid systems. In
TACAS’03, volume 2619 of LNCS, 2003.

[4] E. Asarin, O. Bournez, T. Dang, and O. Maler. Approx-
imate reachability analysis of piecewise-linear dynamical
systems. In Hybrid Systems: Computation and Control,
HSCC’00, volume 1790 of LNCS, 2000.

[5] E. Asarin, T. Dang, and O. Maler. The d/dt tool
for verification of hybrid systems. In Computer Aided
Verification, CAV’02, volume 2404 of LNCS, 2002.

[6] E. Asarin, O. Maler, and A. Pnueli. Reachability
analysis of dynamical systems having piecewise-constant
derivatives. Theoretical Computer Science, 138, 1995.

[7] R. Bahar, E. Frohm, C. Gaona, G. Hachtel, E. Macii,
A. Pardo, and F. Somenzi. Algebraic decision diagrams
and their applications. Formal Methods in System De-
sign, 10(2/3):171–206, 1997.

[8] T. Bultan, R. Gerber, and C. League. Composite
model-checking: verification with type-specific symbolic
representations. ACM TOSEM, 9(1):3–50, 2000.

[9] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided abstraction refinement. In
CAV’00, volume 1855 of LNCS, 2000.

[10] P. Cousot and R. Cousot. Abstract interpretation and
application to logic programs. Journal of Logic Program-
ming, 13(2–3), 1992.

[11] P. Cousot and R. Cousot. Comparing the Galois con-
nection and widening/narrowing approaches to abstract
interpretation. In PLILP’92, volume 631 of LNCS, 1992.

[12] P. Cousot and N. Halbwachs. Automatic discovery
of linear restraints among variables of a program. In
POPL’78, 1978.

[13] W. Damm, S. Disch, H. Hungar, S. Jacobs, J. Pang,
F. Pigorsch, C. Scholl, U. Waldmann, and B. Wirtz.
Exact state set representations in the verification of
linear hybrid systems with large discrete state space. In
ATVA’07, volume 4762 of LNCS, 2007.

[14] Denis Gopan and Thomas W. Reps. Guided static
analysis. In SAS’07, volume 4634 of LNCS, 2007.

[15] S. Graf and H. Saidi. Construction of abstract state
graphs with PVS. In CAV’97, volume 1254 of LNCS,
1997.

[16] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud.
The synchronous dataflow programming language lus-
tre. Proceedings of the IEEE, 79(9):1305–1320, 1991.

[17] N. Halbwachs, Y.-E. Proy, and P. Raymond. Verification
of linear hybrid systems by means of convex approxima-
tions. In SAS’94, volume 864 of LNCS, 1994.

[18] N. Halbwachs, Y.E. Proy, and P. Roumanoff. Verifica-
tion of real-time systems using linear relation analysis.
Formal Methods in System Design, 11(2), 1997.

[19] T. Henzinger and P-H. Ho ahd H. Wong-Toi. Algo-
rithmic analysis of nonlinear hybrid systems. IEEE
Transactions on Automatic Control, 43, 1998.

[20] T. Henzinger, P. Ho, and H. Wong-To. HyTech: The
next generation. In RTSS’95, 1995.

[21] J.-B. Hiriart-Urruty and C. Lemaréchal. Convex Analy-
sis and Minimization Algorithms. Springer Verlag, 1996.

[22] B. Jeannet. Representing and approximating transfer
functions in abstract interpretation of hetereogeneous
datatypes. In SAS’02, volume 2477 of LNCS, 2002.

[23] B. Jeannet. Dynamic partitioning in linear relation anal-
ysis. application to the verification of reactive systems.
Formal Methods in System Design, 23(1):5–37, 2003.

[24] B. Jeannet, N. Halbwachs, and P. Raymond. Dynamic
partitioning in analyses of numerical properties. In
SAS’99, volume 1694 of LNCS, 1999.

[25] A. Kurzhanski and P. Varaiya. Ellipsoidal techniques for
reachability analysis. In Hybrid Systems: Computation
and Control, HSCC’00, volume 1790 of LNCS, 2000.

150

