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Abstract

We propose a general analysis method for recursive,
concurrent programs that tracks effectively procedure calls
and returns in a concurrent context, even in the presence of
unbounded recursion and infinite-state variables like inte-
gers. This method generalizes the relational interprocedural
analysis of sequential programs to the concurrent case. We
implemented it for programs with scalar variables, and we
experimented several classical synchronisation protocols in
order to illustrate the precision of our technique, but also
to analyze the approximations it performs.

1. Introduction
We consider in this paper the reachable-state analysis of
concurrent programs with a fixed number of threads, recur-
sive procedures, shared memory and interleaving semantics.
Such an analysis has to model the procedure call and return
semantics in each thread, and to take into account the
modification of global variables made by the other threads
during the execution of the procedure of the current thread.
It is precisely the combination of recursion and concur-
rency which is difficult to tackle: in the case where the
other threads does not modify shared variables, classical
interprocedural techniques apply and are well-understood
[3], [18]; in the case where no thread performs procedure
calls, one can reduce the concurrent program to a sequential
one by considering the product of the control-flow-graphs
(CFG) of all threads, as done in model-checking. But the
combination of the two features makes the reachability
problem undecidable, even when all data variables are finite
[24].
Various approaches have been recently explored. A first
approach is thread-modular analysis, in which one considers
a thread interacting with a context that abstracts the possible
steps of other threads [8]. Another option is to be less
general on the class of considered program: [23] defines a
notion of transactional procedures for which they succeed to
summarize procedures. Another recently explored approach
consists in focusing only on executions with a bounded
number of context switches [19]. This restriction basically
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allows to reduce the concurrent program to a sequential one,
but the inferred invariants are not sound for any execution:
they allow to discover bugs but they cannot prove a property.
We propose a method that analyzes all threads in parallel
and tracks effectively procedure calls and returns in a con-
current context, even in the presence of unbounded recursion
and infinite-state variables like integers. It is based on a gen-
eralisation of relational interprocedural analysis of sequential
programs. Technically, the key idea of our method is to
revisit relational interprocedural analysis as an abstraction of
the operational semantics of sequential programs [17]. This
abstraction consists mainly in collapsing call-stacks into sets,
in order to get rid of the source of infinity due to unbounded
stacks, but only after having appropriately instrumented the
original semantics. We generalize this method to concurrent
programs, in which each thread has it own call-stack. After a
suitable instrumentation, which defines the call-context used
to match procedure calls and returns, we apply to call-stacks
an abstraction which collapses separately the stack tail of
each thread, but which take the product of their stack tops,
in order to relate the local environments of the different
threads.
The gain of our method compared to the above-mentioned
approaches is better precision w.r.t. thread-modular tech-
niques [8], generality (termination is guaranteed on any
program, unlike [23]), and completeness, unlike [19].
Besides the theoretical motivation, an important applica-
tion we have in mind is the verification of SystemC/TLM
(Transaction-Level-Modeling) models of Systems-on-Chips
(SoCs) [9], which are multithreaded C++ programs using a
cooperative scheduling policy.
Contributions. Our first contribution is to show that
it is possible to analyze concurrent, recursive programs
using relational techniques in the sense of [3], [18], and
to efficiently tackle unbounded recursion, unlike most other
techniques. Our second contribution is methodological: we
use instrumentation to define how procedure calls and
returns are matched, we then collapse unbounded stacks
into sets to make the control finite, and we resort to data
abstraction to deal with the remaining source of infinity.
Our third contribution is experimental: we implemented our
technique for programs with finite-type and numerical vari-
ables, and we experimented with several classical synchro-
nisation protocols, that allows us to illustrate the precision
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of our technique, but also to illustrate the approximations it
performs.
Outline. §2 defines the program model we consider and
its semantics. In §3 we instrument the standard semantics
with information that will be exploited in the stack ab-
straction. §4 motivates and defines our concurrent stack
abstraction, describes the induced forward abstract seman-
tics, and discusses optimality results. We discuss in §5 its
practical implementation and its complexity. We eventually
describe in §6 the experiments that we performed with our
implementation. In §7 we discuss two improvements of our
abstraction. §8 concludes and discusses related work. For
space reason, we omitted the various proofs, available in an
extended version [14].

2. Program model and standard semantics

We consider a simple concurrent imperative programming
language in which a program is composed of a set of
procedures with a value parameter passing policy, and a fixed
number of threads that communicates using shared global
variables. Figs. 7–10 give examples of such programs. The
syntactic and semantic domains we use are summarised in
Figs. 1 and 3.
Program Syntax. A program is defined by a set of
global variables, a set of procedures, and a set of concurrent
threads. A thread T t is defined by its main procedure,
denoted as P t

0 . Each procedure Pi = 〈fpi, fri, li, Gi〉 is
defined by its vector of (formal) input parameters fpi,
output parameters fri, and local variables li (with LVar i ⊇
FP i ∪ FRi), and by its intraprocedural CFG (control flow
graph) Gi.
The intraprocedural CFG of a procedure P is a graph

G = 〈K, I〉 where K is the set of control points of P ,
containing unique entry and exit control points s and e;
I : K×K → Inst labels edges of the graph with two kinds of
instructions: intraprocedural instructions 〈R〉 and procedure
calls 〈y := Pj(x)〉, where x and y are the vectors of actual
input and output parameters. Intraprocedural instructions are
specified as a relation R ⊆ (GEnv × LEnv )2 allowing to
express both tests and assignments. We assume that there
are no two procedure call edges from the same point in
G (non-deterministic choices should just be made before
the call-point). This allows us to define the functions call
and ret recording matching call and return-site nodes: if
I(c, c′) = 〈y := Pj(x)〉, then call(c) = c′ and ret(c′) = c.
The global CFG G of the program is constructed as
the union of intraprocedural CFG Gi’s, further modified by
replacing edges labelled by procedure calls by a call-to-
start edge (connecting the call-site to the entry point of the
callee) and an exit-to-return edge (connecting the exit point
of the callee to the return-site), see Fig. 1. Thus there are
three kinds of instructions in global CFGs: intraprocedural

instructions 〈R〉, procedure calls 〈call y := Pj(x)〉 and
procedure returns 〈ret y := Pj(x)〉. proc(c) denotes the
(index of the) procedure that contains c.
Operational Semantics. For the sake of simplicity, from
now on we assume a program with only two threads.
The semantic domains are summarised in Fig. 3. A state
s = (σ, Γ1, Γ2) is defined by a global environment σ and
the stacks Γt of activation records of the 2 threads. An
activation record is a pair of a control point c and an local
environment ε. 〈ct

nt
, εt

nt
〉 is the current or top activation

record of the thread T t. Environments map variables to
values. They can be concatenated with the ⊕ operator, and
updated with the notation σ[x )→ v]. If v,v′ are vectors of
variables, ε(v) denotes the corresponding vector of values,
and v \ v′ denotes the subvector of v that does not contain
any variable in v′.
Fig. 4 first defines (in SOS-style) the semantics of one
thread in isolation (transition relation →t). The transition
relation → ⊆ S × S induced by the full program is
then defined as a special asynchronous product of the
two transition relations →1 and →2, in which the global
environment is shared. We define the initial set of states
as S0 = {〈σ, 〈s1

0, ε1〉, 〈s2
0, ε2〉〉 | init(σ)} where s1

0 and s2
0

denote the start point of the main procedure of each thread,
and init an initial condition on global variables.
Analysis goal. Our analysis goal is reachable-state analysis.
For X ⊆ S, we define the concrete postcondition operator
post(X) = {s′ | ∃s ∈ X : s → s′}, which we decompose
according to the interprocedural CFG in the sequel:

post(X) =
⋃

(c,c′)∈K×K

post(c
I(c,c′)
−−−−→ c′

︸ ︷︷ ︸

τ

)(X)

where post(τ)(X) is defined by the rules of Fig. 4. We
then define the forward transfer function F [S0](X) = S0 ∪
post(X) where S0 ⊆ S denotes the initial states. Since
F [S0] is monotone and continuous, according to Kleene’s
theorem we have

reach(S0) = lfp(F [S0]) =
⋃

n≥0

(F [S0])n(∅) (1)

3. Instrumenting the standard semantics

We instrument now the operational semantics. The idea is
to tag local environments of callee procedure with informa-
tion about their call-context, and to use such tags to match
procedure calls and returns. If we consider a procedure P in
thread 1 of a two-threads program, its call-context is defined
by
(1) The global variable and formal parameters at its start
point in thread 1;

(2) The full call-stack of thread 2: during the execution
of P in thread 1, thread 2 can perform several pro-
cedure returns and then calls again new procedures,
with execution steps modifying global variables and
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T , P : Threads and procedures
P t

0 : Main procedure of thread T t

GVar ,g : Global variables (set/vector)
FP i, fpi : Formal input parameters of Pi

FRi, fri : Formal output parameters of Pi

LVar i, li : Local variables of procedure Pi (including fpi and frj)
si, ei : Entry and exit points of Pi

G = 〈K, I〉 : Global flow graph
Figure 1. Syntactic domains.

s
c2

c1 c3

c4

e

〈(n = 0)?〉

〈r := 1〉

〈(n > 0)?〉

〈x := n−1〉

〈ret r := f(x)〉

〈call r :=
f(x)〉

〈r := r∗n〉 〈r := f(x)〉

Figure 2. CFG for the Factorial (single-
thread) program

v ∈ Value : values of expressions and variables
σ ∈ GEnv = GVar → Value : global environments
ε ∈ LEnv i = LVar i → Value : local environments for procedure Pi

ε ∈ LEnv =
⋃

i LEnv i : local environments for any procedure
r = 〈c, ε〉 ∈ Act = K × LEnv : activation record (standard semantics)

Γ ∈ Act+ : stacks (sequences) of activation records
〈σ, Γ〉 ∈ St = GEnv × Act+ : state of a thread in isolation

〈σ, Γ1, Γ2〉 ∈ S = GEnv × Act+ × Act+ : full program states
Figure 3. Semantic domains

I(c, c′) = 〈R〉
R(σ, ε, σ′, ε′)

〈

σ, Γ ·〈c, ε〉
〉

→t
〈

σ′, Γ ·〈c′, ε′〉
〉 (Intra)

I(c, sj) = 〈call y := Pj(x)〉
R+

y:=Pj(x)(σ, ε, εj)
〈

σ, Γ ·〈c, ε〉
〉

→t
〈

σ, Γ ·〈c, ε〉 ·〈sj, εj〉
〉 (Call)

I(ej , c) = 〈ret y := Pj(x)〉
R−

y:=Pj(x)(σ, ε, εj , σ′, ε′)
〈

σ, Γ ·〈call(c), ε〉 ·〈ej , εj〉
〉

→t
〈

σ′, Γ ·〈c, ε′〉
〉 (Ret)

〈σ, Γ1〉 →1 〈σ′, Γ′
1〉

〈σ, Γ1, Γ2〉 → 〈σ′, Γ′
1, Γ2〉

(Conc1) 〈σ, Γ2〉 →2 〈σ′, Γ′
2〉

〈σ, Γ1, Γ2〉 → 〈σ′, Γ1, Γ′
2〉

(Conc2)

R+
y:=Pj(x)(σ, ε, εj)

def
= εj(fpj) = (σ ⊕ ε)(x) (R+)

R−
y:=Pj(x)(σ, ε, εj , σ′, ε′)

def
=

{

σ′ = σ[y(k) )→ εj(fr
(k)
j ) | y(k) ∈ GVar ]

ε′ = ε[y(k) )→ εj(fr
(k)
j ) | y(k) ∈ LVar ]

(R-)

Figure 4. Standard Operational Semantics: transition relation →t of the thread T t and transition relation → of the
full program. The relations R+ and R− on environments define parameter passing mechanisms.

interacting with P . This dependency on the full call-
stack of the other thread(s) is the intuitive reason why
the combination of concurrency and recursion makes
the reachability analysis undecidable even for Boolean
programs.

We choose here to take into account only part (1) of the call-
context, and we delay alternative choices to §7. Because P
may modify them during its execution, we will introduce
in local environments copies g0, fp0 of global variables g
and formal parameters fp that contain at any point of P the
value of g and fp at its start point. The second (orthogonal)
point of our instrumentation is to push global variables into

call-stacks.
In the instrumented semantics, the new environments ε ∈

Env are thus defined on variables g0, fp0,g, l, where the
values of g0, fp0 keep track of the call-context at start point
of the current procedure. We now have Act i = K × Env
and Si = Act+i × Act+i .
Fig. 5 defines the new semantic rules induced by the
standard semantics and the interpretation of the auxiliary
variables. Rules (Conc1F) and (Conc2F) propagates the
update of global variables induced by one thread to the other
thread, so that the top activation records of the concurrent
stacks always agree on the current value of global variables.
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I(c, c′) = 〈R〉
R(ε, ε′) ∧ ε(g0, fp0) = ε′(g0, fp0)

Γ ·〈c, ε〉 →t
i Γ ·〈c′, ε′〉

(IntraF)

I(c, sj) = 〈call y := Pj(x)〉
R+

y:=Pj(x)(ε, εj)

Γ ·〈c, ε〉 →t
i Γ ·〈c, ε〉 ·〈sj, εj〉

(CallF)

I(ej , c) = 〈ret y := Pj(x)〉
R−

y:=Pj(x)(ε, εj , ε′)

Γ ·〈call(c), ε〉 ·〈ej , εj〉 →t
i Γ ·〈c, ε′〉

(RetF)

Γ1 →1
i Γ′

1 Γ′
1 = Γ′′

1 ·〈c
′
1, ε′1〉

ε′2 = ε2[g )→ ε′1(g)]
〈

Γ1, Γ2 ·〈c2, ε2〉
〉

→i

〈

Γ′
1, Γ2 ·〈c2, ε′2〉

〉 (Conc1F)

Γ2 →2
i Γ′

2 Γ′
2 = Γ′′

2 ·〈c
′
2, ε′2〉

ε′1 = ε1[g )→ ε′2(g)]
〈

Γ1 ·〈c1, ε1〉, Γ2

〉

→i

〈

Γ1 ·〈c1, ε′1〉, Γ′
2

〉 (Conc2F)

R+
y:=Pj(x)(ε, εj)

def
= εj(g0, fp

j
0,g, fpj) = ε(g,x,g,x) (R+)

R−
y:=Pj(x)(ε, εj , ε′)

def
=

{

ε′(g0, fp0, l \ y) = ε(g0, fp0, l \ y)
ε′(g \ y,y) = εj(g \ y, fr)

(R-)

Figure 5. Instrumented semantics: transition relation →t
i of the thread T t and transition relation →i of the full

program.

In this semantics, reachable call-stacks are necessarily
well-formed in the following sense.
Definition 1 (Well-formed stacks and states): A stack

Γ = 〈c0, ε0〉 . . . 〈cn, εn〉 ∈ Act+i is well-formed if, for any
i < n:
(i) ci is a call site for the procedure Pj , with j =

proc(ci+1) and I(ci, sj) = 〈call y := Pj(x)〉;
(ii) equality between actual and formal input parameters
holds: εi(g,x) = εi+1(g0, fp

j
0).

A state 〈Γ1, Γ2〉 ∈ Si is well-formed if Γ1 and Γ2 are well-
formed, and if top activation records agree on the current
value of global variables.
Proposition 1: If s ∈ Si is a well-formed state, then any

s′ ∈ Si such that s →∗
i s′ is a well-formed state.

Notice that without instrumentation, instead of (ii) we would
only have ci+1 = sj ⇒ εi(g,x) = εi+1(g, fpj).
With this notion of well-formed state, we get a strong
conditions for an activation record to lie below another
activation record in reachable call-stacks.

4. Stack abstraction and derived semantics
We will use the following functions on stacks: for any
stack Γ = r0 . . . rn ∈ Act+, hd(Γ) = {rn} and tl(Γ) =
{ri | 0 ≤ i < n}. These functions are extended to sets of
stacks. Also, a set Y ∈ ℘(GEnv × LEnv) will often be
viewed as a predicate Y (g, l) on variables g and l.

4.1. Two sources of inspiration
The abstract domain we propose for concurrent and recursive
programs is inspired by two techniques.
The first one is the functional or relational approach
described in [3], [18], in which one associates at each
control point a relation between the input state and the

current state of the enclosing procedure, so that at the
exit point of a procedure P one obtains its input/output
summary RP (x, x′) capturing the effect of a call to P . [17]
formalizes this approach by stack abstraction: starting from
the instrumented semantics of §3, in which environments
relate the input state of a procedure (variables g0, fp0)
and their current state (variables g, l), it defines the Galois
connection ℘(Act+

i ) −−−−→←−−−−
αf

γf

℘(Act i)×℘(Acti) with

αf : {Γ = r0 . . . rn} )→

〈

hd(Γ),
tl(Γ)

〉

=

〈

{rn},
{ri | 0≤ i<n}

〉

γf : 〈Yhd , Ytl 〉 )→






Γ=r0 . . . rn

∣
∣
∣
∣
∣
∣

rn ∈ Yhd

∀0≤ i<n : ri ∈ Ytl

Γ is a well-formed stack







In the induced abstract semantics, when computing the
effect of a procedure return, rule (RetF) of Fig. 5, the well-
formedness condition in the definition of γf allows to match
pairs of tail and top environments with the condition (ii) of
Definition 1, so as to implement the relation composition
of [18]. More precisely, if abstract values (Yhd , Ytl ) ∈
(℘(K × Env ))2 3 (K → (Env→B))2 are viewed as pairs
of functions from points to predicates, we get the following
abstract procedure return:

I(ej , c) = 〈ret y := Pj(x)〉

Ytl (call(c))(g0, fp0, g, l) Yhd (ej)(g
j
0, fp

j
0, g′, l′)

(tail) (top)
(g,x) = (gj

0, fp
j
0)

(well-formedness condition)
R−

y:=Pj(x)(g, l,g′, l′, g′′, l′′)

(output parameter passing)

Yhd (c)(g0, fp0, g′′, l′′) (new top)
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The second technique which inspired us is the classical
method used for the analysis of non-recursive concurrent
systems. Such systems have a state-space of the form S =
GEnv×(K1×LEnv1)×(K2×LEnv2). The usual technique
for verifying such systems is to consider the product of their
CFG by observing that

℘(S) 3 K1×K2 → ℘(GEnv×LEnv1×LEnv2) (2)

The ability to relate the local environments of concurrent
threads is fundamental:
1) There is a technical reason. Assume that we main-
tain separate predicates Y 1(g, l1) = (g = l1) and
Y 2(g, l2) = (g = l2 − 1) for two threads, and that
the thread 1 executes an instruction g := g + l1.
It is easy to compute its effect on the predicate Y 1

(one obtains (g = 2l1)), but less so on the predicate
Y 2. The only way to perform this is actually to build
Y = Y 1 ∧Y 2 = (g = l1 ∧ l1 = l2− 1), to compute the
effect of the instruction on Y , and then to forget the
variable l1 (one obtains (g = 2l2 − 2)).
The conclusion is that one need to relate the local
environments of different threads, at least temporarily,
when a global variable is assigned in one thread.

2) There is also a precision reason. Consider the program
below in which two threads synchronize their parallel
execution by rendez-vous on a channel a (this can be
implemented using global shared variables):
thread T1:
var i:int;
begin

i = 0;
while i<=10 do
sync a;
i = i+1;

done
end

thread T2:
var j:int;
begin
j = 0;
while j<=11 do

sync a;
j = j+1;

done
end

In order to establish that the loop of the thread T2 does
not terminate (the rendez-vous induces a deadlock when
j = 11), we need to infer the invariant i = j when each
thread is at the control point just after the synchroni-
sation instruction. If the possible environments of each
thread are inferred separately, the non-termination of
the thread T2 cannot be proved.

4.2. Concurrent stack abstraction
Intuition. The discussion of the previous section lead us
to generalize the stack abstraction of [17] reminded above.
Assuming two threads, an abstract value will be defined by
three functions Yhd , Y 1

tl
and Y 2

tl
, where

• Yhd : K1×K2 → ℘(Env1×Env2) associates to pairs
of control points (c1, c2) sets of (pairs of) environ-
ments Yhd (c1, c2)(g1

0, fp
1
0, g2

0, fp
2
0, g, l1, l2) relating

the global variables and the local variables of both
threads (as in Eqn (2)), as well as auxiliary variables

introduced by the instrumented semantics.1
• Y t

tl
: Kt → ℘(Env t), t = 1, 2, associate to call-sites c

the set of tail environments Y t
tl
(gt

0, fp
t
0, g, lt) of thread

t. Hence, the tail activation records of the different
threads are not directly correlated, but indirectly they
are linked by the means of global variables g. This
limits the loss of information due to the abstraction, as
illustrated in §6.

If we consider a procedure Pj called by the thread 1, the
abstract procedure return of Eqn (4.1) becomes:

I(ej , c) = 〈ret y := Pj(x)〉

Y 1
tl

(call(c))(g1
0, fp

1
0, g, l) (tail 1)

Yhd (ej , c
2)(gj

0, fp
j
0, g2

0, fp
2
0, g′, l′, l2) (top)

(g,x) = (gj
0, fp

j
0)

(well-formedness condition for stack 1)
R−

y:=Pj(x)(g, l,g′, l′, g′′, l′′)

(output parameter passing)

Yhd (c, c2)(g1
0, fp

1
0, g2

0, fp
2
0, g′′, l′′, l2) (new top)

(3)

Yhd (ej , c
2)(gj

0, fp
j
0, g2

0, fp
2
0, g, l1, l2) can be seen as a

relation between the input (gj
0, fp

j
0) and the output (g, l)

of Pj in thread 1, which depends on the current state of
thread 2. This relation takes into account the moves that
thread 2 has performed since thread 1 started the execution
of Pj .
Formal definition. We define the Galois connection

℘(Si) = ℘(Act+
i × Act+i ) −−−→←−−−

αc

γc

Ac = ℘(Act i×Acti) × ℘(Act i) × ℘(Act i) (7)

with

αc

(
{

〈

Γ1

︷ ︸︸ ︷

r1
0 . . . r1

n1
,

Γ2

︷ ︸︸ ︷

r2
0 . . . r2

n2
〉
}
)

=

〈hd(Γ1, Γ2),
tl(Γ1),

tl(Γ2)

〉

=

〈
{

〈r1
n1

, r2
n2
〉
}

,
{

r1
i1

| 0≤ i1 <n1

}

,
{

r2
i2

| 0≤ i2<n2

}

〉

γc

(

〈Yhd , Y 1
tl , Y

2
tl 〉

)

=














〈

Γ1

︷ ︸︸ ︷

r1
0 . . . r1

n1
,

Γ2

︷ ︸︸ ︷

r2
0 . . . r2

n2
〉

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

〈r1
n1

, r2
n2
〉 ∈ Yhd

∀0≤ i1 <n1 : r1
i1
∈ Y 1

tl

∀0≤ i2 <n2 : r2
i2
∈ Y 2

tl

〈Γ1, Γ2〉
is a well-formed state















Observing that ℘(Act i) = ℘(K × Env) 3 K → ℘(Env),
we have the isomorphism

Ac 3
(

K1×K2 → ℘(Env1×Env2)
)

×
(

K1 → ℘(Env1)
)

×
(

K2 → ℘(Env 2)
)

(8)

1. we implicitly merge the two copies of global variables g1 and g2,
assuming that corresp. concrete states are well-formed, so that g1

= g2.
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apost(c
〈R〉
−−→ c′)(Yhd , Y 1

tl , Y
2
tl ) = (Zhd , Z1

tl , Z
2
tl) with

Zhd =






〈c′, ε′, c2, (ε2)′〉

∣
∣
∣
∣
∣
∣

〈c, ε, c2, ε2〉 ∈ Yhd

R(ε, ε′) ∧ ε(g0, fp0) = ε′(g0, fp0)
(ε2)′ = ε2[g )→ ε′(g)]






Z1

tl = Y 1
tl Z2

tl = Y 2
tl (4)

apost(c
〈call y:=Pj(x)〉
−−−−−−−−−−→ sj)(Yhd , Y 1

tl , Y
2
tl ) = (Zhd , Z1

tl , Z
2
tl) with

Zhd =

{

〈sj , εj, c2, ε2〉

∣
∣
∣
∣

〈c, ε, c2, ε2〉 ∈ Yhd

R+
y:=Pj(x)(ε, εj)

}

Z1
tl = Y 1

tl ∪
{

〈c, ε〉 | 〈c, ε, c2, ε2〉 ∈ Yhd

}

Z2
tl = Y 2

tl (5)

apost(ej
〈ret y:=Pj(x)〉
−−−−−−−−−→ c)(Yhd , Y 1

tl , Y
2
tl ) = (Zhd , Z1

tl , Z
2
tl) with

Zhd =










〈c′, ε′, c2, (ε2)′〉

∣
∣
∣
∣
∣
∣
∣
∣

〈ej , εj , c2, ε2〉 ∈ Yhd ∧ 〈call(c), ε〉 ∈ Y 1
tl

ε(g,x) = εj(g0, fp
j
0)

R−
y:=Pj(x)(ε, εj , ε′)

(ε2)′ = ε2[g )→ ε′(g)]










Z1
tl = Y 1

tl Z2
tl = Y 2

tl (6)

Figure 6. Abstract postcondition apostc : Ac → Ac. The relation R+ and R− are defined by Eqns. (R+) and (R-) of
Fig. 5

used in Eqn. (3). The abstract domain Ac defines an abstract
semantics that it is simpler than the concrete semantics (the
control is now finite) and that can be seen as an analysis
method that can be further combined with a data abstraction
as shown in §5.

4.3. Forward abstract semantics
Fig. 6 defines an abstract postcondition operator apostc :
Ac → Ac induced by the concrete postcondition post : Si →
Si. We decompose apostc according to the global CFG, and
we detail only the steps performed by the thread 1.
The case of intraprocedural instruction (Eqn (4)) is simple:
the top environment of thread 1 is modified according to the
relation R, and the top environment of thread 2 is modified
to reflect the new values of global variables. The sets of
tail activation records are not modified. For procedure call,
Eqn (5), the new top environment of thread 1 is initialized
using the relation R+ defined in Fig. 5. The set of tail
activation records of thread 1 is extended by projecting the
former top environment on thread 1. The case of procedure
return, Eqn (6), is the most complex (see also Eqn (3)). We
select a global top activation record in rhd ∈ Yhd and a
tail activation record r1

tl
∈ Y 1

tl
for thread 1, so that actual

parameters in r1
tl
match frozen copy of formal parameters

in rhd . The new top activation record is then obtained using
the relation R− defined in Fig. 5.
Proposition 2(apostc is a correct approximation of post):
For any set X ⊆ Si of well-formed states,
apostc ◦α(X) 5 αc ◦ post(X). More precisely:
(i) if τ is an intraprocedural or a call instruction,

apostc(τ) ◦ α(X) = α ◦ post(τ)(X);
(ii) if τ is a return instruction, apostc(τ) ◦ α(X) 5 α ◦

post(τ)(X)

As a corollary, for any set X0 ∈ Si of well-formed
states, lfp(Fc[X0]) 5 α(lfp(F [X0])), where Fc[X0](Y ) =
αc(X0) 6 apostc(Y ) is the abstract transfer function.
Not surprisingly, the abstract semantics is less precise for
return instructions, because they implicitly need to rebuild
the stacks. We delay a deeper analysis of the loss of precision
to §6.
Completeness results. The first trivial result we have is
that in the case of multithreaded programs without procedure
calls, our technique is exact, as the abstraction function
becomes the identity. Observing now that the stack abstrac-
tion falls back to the functional abstraction defined in [17]
for single-thread program, we inherit from the following
theorem:
Theorem 1 ([17]): For single-thread programs, and for
initial sets of states X0 composed only of one-element
stacks, the abstract reachability analysis is optimal:
areachc(X0) = αc(reach(X0))
This implies that the set of top activation records of
reachable stacks is computed exactly, so that the invariants
inferred at each control point are the exact ones.

5. Combining stack and data abstractions
Any abstraction for environments ℘(Env) −−→←−− Env $ can
be applied to the stack abstraction domain Ac of Eqn (8) in
order to obtain an implementable domain

A$
c = (K1×K2→Env $) × (K1→Env $) × (K2→Env $)

Provided that the lattice Env $ is equipped with meet and
join operators, an abstract equality constraint between vari-
ables/dimensions, an abstract existential quantification, and
an abstract operator R$ for intraprocedural instructions R,
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Program single-thread concurrent concurrent (var. 1) concurrent (var. 2)
single-procedure k ·ϕ(g + l) kn ·ϕ(g + nl)

(model-checking)
recursion 2k ·ϕ(2g + l) kn ·ϕ

(

(n+1)g + nl
)

nkn ·ϕ(2g + nl) nk2n−1 ·ϕ
(

2g + (2n−1)l
)

(relational interproc. analysis) +nk ·ϕ(2g + l) +nk ·ϕ(2g + l) +nk2n−1 ·ϕ
(

2g + (2n−1)l
)

n : number of threads
k : number of control points

g : number of global variables
l : number of local variables (max. per thread)

ϕ(d) : complexity of d-dimensional environments

Table 1. Complexity comparison. The meaning of the two last columns is given on §7.

the predicate formulation of apost given in [14] can be
implemented.
Literature offers several example of suitable abstractions
for environments.

• When all variables are Booleans, Env 3 Bn, Ac is
finite, and properties can be represented exactly with
BDDs [2];

• When all variables are of numerical types, Env 3 Rn,
and properties in ℘(Env) can be abstracted by octagons
[21], convex polyhedra [4], etc. . . In this case only in-
traprocedural instructionsR and logical disjunction will
induce a further approximation in apost$

c : A$
c → A$

c

w.r.t. apostc : Ac → Ac.
• When variables are either Boolean or pointers to
memory cells, [25] proposes an abstraction in which
Boolean variables, pointers and memory configura-
tions are represented and abstracted using 3-valued
logical structures: ℘(Env ) 3 ℘(2 − STRUCT ) −−→←−−

℘(3 − BSTRUCT ). All the needed operations can
be implemented, as shown in [15] in the context of
interprocedural shape analysis of sequential programs.

Complexity analysis. We analyze here the space (resp.
computational) worst-case complexity of the domain A$

c, by
considering the size of the representation of abstract values
(resp. the cost of operations on them). We assume that ϕ(d)
denotes the space/computational (worst-case) complexity of
abstract environments Env $ of dimension d. For instance the
space complexity ϕ(d) is 2d for BDDs and d3 for octagons.
Table 1 (left part) gives complexity results in function of
recursion and concurrency features. If we assume that ϕ(d)
is bounded by 2d (case of Boolean programs without data
abstraction) the complexity is
(1) polynomial in the size k of the CFGs,
(2) exponential in the number n of threads,
(3) in O(ϕ(nd)) if d = g + l is the number of visible
variables in each thread: we inherit the complexity of
the data abstraction modulo a factor n.

(1) and (2) corresponds to the complexity of model-
checking, which is not surprising as our technique reduces
to it in the single-procedure case. (3) shows the complexity
of our method is higher than for the concurrent, non-
recursive case due to the (expensive) duplication of variables

performed by the instrumentation of §3.
It is important to note that most techniques aimed at
reducing the practical complexity can be reused, as partial
order reduction for concurrency [11], Cartesian product
and/or variables packing for the number of variables [12].

6. Implementation and experiments
We implemented our analysis for programs manipulating
finite-type and numerical variables. The applied data ab-
straction abstracts ℘(Env) = ℘(Bn × Rp) with functions
Bn → Pol(Rp) associating to Boolean variables convex
polyhedra. These functions are implemented as Mtbdds [2],
using the APRON numerical abstract domain library [16].
Our CONCURINTERPROC analyzer [13] takes as input
a concurrent program, performs forward and/or backward
analysis by solving Eqn. (1) on the above-described abstract
domain using Kleene iteration and possibly widening, and
then displays the results using various options. During the
fixpoint analysis, the global equation system is actually built
dynamically from the product of initial control points, using
the CFG of each thread.
We experimented a number of synchronisation algorithms
to illustrate the precision of our method, but also in order
to analyze some of the approximations it induces. The
experimented programs can be analyzed online [13].
Mutual exclusion algorithms. We first analyzed a few
mutual exclusion algorithms, in which code to acquire and
to release the critical section is delegated to two procedures
acquire and release, as done for the Peterson algo-
rithm depicted on Fig. 7. A forward analysis (3.5s on a
2GHz Pentium M laptop) succeeds to show that at most one
thread can be in a critical section C1 or C2. Notice that
this simple example already contains unbounded recursion
(without correlation between threads), and several return-
sites for most procedures. We also tried the program of
Fig. 9, on which the analysis of [23] does not terminate,
whereas ours terminates (in 8s) and proves that the mutual
exclusion is ensured at the two sites and that the fail
instruction is not reachable in any thread.
Notice that these two small examples are demanding, in
the sense that synchronisation algorithms are very subtle and
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var b0,b1,turn:bool;
initial not b0 and not b1;
proc acquire(tid:bool) returns ()
begin

if not tid then
b0 = true; turn = tid;
assume (b1==false or turn==not tid);

else
b1 = true; turn = tid;
assume (b0==false or turn==not tid);

endif;
end
proc release(tid:bool) returns ()
begin

if not tid then b0 = false;
else b1 = false; endif;

end
proc main(tid:bool) returns ()
begin

while random do
acquire(tid); /* C1 */ release(tid);

done;
if random then main(tid); endif;
acquire(tid); /* C2 */ release(tid);

end

thread T0:
var tid:bool;
begin tid = false; main(tid); end
thread T1:
var tid:bool;
begin tid = true; main(tid); end

Figure 7. The Peterson algorithm

var go : bool, counter,p0,p1:int;
initial counter==0 and go;
proc barrier(lgo:bool) returns (nlgo:bool)
begin

lgo = not lgo; counter = counter+1;
if counter==2
then counter=0; go = lgo;
else assume(lgo==go); endif;
nlgo = lgo;

end
thread T0:
var lgo0:bool;
begin

p0 = 0; lgo0 = true;
while p0<=500 do
lgo0 = barrier(lgo0); p0 = p0 + 1;

done;
lgo0 = barrier(lgo0);

end
thread T1:
var lgo1:bool;
begin

p1 = 0; lgo1 = true;
while p1<=502 do
lgo1 = barrier(lgo1); p1 = p1 + 1;

done;
fail;

end

Figure 8. A synchronisation barrier algorithm with a
counter, with calls inside counting loops

var g:uint[3],
x,y:bool;

initial g==uint[3](0) and not x and not y;

proc foo(tid:bool,q:bool) returns ()
begin

if not q then
x=true; y=true; foo(tid,q);

else
acquire(tid); /* C1 */
g = g + uint[3](1);
release(tid);

endif;
end
proc main(tid:bool) returns ()
var q:bool;
begin

q = random;
foo(tid,q);
acquire(tid); /* C2 */
if g==uint[3](0) then fail; endif;
release(tid);

end

thread T0:
var tid:bool;
begin tid = false; main(tid); end
thread T1:
var tid:bool;
begin tid = true; main(tid); end

Figure 9. The example of [23], on which our analysis
terminates
var T0,T1: int;
initial T0==0 and T0==T1;
proc
wait(pid:uint[1], time:int) returns ()
begin

if pid == uint[1]0
then T0 = T0 + time; yield; assume(T0 <= T1);
else T1 = T1 + time; yield; assume(T1 <= T0);
endif;

end
thread reader:
var p0,time0:int, pid:uint[1];
begin

pid = uint[1]0; time0 = 10; p0 = 0;
while (p0 < 100) do
wait(pid,time0); p0 = p0 + 1;

done;
yield;

end
thread writer:
var p1,time1:int, pid:uint[1];
begin

pid = uint[1]1; time1 = 20; p1 = 0;
while (p1 < 100) do
wait(pid,time1); p1 = p1 + 1;

done;
yield;

end

Figure 10. Producer and consumer with wrong time
synchronisation, analyzed with a cooperative scheduling
policy (use of yield instructions)

ask for precise analysis. Concerning running times, the size
of the reachable part of the equation graph remains quite
high: (217, 486) and (438, 800) for the two examples (in
terms of nb. of locations and transitions).

Barrier synchronisation algorithms. We now experiment
a synchronisation barrier algorithm from [26], Fig. 8. Our
method proves (in 4s) that thread T1 cannot reach the fail
instruction, provided we use the guided iteration technique
of [10] to prevent loss of information due to the widening
on convex polyhedra.

But if we make the counters p0, p1 local to the main
procedure of each thread, our method fails to infer that
p0 = p1 when the control is at the head of the two loops,
because they become uncorrelated when both threads are
in the procedure barrier: in this case neither the tail
environments of thread t nor the top environments contains
both counters: the relation between these counters is lost and
cannot be recovered on procedure return. This is a typical
case where the call-context taken into account, as discussed
in §3, is not sufficient: one should add the stack top of the
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other thread.
This phenomenon can be limited if local variables are
related to global variables. In the example of Fig. 10,
which is the skeleton of a timed SystemC/TLM model with
cooperative scheduling, the counters p0 and p1 are local,
but remains correlated by the two global clocks T0 and T1.
Thus, we can prove that the writer cannot terminate its loop
(it is too slow). This example also illustrate the usefulness
of reduction techniques. Here, because context switches can
occur only in the wait procedure, only 32 locations are
explored (in 0.4s).

7. Variations around the stack abstraction

Reducing the complexity by projection. In the ab-
stract domain Ac defined by Eqn. (7), an abstract value
is a triplet 〈Yhd , Y 1

tl
, Y 2

tl
〉, the complexity of which is

dominated by Yhd , which can be viewed as a predicate
Yhd (c1, c2)(g1

0, fp
1
0, g2

0, fp
2
0, g, l1, l2). Now, for the anal-

ysis to be relational, it is necessary:
1) in term of concurrency, to relate the variables g, l1, l2,
as discussed in §4.1;

2) in term of procedure call/return, to relate the call-
context g0, fp0 to the current value of variables, in
order to perform the relation composition of Eqn. (3).

However, there is no strong intuition between correlating the
variables g1

0, fp
1
0 and g2

0, fp
2
0. We could thus approximate

Yhd with the conjunction

Y 1
hd (c1, c2)(g1

0, fp
1
0, g, l1, l2)

︸ ︷︷ ︸

=∃(g2
0
,fp2

0
) Yhd (c1,c2)

∧ Y 2
hd (c1, c2)(g2

0, fp
2
0, g, l1, l2)

︸ ︷︷ ︸

=∃(g1
0
,fp1

0
) Yhd (c1,c2)

The new complexity of abstract values, which is given on
Table 1, col. “var. 1”, is lower due to the reduction of
the number of (global) variables to be related in the same
predicate. It is all the more interesting that the global store is
likely to be more complex than the local store (for instance
when it includes a model of the memory as in shape analysis
[15]). We did not implement yet this technique, but we
conjecture that the negative impact on precision should be
very minor in practice.
Improving the precision by extending the call-context.
In §3 we explained that the call-context of a procedure in a
thread includes the full call-stacks of the other threads, and
we made the explicit choice to abstract away this aspect
in the analysis. A refinement would be to consider the top
activation records of the other threads, which is a less rough
abstraction of their call-stacks. Combined with the previous
technique, for the thread 1 we would have tail and head
activation records of the form:

Y 1
tl (c

1, c2
0 , c2 )(g1

0, fp
1
0,g, l1, l20 , l2 )

Y 1
hd (c1, c2, c2

0 )(g1
0, fp

1
0,g, l1, l2, l20 )

where the framed variables are the additional auxiliary vari-
ables, and the (solid) arrows indicate the additional matching
performed when unifying tail and head activation records
during procedure returns. The complexity of the resulting
abstract values is given on Table 1, column “var. 2”, is of
course higher. Intuitively, extending the call-context makes
mechanically the analysis less modular and more precise.
In particular this solution solves the precision problems
raised by the example of Fig. 8 when the counters p0 and
p1 are local variables.

8. Related work and conclusion

Our first contribution is an existence proof that it is
possible to analyze concurrent, recursive programs using
relational techniques. Our approach unifies the relational
approach to interprocedural analysis of sequential programs,
and the analysis technique for concurrent, non-recursive
systems based on the product of their CFGs.
We also think that our method is conceptually elegant,
based on a simple instrumentation of the concrete semantics,
followed by a control abstraction that collapses stacks into
sets and from which we derive mechanically an abstract
semantics. §7 shows that the approach is general enough
to define various alternatives to the abstraction of §4.
We showed that this method can be implemented using
a non-trivial combination of Bdds and convex polyhedra,
which allowed us to experiment small (but demanding)
examples combining concurrency, unbounded recursion and
infinite-state variables, and to illustrate its practical rele-
vance. More experimental results are available at [13].
We did not address here the well-known efficiency prob-
lem raised by concurrency and interleaving semantics. How-
ever most techniques attacking this problem, like identi-
fication of atomic blocks [6] and partial order reduction
[11] are fully applicable in our context and can be very
efficient. Moreover, as mentioned in introduction, our target
application is the analysis of SystemC/TLM models of SoCs
[9], which follows a cooperative scheduling policy, thus
making this problem less severe.
Our plan for the future is to apply our CONCURINTER-

PROC tool to SystemC/TLM models, and also to analyze
concurrent data-structure algorithms using a suitable shape
abstraction.
Related work. We focus on general techniques deal-
ing with combination of recursion and concurrency. The
SPADE tool [22] analyzes concurrent programs with dy-
namic threads and recursion by representing the program
state by terms and by using rewriting techniques on sets
of terms. Their running times are much higher than ours.
[5] was a first step in this direction, but considers only
unsynchronized concurrency. Works like [1] exploits the
principles of regular model-checking, with each thread being
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represented with a pushdown system communicating by
rendez-vous. Compared to our method, those techniques
cannot be combined easily with infinite data-abstractions
such as convex polyhedra, but most of them can handle
dynamic thread creation.
Thread-modular techniques like [8] are more efficient but
inherently less precise than our method w.r.t. concurrency:
they never relate the local store of the different threads and
they do not track the order of the updates of the global
store performed by the environment of a thread (i.e., the
other threads). [20] shows in the non-recursive case that
such a thread-modular approach is an abstraction of the
interleaving semantics. [8] uses explicit stacks and cannot
tackle unbounded recursion (they can thus be more precise
than us w.r.t. recursion). The gain of this approach is of
course efficiency, and the ability to handle dynamic thread
creation as in [7].
[23] is close to us in the ambition of extending relational
analysis to concurrent programs. However their method is
based on the notion of transactional procedures, and requires
access to global variables to be protected by mutex, which
makes it less general than ours. It is also guaranteed to
terminate only for an identified class of programs, but in
this case it seems that the analysis is exact, which is the
good side of this approach.
According to our first experiments and our intuition, our
approach should be especially efficient for the cases where
the local environments of the different threads must be re-
lated (as in timed TLM models), because our analysis effec-
tively relates them, but where synchronization mechanisms
do not involve several local stores at different recursion
depth, because this would require to put in the call-context of
procedures several stack elements of the concurrent threads.
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