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Abstract

Green computing is nowadays a major challenge for most IT or-
ganizations. Administrators have to manage the trade-off between
system performances and energy saving goals. Autonomic com-
puting is a promising approach to control the QoS and the energy
consumed by a system. This paper precisely investigates the use
of synchronous programming and discrete controller synthesis to
automate the generation of a controller that enforces the required
coordination between QoS and energy managers. We illustrate our
approach by describing the coordination between a simple admis-
sion controller and an energy controller.

Categories and Subject Descriptors I.2.2 [Automatic Program-
ming]: Program synthesis; D.2.9 [Software Engineering]: Man-
agement; I.2.2 [Distributed Systems]

Keywords Green Computing, Autonomic Computing, Synchronous
Programming, Discrete Controller Synthesis

1. Introduction

Green computing is nowadays a major challenge for most IT or-
ganizations that involve medium and large scale distributed infras-
tructures like Grids, Clouds and Clusters. Distributed systems and
Internet services usually require a variety of software systems that
are organized in complex architectures based on replication and
multi-tier organization. The administration of such systems must
take into account the impact of green computing on the traditional
distributed system issues like dependability or scalabilitity. In par-
ticular, administrators have to manage the trade-off between system
performances and energy saving goals. Autonomic computing [8],
i.e. self-management in the face of evolving load conditions or fail-
ures is a promising approach that aims at providing a high-level
support for self-* aspects. To control the QoS of a system, auto-
nomic managers can act for instance on :

• The work submitted to the system (e.g admission control [13])

• The resource used by the system (e.g static or dynamic resource
provisioning [3])

• The work achieved by the system (e.g service degradation [11])
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On the other side, autonomic managers can control the energy
consumed by a system by using these following actuators :

• The frequency or voltage of server CPUs (e.g dynamic voltage
scaling [2])

• The state of hardware devices (e.g ACPI state management [7])

• The server consolidation (e.g virtualisation [9])

Control techniques have been used to ease the design of au-
tonomic computing systems [1][9]. However few of these works
have explored the coordination between QoS and energy managers.
This paper precisely investigates this problem by using discrete
controller synthesis to automate the generation of a controller that
enforces the required coordination between QoS and energy man-
agers.

Discrete controller synthesis (DCS) [12] allows to design pro-
grams in a mixed imperative/declarative way. From a program with
some freedom degrees left by the programmer (e.g., free control-
lable variables), and a temporal property to enforce which is not a
priori verified by the initial program, DCS tools compute off-line
automatically a controller which will constrain the program (by
e.g., giving values to controllable variables) such that, whatever the
values of inputs from the environment, the controlled program ver-
ifies the temporal property.

The advantages are (i) to generate automatically the controller
required to enable the cooperation of multiple Autonomic Man-
agers from high-level policy, (ii) to ease the evolution of the co-
ordination strategy and (iii) the generated controller is correct by
construction.

We illustrate our approach by describing the coordination be-
tween a simple admission controller and an energy controller. This
paper is organized as follow : section 2 is about synchronous pro-
gramming and discrete controller synthesis, section 3 gives an ex-
ample of an admission and energy controller and their possible co-
ordination, section 4 describes the design of the controllers using
discrete controller synthesis and section 6 concludes this work and
gives an insight of our future works.

2. Synchronous Programming and Discrete

Controller Synthesis

For our contribution, we use the DCS tool SIGALI [10] and the lan-
guage BZR [6]. This language allows to describe reactive systems
by means of generalized Moore machines, i.e., mixed synchronous
dataflow equations and automata [5], with parallel and hierarchical
composition. The basic behavior is that at each reaction step, val-
ues in the input flows are used in order to compute the values in
the output flows for that step. Inside the nodes, this is expressed as
a set of declarations, which takes the form of equations defining,
for each output and local, the values that the flow takes, in terms of



an expression on other flows, possibly using local flows and values
computed in preceding steps (also known as state values).

Figure 1 shows a small program in this language. It features a
task, which can either be idle or active. When it is idle, i.e., in the
initial Idle state, then the occurrence of the input r requests the
launch of the task. Another input c (which will be controlled fur-
ther by the synthesized controller) can either allow the activation,
or temporary block the request and make the automaton go to a
waiting state. When active, the task can be ended with the input
e. This delayable node has two outputs, a featuring the instanta-
neous activity of the task, and s being emitted on the instant when
it becomes active.

Idle Wait

e r and c/s

delayable(r,c,e) = a,s

Active
c/s

r and not c
a = false

a = true

a = false

node delayable(r,c,e:bool) returns (a,s:bool)

let

automaton

state Idle

do a = false ; s = r and c

until r and c then Active

| r and not c then Wait

state Wait

do a = false ; s = c

until c then Active

state Active

do a = true ; s=false

until e then Idle

end

tel

Figure 1. Delayable task in graphical and textual syntax.

The main feature of this language is that its compilation involves
discrete controller synthesis (DCS). DCS allows to compute auto-
matically a controller, i.e., a function which will act on the initial
program so as to enforce a given temporal property. Concretely, the
BZR language allows the declaration of controllable variables, the
value of which being not defined by the programmer. These free
variables can be used in the program so as to let some choices un-
decided (e.g., choice between several transitions). These variables
are then defined, in the final executable program, by the controller
computed by DCS.

The Figure 2 shows an example of use of these controllable
variables. This example consists in two instances of the delayable
node, as defined in Figure 1. These instances run in parallel, defined
by synchronous composition: one global step corresponds to one
local step for every equation, i.e., here, for every instance of the
automaton in the delayable node. Then, the twotasks node so
defined is given a contract composed of two parts: the with part
allowing the declaration of controllable variables (c1 and c2), and
the enforce part allowing the programmer to assert the property
to be enforced by DCS, using the controllable variables. Here,
we want to ensure that the two tasks running in parallel won’t be
both active at the same time. Thus, c1 and c2 will be used by the
computed controller to block some requests, leading automata of
tasks to the wating state whenever the other task is active.

twotasks(r1, e1, r2, e2) = a1, s1, a2, s2

enforce not (a1 and a2)
with c1, c2

(a1, s1) = delayable(r1, c1, e1)

(a2, s2) = delayable(r2, c2, e2)

Figure 2. Mutual exclusion enforced by DCS in BZR.

3. QoS and Energy management

To illustrate our work, we choose a standard pattern for scalabil-
ity and availability of Internet server. Modern Internet Application
Servers are composed of different tiers such as web, application and
database servers. Upon HTTP client requests, either the requests
target a static web document, in this case the web server directly
process the requests; or it refers to a dynamically generated docu-
ment, in that case the web server forwards the requests to the ap-
plication server, and a fraction of those also require processing by
database server. In this pattern, a given server S is statically repli-
cated at deployment time and a load balancer distributes incoming
requests among the replicated servers. The distribution algorithm
is usually Round-robin (equally distributing the load between the
servers).

Adapting dynamically the number of requests accepted in the
system is a means to maintain a given QoS and to avoid server
trashing despite varying load. An example of a simple admission
controller is described section 3.1.

On the other hand, adapting dynamically the number of replicas
is a means to dynamically allocate or free machines, i.e. to dynami-
cally turn cluster nodes on - to be able to efficiently handle the load
imposed on the system - and off - to save power under lighter load.
An example of such an energy controller is described section 3.2.

3.1 Admission control

For the purpose of this paper we use a load balancing scheme in a
cluster of Web servers that includes an admission control which ac-
cepts/rejects new client requests to maintain high system through-
put (new requests will be rejected if the load is too high). The ad-
mission control algorithm is based on the CPU utilization metric,
that is retrieved from the Web servers at fixed intervals. The admis-
sion controller computes a moving average of the collected data
in order to remove artifacts characterizing the CPU consumption.
It finally computes an average CPU load across all nodes, so as
to observe a general load indication of the whole replicated server
(CPU_AVG). The acceptance rate of client requests is based on the
average CPU load and on a cost associated to each request types.
For simplicity, we do not take into account session affinity (requests
belonging to existing session should be immediately forwarded to
the right web server). Among the new accepted requests, the load
balancer computes the fraction of requests to be assigned to each
server according to a simple round-robin policy. The important pa-
rameters here are the maximal CPU usage above which the admis-
sion controller must reject a request (called MaxCPU_AC) and the
cost estimation for each type of requests.

3.2 Energy control

In this section, we describe an energy controller for replicated
cluster-based systems. Energy optimization aims at dynamically
adapting the degree of replication according to the load the system
receives. This adaptation is used to dynamically turn cluster nodes
on and off to save power under lighter load.

The controller is mainly based on performance thresholds that
describe an optimal performance region where the system must be
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Figure 3. Optimization loop

depending on the workload. The expected benefits are (i) improv-
ing energy consumption; and (ii) preserving user-perceived per-
formance in the face of wide variations of the load. The sensors
used are the same than the admission controller sensors. The actua-
tors are used to increase/decrease the number of server replicas and
to update the loadbalancer to take into account the new replicated
server configuration.

The autonomic manager makes use of an analysis/decision
part based on a maximal and a minimal CPU threshold (Max-
CPU_Prov and MinCPU_Prov) that regulates node allocation. It
is also constrained by a minimal and a maximal node threshold
(MinNodes and MaxNodes) that represents the maximal (resp.
minimal) number of node that can be allocated to the clustered
server. The behavior of this autonomic manager is shown in Fig-
ure 3. When it receives notifications from sensors, if a reconfig-
uration is required, it modifies the number of allocated resources
(i.e the nodes) by contacting a node allocator to allocate a new
node (if AVG_CPU > MaxCPU_Prov) or to de-allocate it (if
AVG_CPU < MinCPU_Prov). Turning machines off and (es-
pecially) on is quite costly. We measured that such an operation
costs about 45 seconds in the average. Instead, we rely on suspen-
sion to RAM, which allows to suspend and resume the activity of
a machine at a low cost (about 4 seconds in the average for resum-
ing a machine) while saving as much energy as if it was turned off.
Suspend-to-RAM stores information on system configuration, open
applications, and active files in main memory (RAM), while most
of the system’s other components are turned off. When a machine
is suspended, only the RAM and the network device are power on.

3.3 Controller coordination

In this section, we analyze the control of a system composed of
both the admission controller and the energy controller described
above. The policy we described here aims to ensure a given QoS
by consolidating current workload onto the minimum number of
machines sufficient to serve it while minimizing the number of
rejected requests.

It is important to understand that both controllers are developed
independently. Without coordination, the admission controller may
prevent the energy controller to add a new node in the system and
may result in a higher number of rejected requests. Remember the
parameters that regulate the behavior of each controller are Max-
Cpu_AC for the admission control, MaxCPU_Prov, MinCPU_Prov
and Min/Max_Node for the energy controller.

Whatever the settings are (MaxCpu_AC ≤ MaxCPU_Prov
or MaxCpu_AC > MaxCPU_Prov) there is always a chance
that the admission controller prevents the energy manager to add

Prov on
AC off

Prov off
AC on
Set timer 4sec

AC

Prov off
AC on

Prov on
AC off

Not (max_node) and
CPU_avg > CPU_Max_prov

Timer end

max_node and
CPU_avg > CPU_Max_prov

CPU_avg < CPU_min_prov

prov up/down

prov timer

min_node

prov up

Not(min_node)

Figure 4. Super Controller

more nodes in the system. For instance, imagine a setting with one
node allocated to the clustered server and where MaxCpu_AC =
80%, MaxCpu_Prov = 90%. If the AVG_CPU = 75% at the time of
sampling and if we have 3 incoming requests with 5% cost each.
The energy controller will not add a new node, the QoS will be
guaranteed but at the cost of 2 request rejections.

To implement the policy described before, we need the con-
trollers to provide a on/off switch to activate/deactivate their op-
erations. These switches will be used by a super controller to im-
plement our policy. The state followed by the super controller are
depicted Figure4 :

• Prov up/down : the energy controller can freely scale up or
down the clustered server to minimize the energy consumed
while maintaining the QoS.

• Prov up : the clustered server is in its minimal configuration,
the energy controller can only resume a server from RAM.

• AC : the clustered server has reached its maximal allowed con-
figuration. The energy controller is disabled whereas the admis-
sion controller is on (to maintain the QoS until necessary).

• Prov timer : The energy controller has requested a new server to
be resumed from RAM. The admission controller is on during
the required time to enable the new server ( 4 sec in our set-
ting). This prevents the possible trashing of the clustered server
during the delay required to insert the new server in the cluster.

As we will see in the next section, this super controller will be
automatically generated using discrete controller synthesis.

4. Synchronous controller design

We can first notice that, if we program directly the automaton
showed in Figure 4, this can lead, at first to some unefficiencies
or error while identifying when the different controllers has to be
activated or de-activated, and then, to a design which can be tricky
to make evolve. This problem appears in this automaton by the
several “AC on/off” placed on several identified states, jeopardizing
the modularity of the design.

We want to show how the use of DCS can help to design
controllers first independently, and only then coordinating them by
adding policies to be enforced.

We first design the controller for the provisioning policy. Fig-
ure 5 gives the automaton of this designed. The outputs of this au-
tomaton are four Booleans, add_machine and remove_machine
being signals allowing the controller to request the resuming or
suspension of a machine, act_prov_up being true whenever the
provisioning “up” policy is active (i.e., it watches upon the average



CPU and can request for a new machine), and act_prov_down be-
ing true whenever the “down” policy is active.

The initial state is UpDown, where both “up” and “down” poli-
cies are active. When the CPU average reach a maximum level, the
controller requests a new machine, and goes to the Adding state,
where it awaits for the new machine to be actually available (noti-
fied by the timer_end input). In this Adding state, machines can
neither be added nor removed, so both policies are idled. When
timer_end occurs, the controller can either go back to UpDown,
or if there is no more machines able to be resumed, go to the Down
state where the “up” policy is idled. This Down state is left once one
machine is suspended. The Up state is used when no machine can
be removed (typically, there is only one active left): the “down”
policy is then idled. We can notice here that this automaton does
not comprise any controllability (for DCS).

act_prov_up = false

act_prov_down = false

act_prov_up = true

act_prov_down = true

act_prov_down = true

act_prov_up = false

act_prov_down = false

act_prov_up = true

Adding

UpDown

CPU_avg > CPU_Max_prov
timer_end

and not max_node

Down

timer_end

and max_node

Up

CPU_avg > CPU_Max_prov / add_machine

/ remove_machine
CPU_avg < CPU_Min_prov

(CPU_avg < CPU_Min_prov)

and min_node / remove_machine

(CPU_avg < CPU_Min_prov)
and not min_node / remove_machine

/ add_machine

Figure 5. Automaton for the provisioning policy.

Then, we can design independently the automaton for the ad-
mission controller. We will state that this controller can be activated
or idled at any time. Figure 6 gives this automaton. The input c ac-
tivates or de-activates the controller, and the output act_ac is true
whenever it is active.

Active

Idle

cnot c

act_ac = true

act_ac = false

Figure 6. Automaton for the admission controller.

Typically, c is meant to be declared as a controllable variable:
the choice of activation of the admission controller is left to the
synthesized controller, whose aim is to enforce the main coordina-
tion policy. The main coordination program is shown in Figure 7.
The two automata presented before are composed in parallel, and a
contract is added to enforce the coordination policy. Here, we want
that (i) the admission controller will never be active when the “up”
provisioning is active, and (ii) if the “up” provisioning is idle, then
the admission controller must be active. The first part of our co-
ordination policy is stated by “not act_ac and act_prov_up”,
and the second part by “act_ac and not act_prov_up”. c is
declared as a controllable variable.

5. Controller Simulation

The designed and synthesized controller can then be simulated,
before its system integration. Figure 8 shows a simulation example.

This figure shows a scenario illustrating our controller in ac-
tion. The Boolean input provisioning_up represents the condi-
tion CPU_avg > CPU_Max_prov and provisioning_down the

Figure 8. Controller simulation

condition CPU_avg < CPU_Min_prov. At the beginning, the poli-
cies “provisioning up” and “provisioning down” are active (outputs
act_prov_up and act_prov_down).

At step 4, the input provisioning_up becomes true, trigger-
ing the addition of a machine. Until the step 7, where the input
trigger_end reports that the new machine is available, the con-
troller deactivates the provisioning policies, and activates the con-
troller admission.

At step 11, once again, provisioning_up triggers the addition
of a new machine. This time, both timer_end and max_node are
emitted, reporting that no new machine can be added. Thus, the
controller activates only the “provisioning down” policy, and the
admission controller remains activated.

6. Conclusion

Green computing impacts the traditional distributed system issues
like dependability or scalabilitity. Managing the trade-off between
system performances and energy saving goals is a complex is-
sue. Autonomic computing is a promising approach to control this
trade-off. A major challenge is to allow the coexistence between
QoS and energy Managers in the same system in a consistent, effi-
cient and flexible way.

Our approach is based on synchronous programming and Dis-
crete Controller Synthesis. The advantages are (i) to generate auto-
matically the controller required to enable the cooperation of mul-
tiple Autonomic Managers from high-level policy, (ii) to ease the
evolution of the coordination strategy and (iii) the generate con-
troller is correct by construction.

As a future work, we plan to integrate (i) a new consolidation
manager based on virtual machines such as [9] and another QoS
manager based on service degradation such as [11].
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