

Electronic Notes in Theoretical Computer Science 65 No. 5 (2002)
URL: http://www.elsevier.nl/locate/entcs/volume65.html 15 pages

A Decidable Clock Language for Synchronous
Specifications

Mirabelle Nebut 1 and Sophie Pinchinat 2

Irisa – Campus universitaire de Beaulieu – 35042 Rennes Cédex – France

Abstract

Presence and absence of signals inside a reaction are inherent to the synchronous
paradigm. Clocks are sets of instants (indicating for example when a signal is
present) mainly used to describe the control part of data-flow specifications. The
language CL we define here expresses relations between clocks. Such relations can
describe the combinational part of specifications, as well as particular instantaneous
safety properties. We give a decision procedure for CL and apply it to the model-
checking of Signal programs abstracted from their state handling part. Thanks to
the use of clocks, absence is not explicitly encoded by a special value.

Key words: synchronous data-flow languages, clock, absence,
safety property, decision procedure, abstraction, model-checking

1 Introduction

Synchronous languages [4] have been proposed to specify reactive systems,
which interact continuously with the environment they are connected to. All
synchronous programming paradigms involve the notion of logical instants
yielding to the notion of presence/absence of signals. It is particularly ap-
parent in imperative languages like Esterel (see [4]), especially dedicated
to control-handling aspects. The system can among other things broadcast
signals (emit S) or react to their status of presence or absence (e.g. present
S then . . . else . . .). In this paper we focus on equational data-flow lan-
guages like Signal [10] and Lustre [5], particularly adapted to data-flow
aspects. Data-flow specifications are systems of equations which describe infi-
nite sequences of values carried by signals along the time. At a given instant,
a signal (e.g. of type boolean, integer, etc) can be absent (represented by a
special “absent” value) or present, hence carrying a significant value.

1 Espresso group, Email: mnebut@irisa.fr
2 S4 group, Email: pinchina@irisa.fr

c©2002 Published by Elsevier Science B. V.

mailto:mnebut@irisa.fr

mailto:pinchina@irisa.fr

Nebut and Pinchinat

An execution of the system is represented by an infinite sequence of in-
stantaneous reactions along a logical time line. A reaction attaches a status
and, when relevant, a value to each signal. Such an assignment is called a
valuation. We call flow a time-indexed sequence of valuations. A system is
implicitly composed of a combinational or static part (that is without state),
connected to a state handling part. The combinational part describes the ad-
missible valuations for a reaction, by means of a relation between the status
and values of signals. It involves potentially absent signals. The state part
memorizes from one instant to the next one significant values, to which are
set some signals in the reaction.

Reasoning about systems thus involves heterogeneous values for signals:
relevant values plus the “absent” value. The data-flow paradigm then offers
the notion of clock, which refers to a set of instants (e.g. the instants “when the
sum of two signals is positive”). In particular the clock of a signal x, denoted
by x̂, indicates its instants of presence: handling values of x only at instants of
x̂ avoids to use the “absent” value. Signal widely relies on clocks, used both
for programming and analysis. Especially they are essential to describe the
control of systems (e.g. by indicating when a computation must be performed).
Relations between clocks (stating inclusions, and called synchronizations) are
analyzed to synthesize clever control structures and detect inconsistencies.

Since clocks are related to signals and time index, they are formally defined
w.r.t. flows. Nevertheless, relations between clocks describe a statement that
holds in any reaction. For example “x̂ is included into ŷ” means that at
any instant t, the presence of x implies the presence of y. Such a statement
is purely combinational, thus describes essentially a set of valuations (which
can be rearranged as a set of flows). In other words, a relation between
clocks states a particular instantaneous safety property of a system, describing
what happens at any instant, independently of the preceding or following ones
(e.g. “x is always positive”). The verification of a safety property requires in
general (even for instantaneous ones) the exploration of the state space of the
system. Nevertheless, many of them (in particular those needed to analyze
synchronizations) can be verified by considering only the combinational part
of the system, abstracting from its states by means of a static abstraction.

The present work proposes a “Clock Language” called CL to express instan-
taneous data-flow statements or properties (a data-flow semantics is recalled in
Sect. 2). Basically, the formulas of the language, presented in Sect. 3, express
inclusions between clocks, and can represent any combinational relation be-
tween the status and values of signals. We give in Sect. 4 a decision procedure
for CL, which as announced does without the “absent” value. We illustrate
the approach in Sect. 5: combinational Signal statements are translated in-
to CL, then model-checking of the static abstraction of a Signal program
is easily derived from the decision algorithm. Comparison with related work
on Lustre and Signal (in particular concerning the handling of absence) is
given in Sect. 6. Section 7 concludes. We also refer to [9] for further details.

2

Nebut and Pinchinat

2 Synchronous Data-flow Semantics

We assume given a finite set of variables S of domain D (for example boolean,
integer, etc), with typical elements x, xi, y, z, c. A data-flow specification de-
scribes a system by a set of equations over A ⊆ S. At any instant, a variable
x ∈ A can be absent (denoted by the special value ? 6∈ D) or present: it
carries a significant value v ∈ D. A valuation V on A denotes a reaction:
it is a function V : A → D ∪ {?} which assigns a value to each variable.
The set of valuations on A is written VA. It contains the silent valuation
?VA : A → ?, and non-silent valuations said significant. The restriction of
V ∈ VA to A1 ⊆ A maps any x ∈ A1 to V (x).

A flow F on A is an infinite denumerable sequence of valuations: F : N →
VA \ { ?VA}. It defines an execution of the system. The set of all valuations

that occur at some instant in F is [[F]]VA

∆
= {V ∈ VA | ∃t ∈ N, V = F (t)}.

The set of flows on A is denoted by FA. The clock of a variable x ∈ A
w.r.t. a flow F ∈ FA is denoted by x̂F and defined as the set of instants for
which x is present in F (t): ∀t ∈ N, t ∈ x̂F iff F (t)(x) 6= ?. A natural pre-
order ⊆F between clocks (w.r.t. to the flow F) is derived accordingly: x̂ ⊆F ŷ
iff x̂F ⊆ ŷF . If x̂ =F ŷ then x and y are synchronous in F (both absent
or present at the same time). x̂ ⊆F ŷ expresses an instantaneous relation:
∀t ∈ N, F (t)(x) 6= ? implies F (t)(y) 6= ?.

A process is a set of flows; it describes the possible behaviors of the sys-
tem. The set of processes on A is denoted by PA whose typical elements
are $,$1, $2. Classically, the restriction of $ ∈ PA to A1 ⊆ A is inherited
from the restriction of valuations. The parallel composition of $1 ∈ PA1 and
$2 ∈ PA2 , denoted by $1 ‖ $2 ∈ PA1∪A2 , contains behaviors of both $1 and
$2, provided they agree on their shared variables in A1 ∩ A2.

3 The Clock Language CL
CL describes instantaneous statements: what happens inside any reaction.
Thus according to previous notations its semantics is given by means of val-
uations, hence it can be lifted to flows (that is full executions) by arbitrary
concatenation of valuations. CL formulas express inclusions between sets of
instants, represented by clock terms like x̂ (see Sect. 2), but also based on
predicates of a first order theory which describe relations between values of
variables. CL is presented in Sect. 3.2 and 3.3, and a boolean abstraction
dedicated to the decision procedure is presented in Sect. 3.4.

3.1 Notations for predicates

We assume given a first order language L with equality whose set of variables
X (with typical element v) contains S. The set of formulas of L is denoted
by F(L), with typical element R (for example R is x1 < x2 + 10, where
x1, x2 ∈ S). The set of free variables of R ∈ F(L) is denoted by fv(R) and we

3

Nebut and Pinchinat

note R(x1, . . . , xn) to emphasize that fv(R) = {x1, . . . , xn}. A structure (or a
realization) M for L is obtained by choosing a domainD and an interpretation
for symbols of predicate and function according to D (for example D is Z, +
is the addition over integers). Given an interpretation function l : X → D
for variables in X, we write M, l|≈R or simply l|≈R (when M is clear) if R
is satisfied by l, or (d1, . . . , dn)|≈R(x1, . . . , xn) for di ∈ D, i = 1 . . . n. In the
following we assume chosen a fixed structure for L.

3.2 Clock Terms

Clock terms can be the clock of a variable, the empty clock, or a composition
of terms by set-like operators, but also “embedded” predicates of F(L), called
relation-clocks. The set of clock terms CT is described by 3 :

CT (3 h, h1, h2) ::= O | x̂ | 〈R(x1, . . . , xn)〉 | h1 ∩ h2 | h1 ∪ h2 | h1 \ h2

where x ∈ S and R ∈ F(L). The empty clock O, clock variables x̂ and
relation-clocks 〈R〉 are basic clock terms, whose set is denoted by BCT , or
BCTA when variables can only belong to A. An inductive clock term has the
form h1 op h2 where op ∈ {∪,∩, \}. The set of clock terms on A is denoted
by CTA, whose typical elements are h, h1, h2, h

1, etc.

The interpretations of clock terms are valuations: for x ∈ A, if V ∈ VA is
such that V (x) 6= ? then V is said to switch on the clock of x, which is written
onV (x̂). The unary predicate onV (·) generalizes to any clock term:

Definition 3.1 Given A ⊆ S, V ∈ VA and h, h1, h2 ∈ CTA, onV (·) is defined
by induction over clock terms:

• onV (O) never;

• for x ∈ A, onV (x̂) iff V (x) 6= ?;

• for {x1, . . . , xn} ⊆ A, onV (〈R(x1, . . . , xn)〉) iff for i = 1 . . . n, onV (x̂i) and
(V (x1), . . . , V (xn))|≈R;

• onV (h1 ∩ h2) iff onV (h1) and onV (h2);

• onV (h1 ∪ h2) iff onV (h1) or onV (h2);

• onV (h1 \ h2) iff onV (h1) and not onV (h2).

Example 3.2 Assume given A = {x, y} and let V be defined by V (x) = 3
and V (y) = ?. Then, onV (ŷ) is false, onV (x̂ \ ŷ) is true, 〈x > 0〉 is switched
on in V but ŷ hence 〈x > 0∨ y > 0〉 are switched off, since y is absent in V . �

3.3 Clock Formulas

Clock formulas describe predicates over clock terms, which basically rely on
inclusions. The set CF of clock formulas is described by:

3 We use BNF in which the symbol | denotes choice in the grammar and has nothing to do
with the syntactical operator of parallel composition |.

4

Nebut and Pinchinat

CF (3 φ, φ1, φ2) ::= h1 ⊆ h2 | φ1 ∧ φ2 | ∃x.φ | ¬φ
where h1, h2 ∈ CT and x ∈ S. For A ⊆ S, the set of clock formulas on
A is denoted by CFA. The clock term universe associated to φ ∈ CFA and
denoted by CT (φ) ⊆ CT is defined inductively: CT (h1 ⊆ h2) is the set of
clock sub-terms that compose h1 and h2; CT (∃x.φ) = CT (¬φ) = CT (φ) and
CT (φ1∧φ2) = CT (φ1)∪CT (φ2). We denote by BCT (φ) the set BCT∩CT (φ),
the set of basic clock terms of φ and by CF (φ) ⊆ CF the set of sub-formulas
of φ. The set of quantifier-free formulas (that contain no sub-formulas of the
kind ∃x.φ) in CF (resp. CFA) is denoted by CFqf (resp. CFqf

A).

In the following, we write h1 ≡ h2 for h1 ⊆ h2 ∧ h2 ⊆ h1 (the symbol = is
kept to denote equality of L) and h1 ≡ h2 ≡ h3 means h1 ≡ h2 ∧ h2 ≡ h3.

Semantics of clock formulas is as announced based on valuations.

Definition 3.3 Given A ⊆ S, V ∈ VA, h1, h2 ∈ CTA, x ∈ S\A and φ, φ1, φ2 ∈
CFA:

• V |= h1 ⊆ h2 iff onV (h1) implies onV (h2);

• V |= φ1 ∧ φ2 iff V |= φ1 and V |= φ2;

• V |= ∃x.φ iff there exists V ′ ∈ VA∪{x} s.t. V ′ |= φ and ∀y ∈ A, V ′(y) = V (y);

• V |= ¬φ iff V 6|= φ.

A formula φ ∈ CFA is valid, written |= φ, whenever V |= φ for all V ∈ VA.

This definition is easily lifted to flows: given a formula φ ∈ CFA, we say
that a flow F ∈ FA satisfies φ, written again F |= φ, whenever φ holds for all
valuations V ∈ [[F]]VA

.

To clarify notations we define a function Υ(·) (read “clock of”) which
associates a clock term to a formula R ∈ F(L):

Υ(R) is the clock term
⋂
{x̂ | x ∈ fv(R)}.

Intuitively, “the clock of R”, when interpreted in a flow, is the greatest set of
instants (for set inclusion) where all variables whose value is required to strictly
evaluate R are present. Note that Υ(¬R) is equal to Υ(R) (since formulas R
and ¬R have same free variables) and that by definition onV (Υ(R)) iff onV (x̂),
for all x ∈ fv(R). By abuse of notations we write V |≈R when all variables in
fv(V) are present in V and carry values that satisfy R.

Example 3.4 Υ(x < 10) = Υ(∃z.(z ≥ 0 ∧ x < 10 + z)) = x̂ and for V as
in Ex 3.2 where V (x) = 3 and V (y) = ?, it is true that V |≈x < 10, just as
V |≈ ∃z.(z ≥ 0∧x < 10+z). On the contrary, because Υ(x > 0∨y > 0) = x̂∩ŷ,
V 6|≈x > 0 ∨ y > 0. �

The semantics of relation-clocks can be rewritten more concisely using Υ:

onV (〈R〉) iff onV (Υ(R)) and V |≈R (1)

5

Nebut and Pinchinat

Therefore, for any valuation V , onV (〈R〉) implies onV (Υ(R)), namely |= 〈R〉 ⊆
Υ(R). It can also be proved that |= Υ(R) ≡ 〈R〉 ∪ 〈¬R〉.

Example 3.5 CL can express various fine instantaneous statement. Assume
given x, y ∈ S and a variable v ∈ X. “x is always positive” is expressed by the
formula x̂ ≡ 〈x ≥ 0〉, or equivalently x̂ ⊆ 〈x ≥ 0〉 (since |= 〈x ≥ 0〉 ⊆ x̂). “y
is always equal to x” is expressed by ŷ ≡ 〈y = x〉 or equivalently ŷ ⊆ 〈y = x〉,
as y can be absent while x is present. “x is always even” is expressed by
x̂ ⊆ 〈∃v.x = 2v〉, and highlights the need for quantification provided by L. �

3.4 Boolean Abstraction

We define the abstraction of the quantifier-free fragment of CL into the propo-
sitional calculus B, useful for the decision procedure of Sect. 4, with the fol-
lowing notations. Given b a set of propositional variables, δ : b → {0, 1} is
a distribution of values on b which naturally extends to formulas of B in the
standard way (for example δ(G1 ∧G2) = 1 iff δ(G1) = 1 and δ(G2) = 1). The
set of distributions on b is ∆. The distribution 0 maps all variables to 0. For
δ ∈ ∆ and G ∈ B, we write δ |= G whenever δ(G) = 1.

Now, assume b contains a variable b
bx (resp. b〈R〉) for each x̂ (resp. 〈R〉) in

BCT . The mapping B of Def. 3.6 abstracts h ∈ CT into B(h), simply written
hB, and φ ∈ CFqf into B(φ), denoted by φB. Note that semantics of operators
is similar in the concrete and abstract worlds.

Definition 3.6 B is defined on Fig. 1 by induction on the structure of terms
and formulas, where x ∈ S.

h ∈ CT hB ∈ B

x̂ b
bx

〈R〉 b〈R〉
O false

h1 ∩ h2 h1B
∧ h2B

h1 ∪ h2 h1B
∨ h2B

h1 \ h2 h1B
∧ ¬h2B

φ ∈ CFqf φB ∈ B

h1 ⊆ h2 h1B
⇒ h2B

¬φ ¬ φB

φ1 ∧ φ2 φ1B
∧ φ2B

Fig. 1. Abstraction of CL

Abstraction of valuations as well as concretization of distributions are de-
fined in accordance with the boolean abstraction of terms. The abstraction of
a valuation V is the distribution δV ∈ ∆ which indicates for each basic clock
term h whether it is switched on by V or not.

Definition 3.7 Let V ∈ VS. δV ∈ ∆ is defined by:

for all h ∈ BCT , δV (hB) = 1 iff onV (h).

6

Nebut and Pinchinat

Reciprocally, the concretization of a distribution δ is the (possibly empty)
set Vδ of all valuations that assign values in D∪{?} to variables, in accordance
with the requirements specified by δ on presence/absence of variables, and
satisfaction of formulas R ∈ F(L) imposed by variables b〈R〉. Formally:

Definition 3.8 Given δ ∈ ∆, Vδ ⊆ VS is defined by:

Vδ = {V ∈ VS | ∀h ∈ BCT , onV (h) iff δ(hB) = 1}.

It can be proved that Def. 3.7 and Def. 3.8 generalize to any term h ∈ CT
and deliver indeed a distribution and a set of valuations respectively.

Example 3.9 If b is {b
by, bbx, b〈x<0〉, b〈x>2〉} and V ∈ VS is s.t. V (x) = 3 and

V (y) = ?, then δV (b
bx) = δV (b〈x>2〉) = 1 and δV (b

by) = δV (b〈x<0〉) = 0. VδV

contains any valuation V ′ s.t. V ′(y) = ? and V ′(x) > 2, in particular V . For
δ equal to δV excepted that δ(b〈x<0〉) = 1, we have Vδ = ∅. �

As expected, these abstraction and concretization define a Galois insertion.

Theorem 3.10 Let α and γ be the following mappings:

α : P(VS) → P(∆) and γ : P(∆) → P(VS)

{Vi}i∈I 7→ {δVi
}i∈I ∆′ 7→

⋃
δ∈∆′ Vδ

then γ ◦ α ⊇ IdP(VS) and α ◦ γ = IdP(∆).

4 A Decision Procedure

We define in Sect. 4.2 a decision procedure for the satisfiability of a clock
formula φ ∈ CF. It answers Yes iff there exists a significant valuation V (hence
a flow) such that V |= φ. It relies on properties of the boolean abstraction
discussed in Sect. 4.1: the computation of the boolean abstraction φB of a
quantifier-free formula φ stands out a finite number of decision problems in
the theory F(L). Then we only need to address these problems.

4.1 The Satisfiability Problem

In this section we focus on the quantifier-free fragment of CL. Abstraction
and concretization defined in Sect. 3.4 have strong properties when applied to
models of φ ∈ CFqf, since γ ◦ α({V ∈ VS | V |= φ}) = {V ∈ VS | V |= φ}.
Indeed, though the precise values carried by V are lost, δV and φB encode
whether V |= φ or not:

Theorem 4.1 For any φ ∈ CFqf
A and V ∈ VA, V |= φ iff δV |= φB.

The proof of Th. 4.1 is by induction over the structure of φ, see [9].

By Th. 3.10 and 4.1, if some V |= φ, then V ∈ Vδ for some δ |= φB, and
vice versa:

7

Nebut and Pinchinat

Corollary 4.2 For any φ ∈ CFqf
A and V ∈ VA, V |= φ iff V ∈

⋃
δ|=φB

Vδ.

Consequently, we establish in the following a criterion for the non-emptiness
of Vδ, for any δ |= φB. This criterion relies on the satisfiability of a first order
formula Rδ built up from φ and δ (see Th. 4.5).

For technical reasons, we only consider completed formulas φ of the kind
φ′ ∧

∧
{Υ(R) ≡ 〈R〉 ∪ 〈¬R〉 | 〈R〉 ∈ BCT (φ′)}; φ is then the completion of

φ′. Notice that restricting to completed formulas is no loss of generality since
any formula and its completion are equivalent. In the rest of this section, we
assume given a completed formula φ ∈ CFqf

A.

Definition 4.3 Let Rδ be the set {R | 〈R〉 ∈ BCT (φ) and δ(b〈R〉) = 1}.
When Rδ is not empty, Rδ denotes the conjunction of all formulas in Rδ.

The following lemma ensures that distributions we consider are well-formed,
that is the values of b

bx for x ∈ fv(R) are coherent with the values of b〈R〉.

Lemma 4.4 Let δ |= φB. For all R ∈ Rδ and for all x ∈ fv(R), δ(b
bx) 6= 0.

Proof. Since φ is completed, for each 〈R〉 ∈ BCT (φ) the sub-formula Υ(R) ≡
〈R〉∪〈¬R〉, say ψ in the following, occurs positively in φ. Hence δ |= φB implies
δ |= ψB, where ψB is

(
∧

x∈fv(R)

b
bx)

︸ ︷︷ ︸
Υ(R)B

⇔ b〈R〉 ∨ b〈¬R〉. (2)

If R ∈ Rδ then δ(b〈R〉) = 1 and by Eq. 2 we conclude. 2

Theorem 4.5 gives a criterion for the non-emptiness of Vδ. Finally its
corollary (Cor. 4.6) states that the satisfiability of φ is fully determined by
the pairs (δ, Rδ), where δ |= φB.

Theorem 4.5 Let δ |= φB. Then, Vδ 6= ∅ iff “Rδ = ∅ or else Rδ is satisfi-
able”. Moreover ∀V ∈ Vδ, V |≈Rδ.

Proof. When Rδ is an empty set the theorem simply states that Vδ is not
empty. Indeed, one can choose an arbitrary value v ∈ D and define a valuation
W (x) = v if δ(b

bx) = 1, and ? otherwise, which belongs to Vδ by construction.
We can assume now that Rδ is not empty.
⇒) Assume Vδ 6= ∅ and let V ∈ Vδ. For all R ∈ Rδ, δ(b〈R〉) = 1 by Def. 4.3,
then onV (〈R〉). Therefore V |≈R by Eq. (1) and consequently Rδ is satisfiable.
⇐) If Rδ is satisfiable then there exist values vx for each variable x ∈ fv(Rδ)
which satisfy Rδ. On their basis we define W ∈ VA (with v an arbitrary value)

8

Nebut and Pinchinat

by:

W (x) =

? if δ(b

bx) = 0

vx if x ∈ fv(Rδ)

v for the remaining cases.

(3)

Notice that W is well defined since by Lemma 4.4, the three cases of Eq. (3)
are disjoint. We prove now that W ∈ Vδ, that is, for all h ∈ BCT (φ),

onW (h) iff δ(hB) = 1 (4)

By construction of W , (4) holds for clock terms O and x̂ (x ∈ A). Therefore

onW (Υ(R)) iff δ(Υ(R)B) = 1, for all 〈R〉 ∈ BCT (φ) (5)

We now show (4) for all 〈R〉 ∈ BCT (φ). Let 〈R〉 ∈ BCT (φ). If δ(b〈R〉) = 1,
then R ∈ Rδ, hence δ(Υ(R)B) = 1 by Def. 4.3 and Lem. 4.4. As moreover
W |≈R by construction, by Eq. (1) and (5) we have onW (〈R〉). Otherwise,
δ(b〈R〉) = 0. Two cases can be distinguished: if δ(Υ(R)B) = 0, by Eq. (5) not
onW (Υ(R)) necessary holds, which in turn entails not onW (〈R〉), by Eq. (1).
Otherwise, δ(Υ(R)B) = 1. By Eq. (2), we necessarily have δ(b〈¬R〉) = 1,
therefore ¬R ∈ Rδ. By the first case of the proof, we have onW (〈¬R〉) which
implies by Eq. (1) that W |≈¬R. Hence W 6|≈R and therefore not onW (〈R〉).2

Notice that assuming that φ is a completed formula is necessary to get
Th. 4.5: consider the non-completed formula 〈x > 0〉 ⊆ x̂ ∧ 〈¬(x > 0)〉 ⊆ x̂.
Define the distribution δ(b

bx) = 1, and 0 otherwise, in particular δ(b〈x>0〉) = 0
and δ(b〈¬(x>0)〉) = 0. Although δ is a model of φB, it cannot be concretized
into a valuation, entailing emptiness for Vδ. And yet Rδ is also empty.

Corollary 4.6 φ ∈ CFqf
A is satisfiable iff there exists δ ∈ ∆ s.t. δ |= φB and

Rδ is satisfiable.

4.2 The Decision Procedure

Provided the first order language L is decidable, Cor. 4.6 induces a decision
procedure for the full language CL, as a quantified formula ∃x.φ is satisfiable
iff φ is satisfiable. The algorithm of Fig. 2 takes φ ∈ CFqf

A as input, and
returns Yes iff φ is satisfied by a valuation V 6= ?VA. It clearly terminates
and is correct by Cor. 4.6. It could be improved to effectively exhibit a model
of φ (if any) by exploiting the valuation W in the proof of Th. 4.5, provided
a constructive decision procedure exists for L.

Complexity issues can be briefly answered as follows. Define |φ| as the
number of all symbols occuring in φ, included symbols appearing in formulas
R ∈ F(L) for 〈R〉 ∈ BCT (φ). First, solutions of φB are enumerated. This
runs in exponential time on |φB| (≤ |φ|), since checking that a distribution

9

Nebut and Pinchinat

Let DIST = {δ ∈ ∆ | δ |= φB and δ 6= 0} in

For all δ ∈ DIST do

if Rδ = ∅ then return Yes else

if Rδ is satisfiable then return Yes;

return No.

Fig. 2. A decision procedure for the satisfiability of φ

satisfies φB is linear time. Hence, this enumeration is in O(2|φ|). Then, for
each distribution δ, some decision procedure of L is performed for Rδ; notice
that |Rδ| ≤ |φ|. By calling CL(|R|) the complexity for deciding R ∈ F(L),
we obtain an upper bound complexity for the decision algorithm of CL in
O(2|φ| ∗CL(|φ|)). For the lower bound, the complexity is the maximum of (1)
the lower bound for enumerating all solutions of a propositional formula (at
least NP-hard because of SAT problem) and (2) the complexity of the decision
for L.

5 Model-checking for Data-flow Specifications

Deciding whether a CL formula is satisfiable or not can be of significant help
for Signal analyses (see Sect. 6): we illustrate it in Sect. 5.3 by addressing
the model-checking of Signal programs. The Signal language is presented
in Sect. 5.1 then we show in Sect. 5.2 how the static abstraction of programs
translates into clock formulas.

5.1 The Synchronous Data-flow Language Signal

A Signal [10] program on a set of variables A, written P ∈ PgA, is a set of
equations; it denotes a process [[P]] ∈ PA. The operator of parallel composition
| corresponds to the parallel composition of processes. An equation y := E

involves a signal y and an expression E composed of signals, constants and
operators; it specifies that when present y is always equal to E. The kernel
language offers four operators, single-clocked (that is which constrains its ar-
guments to be synchronous) or multi-clocked. The dynamic delay operator $
involves a state: y := x $1 init v0 specifies that y and x are synchronous
and when present y takes the last non-? value of x, initially the constant v0.
The semantics of the three combinational operators is given on Fig. 3 as fol-
lows. We write P ; exp(F, t) to express [[P]] = {F ∈ FA | ∀t ∈ N, exp(F, t)},
where exp(F, t) is an expression built upon F and t. We write yt for F (y)(t),
corresponding to the program variable y.

In (a) the generic operator g is any usual arithmetic or boolean function,
point-wisely applied to the values of present variables xi, all arguments being
constrained to be synchronous (for example if g is addition ?+ 2 is irrelevan-

10

Nebut and Pinchinat

P [[P]]

(a) y := g(x1, . . . ,xn) ; yt = ? ⇒ x1t = · · · = xnt = ?∧
yt 6= ? ⇒ ∀i, xit 6= ? ∧ yt = g(x1t , . . . , xnt)

(b) y := x when c ; ct 6= true ⇒ yt = ?∧
ct = true ⇒ yt = xt

(c) y := x default z ; xt 6= ? ⇒ yt = xt∧
xt = ? ⇒ yt = zt

Fig. 3. Equations of the kernel of Signal

t). Such an instantaneous function allows the construction of single-clocked
predicates (for example c := x<y builds the relation x < y, and c, x and y

are synchronous). The other operators are multi-clocked: the when operator
(b) performs a filtering, or a sampling according to the true values of c, and
the default operator (c) performs a merge with priority given to its first ar-
gument x. Restriction is provided: (P/x) means that x is hidden in P, which
corresponds to the restriction of [[P]] to variables in A \ {x}. Derived oper-
ators also exist (like the operator ^= which constrains its arguments to be
synchronous), as well as powerful constructions for high-level programming.

The static abstraction of a program P, denoted by Ps, is easily obtained
by just keeping its combinational part. Equations of Fig. 3 form the kernel of
static Signal (written SSignal): the abstraction keeps them as they are. y
:= x $1 init v0 is abstracted into y ^= x, which only states that y and x

are synchronous. The abstraction is modular: (P1 | P2)s is P1s | P2s.

Example 5.1 Figure 4 shows Signal equations we consider as the program-
s Pabs and Pct , defined on the set of integer variables A = {a, y, p, n} and
{a, pa,N} respectively. In Pabs a is the absolute value of y. In Pct , a is a
“counter”: it decrements and reinitializes itself after it has reached 0, with
the positive input variable N. Since the variable pa carries the previous value
of a (initially 0), N is synchronized with instants where pa = 0. Note that the
absolute value denotes a static process, contrary to the counter. �
(| p : = y when y>=0
| n := -y when y<0
| a := p default n |)

(| pa := a $1 init 0
| a := N default pa-1
| N ^= when N>=0
| N ^= when pa=0 |)

Fig. 4. Signal programs Pabs (left) and Pct (right)

5.2 From Static Signal to CL

We give in Fig. 5 a mapping which associates to a SSignal program P a
formula φP ∈ CF. This translation is correct thanks to Th. 5.2. Note that

11

Nebut and Pinchinat

synchronizations translate directly into clock formulas: for example y ^= x

translates into ŷ ≡ x̂.

SSignal program P φP ∈ CF

y := g(x1, . . . ,xn) ŷ ≡ x̂1 ≡ . . . ≡ x̂n ∧ ŷ ⊆ 〈y = g(x1, . . . , xn)〉

y := x when c ŷ ≡ x̂ ∩ 〈c〉 ∧ ŷ ⊆ 〈y = x〉

y := x default z ŷ ≡ x̂ ∪ ẑ ∧ x̂ ⊆ 〈y = x〉 ∧ ẑ \ x̂ ⊆ 〈y = z〉

(P)/x ∃x.φP
P1 | P2 φP1

∧ φP2

Fig. 5. CL semantics for SSignal

Theorem 5.2 For all SSignal program P and V ∈ VS,

V |= φP iff V ∈ [[F]]VS
for some F ∈ [[P]].

Example 5.3 We give on Fig. 6 the two clock formulas φabs and φct that
represent the two Signal programs of Ex. 5.1. �

p̂ ≡ 〈y ≥ 0〉 ≡ 〈p = y〉 ≡ 〈a = p〉
∧ n̂ ≡ 〈y < 0〉 ≡ 〈n = −y〉
∧ n̂ \ p̂ ⊆ 〈a = n〉
∧ â ≡ p̂ ∪ n̂

â ≡ p̂a ≡ 〈a = N〉 ∪ â

∧ 〈pa = 0〉 ≡ 〈a = N〉 ≡ N̂ ≡ 〈N ≥ 0〉
∧ p̂a \ N̂ ⊆ 〈a = pa − 1〉

Fig. 6. Clock Formulas φabs (left) and φct (right) for Ex. 5.1

5.3 Model-checking

Using the static abstraction and the translation from SSignal to CL given in
Sect. 5.1 and 5.2, deciding whether a Signal program P satisfies a property
φ ∈ CFqf can be reduced to the validity problem φPs ⇒ φ. This problem
reduces in turn to the satisfiability of the formula φPs∧¬φ, by using renaming
to push out quantifiers. As expected, since an abstraction of P is used, if the
answer is “No” then P satisfies φ, otherwise nothing can be inferred.

Example 5.4 Let us consider the program Pabs of Ex. 5.1 and address whether
“a is always positive”. This instantaneous property can be expressed by φ:
â ⊆ 〈a ≥ 0〉. Let us denote by φ′ the completion of φabs ∧ ¬φ, which con-
tains additional clock terms like 〈¬a ≥ 0〉. Apart from distributions s.t.
δ(b〈R〉) = δ(b〈¬R〉) = 1 that trivially cannot be concretized, three distributions
δi satisfy φ′

B. According to the table below, none of the formulas Rδi
is satis-

fiable, so the sets Vδi
are empty, hence φ indeed holds for Pabs .

12

Nebut and Pinchinat

δi some clocks switched on by δi unsat. sub-formula of Rδi

δ1 p̂, n̂, â, 〈y ≥ 0〉, 〈y < 0〉, 〈¬a ≥ 0〉 y ≥ 0 ∧ y < 0

δ2 p̂, â, 〈y ≥ 0〉, 〈p = y〉, 〈a = p〉, 〈¬a ≥ 0〉 y ≥ 0 ∧ p = y ∧ a = p ∧ ¬a ≥ 0

δ3 n̂, â, 〈y < 0〉, 〈n = −y〉, 〈a = n〉, 〈¬a ≥ 0〉 y < 0 ∧ n = −y ∧ a = n ∧ ¬a ≥ 0 �

Though the programs we consider are abstracted from their state handling
part, we can prove some property depending of state. We can indeed use
induction techniques provided we restrict to properties simple enough not to
require invariant strengthening (see [3] for the general case in Lustre), as
sketched below.

Example 5.5 Let us consider the program Pct of Ex. 5.1. It implicitly in-
volves a memory, say ξa, which memorizes the value of a from one instant to
the next one. Recall that pa and a are synchronous. At any instant where pa
(then a) is present, pa takes the current value of ξa (initially set to 0), then
ξa is updated by the computed value of a; otherwise ξa remains unchanged.
Proving “a is always positive” amounts to check that ξa ≥ 0. Initially it is
verified since ξa = pa = 0. Then we must show that, whenever a and pa are
present, if ξa satisfies ξa ≥ 0 (equivalently pa ≥ 0) then so does its updated
value (equivalently a ≥ 0). Therefore we must check the instantaneous prop-
erty expressed by â ∩ p̂a ⊆ 〈pa ≥ 0 ⇒ a ≥ 0〉, which is achieved analogously
to Ex 5.4. �

6 Related work

As far as Lustre is concerned, synchronous observers [6] were proposed to
verify a safety property Q (written in Lustre and characterised by a boolean
signal B) on a program P: it is checked that no state of P|Q makes B false. The
model-checking of Sect. 5.3 follows this approach. Nevertheless the problem of
absence handling is most often avoided in Lustre. Most verification methods
apply to an interpreted automaton generated by the compiler [7] possibly
tuned to check a specific property. Anyway due to its functional aspect, the
Lustre semantics can be given in terms of streams of values without “absent”
value (see for example the analysis of [3] based on proofs by induction).

On the contrary, all analyses of Signal programs cope with absence. Two
main approaches are used: use of clocks vs explicit encoding of absence. Clocks
are used in the clock calculus performed by the compiler [1]. It runs on an ab-
straction by synchronizations, which encodes the boolean combinational part
of a program, plus synchronization relations (see [9]). It involves clocks of
signals plus boolean conditions of filterings. For example the abstraction of
the program Pabs in Ex. 5.1 could be represented by the CL formula:

p̂ ≡ 〈c1〉 ∧ n̂ ≡ 〈c2〉 ∧ â ≡ p̂ ∪ n̂∧
〈c1〉 ∩ 〈¬c1〉 ≡ O ∧ 〈c1〉 ∪ 〈¬c1〉 ≡ ŷ ∧ 〈c2〉 ∩ 〈¬c2〉 ≡ O ∧ 〈c2〉 ∪ 〈¬c2〉 ≡ ŷ

13

Nebut and Pinchinat

where c1 and c2 are free additional boolean variables. This restricted CL is
isomorphic to the propositional calculus (in the spirit of Sect. 3.4) and the
decision procedure corresponds to a boolean problem. Consequently it cannot
be proved for this example that “a is always positive”, nor for example that n
and p are exclusive (which is a property of interest for the synthesis of control).
Our CL is strictly more expressive since it can encode the whole combinational
part of programs, even non-boolean.

Works that encode absence by a special value address both the combi-
national and state handling part of programs. Model-checking of boolean
programs is presented in [8]. It encodes values true, false and absent by 1,
-1 and 0 respectively, and symbolically encodes a program by a polynomial
on the field Z/3Z. Computations are efficiently performed on BDD-like struc-
tures which represent the three valued logic. Properties involving non-boolean
values cannot be proved. [2] addresses systems that contain only linear rela-
tions between non-boolean variables. All properties provable using CL can be
proved. A normalization stage “solves” the combinational part of program-
s: it computes the valuations that satisfy it. More precisely, maximal sets
of “synchronous” valuations (i.e. which agree on the status of each variable)
are symbolically represented by a list of absent signals plus a polyhedron rep-
resenting a relation over (present) values. There is a clear correspondence
between absences indicated by lists and our distributions, as well as between
a polyhedron and our relation Rδ. Our work provides another clean formal-
ization of the implemented normalization, admitted to be naive in [2].

7 Conclusion

In the synchronous data-flow paradigm, clocks are sets of instants mainly used
to indicate when signals are present in specifications, that is when a value can
be used or must be computed when describing the control of systems. The
language CL presented in this work extends the usual definition of clocks so
that they can describe a relation between values of present signals. Hence re-
lations between clocks can describe the whole combinational part (i.e. without
state) of a system. They can also describe combinational safety properties.

A great advantage of clocks is that handling values of signals only at in-
stants of their clock avoid to handle explicitly a special “absent” value. We
illustrate it by our decision procedure and the related model-checking: they
use plain boolean reasoning and satisfiability of some first order formulas. In-
deed, the boolean abstraction of CL, like the abstraction by synchronizations,
allows us to encode clocks of signals into the propositional calculus. We ex-
tend the approach so that once present signals are determined in a reaction,
the relation satisfied by their values can be retrieved.

So far, our contribution is rather theoretical because of the prohibitive
complexity of the decision procedure. Further work can be done to practical
applications. The main idea is to define a representation for the combinational

14

Nebut and Pinchinat

part of a program which allows to reason at various abstract levels, in the
philosophy of the Signal environment (see [9]), both for the control and the
data part of programs. Such a representation, structured like [1] by clock
inclusions, could be used for compilation and verification purposes (in the
spirit of the decision procedure for the interaction between boolean clocks and
relations between present values, to be compared with [2]).

References

[1] Pascalin Amagbégnon, Löıc Besnard, and Paul Le Guernic. Implementation
of the data-flow synchronous language SIGNAL. In Proceedings of the
ACM SIGPLAN’95 Conference on Programming Language Design and
Implementation (PLDI), pages 163–173, La Jolla, California, 18–21 June 1995.

[2] F. Besson, T. Jensen, and J.P. Talpin. Polyhedral analysis for synchronous
languages. In A. Cortesi and G. Filé, editors, Static Analysis, volume 1694 of
Lecture Notes in Computer Science, pages 51–68. Springer, 1999.

[3] C. Dumas and P. Caspi. A PVS proof obligation generator for Lustre programs.
In 7th International Conference on Logic for Programming and Automated
Reasoning, volume 1955 of Lecture Notes in Artificial Intelligence, 2000.

[4] N. Halbwachs. Synchronous Programming of Reactive Systems. Kluwer
Academic Publishers, 1993.

[5] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous dataflow
programming language lustre. Proceedings of the IEEE, 79(9):1305–1320,
September 1991.

[6] N. Halbwachs, F. Lagnier, and P. Raymond. Synchronous observers and the
verification of reactive systems. In M. Nivat, C. Rattray, T. Rus, and G. Scollo,
editors, Third Int. Conf. on Algebraic Methodology and Software Technology,
AMAST’93, Twente, June 1993. Workshops in Computing, Springer Verlag.

[7] N. Halbwachs and P. Raymond. Validation of synchronous reactive systems:
from formal verification to automatic testing. In ASIAN’99, Asian Computing
Science Conference, Phuket (Thailand), December 1999. LNCS 1742, Springer
Verlag.

[8] M. Le Borgne, H. Marchand, E. Rutten, and M. Samaan. Formal verification
of signal programs: Application to a power transformer station controller. In
Proceedings of the Fifth International Conference on Algebraic Methodology and
Software Technology AMAST’96, pages 271–285, Munich, Germany, July 1996.
Springer-Verlag, LNCS 1101.

[9] Mirabelle Nebut and Sophie Pinchinat. A framework to analyse synchronous
data-flow specifications. Technical Report 1402, Irisa, nov 2001.

[10] P. LeGuernic, T. Gautier, M. LeBorgne, and C. LeMaire. Programming real-
time applications with SIGNAL. Proceedings of the IEEE, 79(9):1321–1336,
1991.

15

		1 Introduction

		2 Synchronous Data-flow Semantics

		3 The Clock Language CL

		3.1 Notations for predicates

		3.2 Clock Terms

		3.3 Clock Formulas

		3.4 Boolean Abstraction

		4 A Decision Procedure

		4.1 The Satisfiability Problem

		4.2 The Decision Procedure

		5 Model-checking for Data-flow Specifications

		5.1 The Synchronous Data-flow Language Signal

		5.2 From Static Signal to CL

		5.3 Model-checking

		6 Related work

		7 Conclusion

		References

