

Electronic Notes in Theoretical Computer Science 65 No. 5 (2002)
URL: http://www.elsevier.nl/locate/entcs/volume65.html 15 pages

Saxo-rt: Interpreting Esterel Semantic on
a Sequential Execution Structure

Etienne Closse, Michel Poize, Jacques Pulou 1

Patrick Venier, Daniel Weil 1

France Telecom R&D, 28 chemin du Vieux Chêne, 38243 Meylan cedex, France

Abstract

The Saxo-rt compiler implements a original method for compiling the concurrent
synchronous language Esterel into sequential C code. The method is optimized
for embedded systems with very tight memory and real-time constraints and shows
significant performance improvement on industrial size examples. Source code is
sliced into small code sequences called control points, statically scheduled so as to be
compatible with Esterel semantic. Speed reaction is optimized without increasing
code size, by executing at each reaction only active code sequences. In this paper, we
present in detail how Esterel semantic is interpreted on our execution structure.

1 Introduction

Real-time applications which are embedded in systems like planes, satellite
or GSM mobile phones, are doubly critical: first because the security of the
system depends on them (a failure can lead to system crash) and second,
they usually have very tight energy and memory constraints. At first sight,
designing these systems with a Finite State Automata approach can seem ap-
propriate, but it does not fit with increase of system complexity. Complex
embedded systems need to be designed as modular and composable (or con-
current) elementary components. Thus, synchronous languages appear to be a
natural choice for specifying and implementing critical parts of these systems:
they offer a high-level interface for describing finite state automata and are
therefore well suited to automatic proving techniques, even on industrial size
systems.

In this paper, we consider software aspects of these systems. Data-flow
oriented synchronous languages like Lustre [6] are now widely used in many
control-command systems. An application written in Lustre consists in a

1 Email:firstname.lastname@rd.francetelecom.com

c©2002 Published by Elsevier Science B. V.

file:firstname.lastname@rd.francetelecom.com

Closse et al

set of concurrent equations on signals that are triggered by usually periodic
clocks. Lustre compilation techniques are now mature and produce very
efficient codes which are embedded in critical systems like Airbus planes and
nuclear plants. But the equational style of Lustre doesn’t fit very well with
applications like alarm systems or telecommunications protocols. A better
choice for the developer is a control oriented synchronous language like Es-
terel [2]. Esterel mostly distinguish from a data-flow synchronous lan-
guage by an imperative programming style (instead of equational) and by the
ability of describing hierarchical automata.

Unfortunately, if much effort has been made to compile Esterel on hard-
ware targets [8], traditional Esterel compiling methods are not efficient for
software targets. Complexity analysis of Esterel classical compiling meth-
ods shows that for most industrial applications, global automaton compilation
[7] has exponential code and data size while boolean equations compilation [8]
produces a code with a too slow reaction time.

Therefore, a good approach is to cut the code into small statically sched-
uled sequences which are executed only when needed, and avoiding as much
as possible any code duplication. This interest of this kind of approach is
confirmed by the work done in [14] on generation of sequential code from par-
allel code: linearization is based on a control flow graph extracted from the
input parallel language. In our case, the difficulties consist in finding the right
control flow graph which catches the semantic of Esterel and then sequen-
tializing this graph and mapping it on a efficient execution structure. So far,
two approaches have been proposed:

• The approach proposed by S. Edwards [9] [10] constructs the control flow
graph from the execution tree represented by Esterel intermediate code
(IC) and targets a hierarchical execution machine which reproduces the
source code parallel and branching structure.

• Our approach whose principle was first published in French [11] almost
concurrently with [9], published in English and tested with industrial size
examples in [12]. The main difference is that the semantic of Esterel is
interpreted directly into a control flow graph. Sequential code sequences
are then extracted from this graph, statically scheduled and mapped on a
execution structure which is mostly flat instead of being hierarchical.

The drawbacks presented in [12] required our compiler to be completely
redesigned with a finer scheduling algorithm which was shortly exposed in
[13].

This paper presents in a detail manner how Esterel semantic is inter-
preted on our execution structure (§2). Each Esterel kernel instructions is
first transformed into an event graph (§3 and §4. This graph is transformed
into a sequential control flow graph (§5 and §6) and into sequential code (§7).
Performance comparisons are then presented in §9.

2

Closse et al

2 Interpreting Esterel Semantic on a Sequential Execu-
tion Structure

2.1 Esterel semantic

Esterel constructive semantic relies on four basic rules [4]:

Reactivity: given a set of inputs, there is always at least one set of possible
outputs.

Determinism: given a set of inputs, there is never more than one set of
possible outputs.

Signal coherence law (also called signal atomicity): a signal S can be
present if and only if the signal S is emitted during the same synchronous
reaction.

Constructivity: no speculative computation is performed on signal sta-
tus: in other words, causality analysis is monotonic (and must respect the
sequence operator ”;”).

The execution of an Esterel program on the sequential execution struc-
ture presented below requires an interpretation of Esterel constructive se-
mantic which are summarized by the following rules:

R1: Set or reset of a signal must always precede any test of this signal (signal
coherence law and constructivity).

R2: The termination test of a parallel construct must always occur after each
parallel branch has terminated.

R3: The test guarding a strong preemption (abort and suspend) is always
evaluated before the execution of the instruction body.

R4: Terminating a trap construct by an exit nested in a parallel construct
must occur after the other parallel branches have met a pause or terminated.

2.2 Execution Structure

The Esterel syntactic graph is transformed into a Event Graph (EG). At
the difference with Program Dependance Graphs that are used in [14] or with
the Concurrent Control Flow Graph (CCFG) of [9], an Event Graph not only
represents dependencies between nodes but also represents action of nodes on
other nodes. In this paper, the only possible actions are switching on or off a
node for the next or current synchronous reaction and testing the state of a
node.

In order to produce a code executable on a sequential machine, the event
graph is flatten down into an execution structure that we call Sequential Con-
trol Flow Graph (SCFG). The construction of the EG (cf. §3) is determined
by the characteristics of this execution structure (fig.2):

• the SCFG nodes is a totally ordered subset of the EG.

3

Closse et al

• at each synchronous reaction, only a subset of active nodes is executed, with
the total order defined by the SCFG.

• to each node are associated two Booleans Scurrent(n) and Snext(n) which
are respectively true if and only if n is scheduled for the current reaction
(respectively for the next reaction).

• a node n can change Scurrent(n
′) if and only if n < n′, where “<” is the total

order defined by the SCFG.

• a node n can change the status Snext(n
′) of any node n′.

• a node n can test the status Scurrent(n
′) only if n′ < n

• a node n can test the status Snext(n
′) of any node n′

So as to produce efficient code, the SCFG is partitioned into a totally
ordered set of Control Points which defines our execution structure (§6):

a synchronous reaction consists in scrolling the current status of each control
point and executing only those that are active in a static order which respects
the total order defined above.

3 Event Graph Characteristics

3.1 Nodes

We restrict in this paper to the Esterel kernel defined in [4] (p and q are
any syntaxically correct Esterel terms):
nothing

pause

signal S in p end

emit S

present S then p else q end

p;q

p‖q
loop p end

trap T in p end

suspend p when S

The EG of an Esterel program is constructed with 7 sets of nodes
Nnothing, Nsignal, Nset, Nreset, Nassign, Nexit, Ntest:
• Nsignal contains nodes representing Esterel signals. We note NS

Signal,
the set of nodes representing signal S. Signal nodes are used to interpret
signal coherence law and to link signals emission and test (§4.3, §4.4 and
§4.5).

• Nset and Nreset represent nodes emitting or resetting signals (§4.4 and
§4.3).

• Nassign represent nodes assigning value to variables, e.g. counters that are
used in the parallel construct (cf. §4.9).

• Nexit contains nodes raising a exception, i.e. corresponding to the exit

Esterel instruction. The nodes raising a given exception T (instruction
exit T) are represented by the subset NT

exit (§4.6).
• Ntest groups all the nodes that test a signal status, a variable or evaluate

some boolean expression on the activity of other nodes. Two set of out-

4

Closse et al

going links, true and false links, are used to represent actions which must
be executed when the boolean expression evaluates to true or false (§4.5,
§4.7, §4.9 and §4.10).

• Nnothing groups all other nodes. As we consider here only Esterel kernel,
no action is associated to these nodes.

3.2 Links

EG links represent not only dependancy between nodes but also action from
nodes on other nodes. We consider three types of links between EG nodes,

action links LAction, test links LTest and order links LOrder. We note n
λ−→ n′

if nodes n and n′ are linked by a link of type λ.
Action links represent actions of a node on another one and are identified

by two kind of flags: an action flag α ∈ {On, Off, PauseOn, PauseOff,
Suspend} and a choice flag σ ∈ {�, +,−}. We note n

σα−→ n′, an action link
between n and n′ with action α and choice σ.

Action flags have the following semantic:

• n
σOn−−→ n′ ⇔ n activates n′ for the current synchronous instant

• n
σOff−−→ n′ ⇔ n deactivates n′ for the current synchronous instant

• n
σPauseOn−−−−−−→ n′ ⇔ n activates n′ for the next synchronous instant

• n
σPauseOff−−−−−−→ n′ ⇔ n deactivates n′ for the next synchronous instant

• n
σSuspend−−−−−→ n′ ⇔ n suspends n′, i.e. if n′ is active for the current instant,

deactivates it for the current instant and activates it for the next instant
Choice flags have the following semantic:
• n

�α−→ n′ ⇔ n executes α on n′

• n
+α−−→ n′ and n ∈ Ntest ⇔ n executes α on n′ if the expression tested by n

is true
• n

−α−−→ n′ and n ∈ Ntest ⇔ n executes α on n′ if the expression tested by n
is false

Order links represent scheduling constraints between nodes. n
�−→ n′

expresses the fact that during a given reaction, n must be always executed
before n′. They are used to translate the 4 rules defined in §2.1.

Note that LOn, LOff, LSuspend links are implicit order links.
Test links can only leave test nodes. The condition evaluated by a test

node is either a signal status or a boolean expression on the test links leaving
this node. There are two types of test links, LOn? and LPauseOn?:

• n
On?−−→ n′ : n tests if n′ has been executed during the current reaction.

Therefore, it implies that n′
�−→ n. LOn? links are used for testing that no

exception of upper level has been raised in a trap or in a parallel construct
(§4.9 and 4.7).

• n
PauseOn?−−−−−→ n′ : n test if n′ is scheduled for the next reaction.

5

Closse et al

4 Event Graph Construction

The EG is constructed recursively from the inside to the outside. For this
purpose, we define an application G which associates to any syntactically
correct Esterel term p a subgraph Gp of the EG. Each subgraph is builded
from the composition of its own subgraphs.

A EG subgraph Gp is characterized by:
• a head node Head(Gp)
• a tail node Tail(Gp)
• a set of exit nodes raising exception declared outside p:

Exit(Gp) = Gp ∩
⋃
{NT

exit/T /∈ Exception(p)}

where Exception(p) represents the set of exceptions that are declared
inside p

• a set of pause nodes, i.e. the nodes of Gp which can be activated for the

next instant: Pause(Gp) = Gp ∩ {n/n′
σPauseOn−−−−−−→ n, σ ∈ {�, +,−}}

We describe now the subgraph G associated to each Esterel kernel state-
ment.

4.1 nothing

A nothing statement does nothing, its subgraph is trivial and contains a
single node:

Head(Gnothing) = Tail(Gnothing) ∈ Nnothing

Exit(Gnothing) = Pause(Gnothing) = ∅

4.2 pause

The graph of a pause statement only consists of a node which activates
another node for the next instant:

Head(Gpause) ∈ Nnothing
�PauseOn−−−−−→ Tail(Gpause) ∈ Nnothing

Exit(Gpause) = ∅ Pause(Gpause) = {Tail(Gpause)}

4.3 signal S in p end

The signal statement declares a new signal S which is reset before entering
p:

Head(Gsignal) ∈ NS
Reset

�On−−→ Head(Gp)

To be compatible with Esterel signal coherence law (rule R1 in §2), this
reset must be done before any test on this signal. This is expressed by
a scheduling constraint with a signal node nS associated with each signal
declaration:

Head(Gsignal)
�−→ nS ∈ NS

signal

6

Closse et al

The signal construct terminates as soon as p terminates:

Tail(Gp)
�On−−→ Tail(Gsignal) ∈ Nnothing

Pause and exit nodes of Gsignal are those of Gp:

Exit(Gsignal) = Exit(Gp) Pause(Gsignal) = Pause(Gp)

4.4 emit S

The graph of the emit construct is trivial:

Head(Gemit) = Tail(Gemit) ∈ NSet

The only constraint is that the emission of S occurs before any test on
this signal (rule R1):

∀nS ∈ NS
signal, Head(Gemit)

�−→ nS

No pauses, no exceptions are raised: Pause(Gemit) = Exit(Gemit) = ∅

4.5 present S then p else q end

The head of the subgraph is a node which tests S status and must therefore
be scheduled after any emission or reset of S (R1):

∀nS ∈ NS
signal, nS

�−→ Head(Gpresent) ∈ Ntest

If S is present, p starts, else q starts:

Head(Gpresent)
+On−−→ Head(Gp) Head(Gpresent)

−On−−→ Head(Gq)

The present terminates as soon as p or q terminates:

Tail(Gp)
�On−−→ Tail(Gpresent) Tail(Gq)

�On−−→ Tail(Gpresent)

Pause and exit nodes of Gpresent are the union of those of p and q:

Exit(Gpresent) = Exit(Gp) ∪ Exit(Gq)

Pause(Gpresent) = Pause(Gp) ∪ Pause(Gq)

4.6 exit T

In Esterel, the exit construct behaves as a branching statement to the
end of the trap construct. The head node is initially not connected to
anything, it is connected later to the tail of the trap construct it belongs
to (§4.7):

Head(Gexit) = n ∈ NT
exit Tail(Gexit) = ∅

7

Closse et al

To each exit node n is associated a integer Level(n) corresponding to the
number of trap declarations that must be traversed before reaching that of
T (cf. trap completion codes in [3]).

Head(Gexit) is the only exit node and the subgraph is instantaneous:

Exit(Gexit) = Head(Gexit) Pause(Gexit) = ∅

4.7 trap T in p end

The body p of the trap starts immediately and terminates when p termi-
nates normally:

Head(Gp)
�On−−→ Head(Gp) Tail(Gp)

�On−−→ Tail(Gtrap)

But p must also terminate when an exception T is raised in p and each exit
node n ∈ NT

exit is linked to a branching node :

∀n ∈ NT
exit, n

�On−−→ Tail(Gtrap) ∈ Nnothing

The exit nodes visible outside are those of p that do not raise the exception
T and no pauses are added:

Exit(Gtrap) = Exit(Gp) \NT
exit Pause(Gtrap) = Pause(Gp)

4.8 p ; q

The sequence construct is simple. p starts immediately and q starts as soon
as p terminates. The construct terminates when q terminates:

Head(Gsequence)
�On−−→ Head(Gp) Tail(Gp)

�On−−→ Head(Gq)

Tail(Gq)
�On−−→ Tail(Gsequence)

Pause and exit nodes are the union of those of p and q:

Exit(Gsequence) = Exit(Gp) ∪ Exit(Gq)

Pause(Gsequence) = Pause(Gp) ∪ Pause(Gq)

4.9 p ‖ q

With the signal coherence law, the semantic of the parallel is the heart of
Esterel semantic. Its semantic is simple : each branches starts immedi-
ately and the parallel construct terminates normally when each branch has
terminated or abnormally when an exception declared outside the parallel
construct is raised in one of the branches.

8

Closse et al

The head of a parallel subgraph consists of a reset node which activates
immediately each parallel branches. This reset node initializes a counter to
the number of parallel branches :

Head(Gparallel) = nreset ∈ Nassign
�On−−→ Head(Gp) nreset

�On−−→ Head(Gq)

Normal termination is constructed by a link from the tail of each branch
to a node ndecr ∈ Nassign which decrements the counter that has been ini-
tialized by Head(Gparallel). These nodes are connected to njoin ∈ Ntest node
which tests if the value of this counter is zero, which means that all branches
have terminated normally (i.e. not by raising an exception):

Tail(Gp)
�On−−→ n1

decr
�On−−→ njoin Tail(Gq)

�On−−→ n2
decr

�On−−→ njoin

njoin
+On−−→ Tail(Gparallel)

Abnormal termination occurs when an exit raises an exception in one of
the parallel branches. If no exit of upper level is raised in the other parallel
branch (cf. §4.6):

n1 ∈ Exit(Gp), n2 ∈ Exit(Gq), Level(n1) < Level(n2) ⇒ n1
On?−−→ n2

all pause nodes in the other parallel branch must deactivated for next instant,
before branching to its corresponding trap statement (R4) 2 :

nexit ∈ Exit(Gp) and n′
σPauseOn−−−−−−→ n ∈ Pause(Gq)

⇒ nexit
−PauseOff−−−−−−→ n and n′

�−→ nexit

Exit and pause nodes of Gparallel are the union of those of Gp and Gq:

Exit(Gparallel) = Exit(Gp) ∪ Exit(Gq)

Pause(Gparallel) = Pause(Gp) ∪ Pause(Gq)

4.10 suspend p when S

The suspend construct is rather simple. p starts immediately while the test
of S starts only at the next reaction:

Head(Gsuspend)
�On−−→ Head(Gp) Head(Gsuspend)

�PauseOn−−−−−→ ntest ∈ Ntest

If S is present, the execution of p is suspended and scheduled for the next
reaction:

n ∈ Pause(Gp) ⇒ ntest
+Suspend−−−−−→ n

2 Note also that any PauseOn action must occur before any PauseOff action

9

Closse et al

Note that this implies ntest
�−→ n (rule R3). The node ntest activates itself

for the next reaction:

ntest
�PauseOn−−−−−→ ntest

And if p terminates, the suspend construct terminates and the node ntest

is turned off:

Tail(Gp)
�On−−→ Tail(Gsuspend)

�PauseOff−−−−−→ ntest

The exit nodes are those of p but the node ntest is a pause node:

Exit(Gsuspend) = Exit(Gp) Pause(Gsuspend) = Pause(Gp) ∪ {ntest}

4.11 loop p end

The loop statement p starts immediately and never terminates:

Head(Gloop) = Head(Gp) Tail(Gloop) = ∅

But the difficulty of constructing Gloop is that Tail(Gp) must not be con-
nected directly to Head(Gp) in order to cope with signal reincarnation and
to eliminate conflicts between loop surface (nodes that can be reached im-
mediately from Head(Gp)) and loop depth (nodes that are separated from
Head(Gp) by at least one LPauseOn link) 3 . A fonction SurfaceCopy(p) du-
plicates all the nodes that can be reached from Head(Gp) by following only
LOn links:

Tail(Gp)
�On−−→ Head(G(SurfaceCopy(p)))

Exits nodes are possibly augmented with exit nodes from the loop surface
and no pause nodes are added:

Exit(Gloop) = Exit(Gp) ∪ Exit(GSurfaceCopy(p)) Pause(Gloop) = Pause(Gp)

5 Compatibility Analysis

The operations described above create too many links and unnecessary
scheduling constraints between nodes that are never active during the same
reaction. These kinds of nodes are called exclusive nodes. A pair of nodes
belonging each to a true and false branches of the same test node or a pair of
nodes that are in sequence but separated by a LPauseOn link are exclusive. A
couple of nodes belonging to two different branches of a parallel instruction
are not exclusive but are said to be compatible.

This algorithm removes unnecessary Lorder links and allows the compiler
to accept cyclic programs like:

3 This problem is also known as schizophrenia, cf. [5]

10

Closse et al

pause; emit TIC;

||

every TIC do

pause; emit TAC

end

||

every TAC do

pause; emit TIC;

end

Fig. 1. Cyclic Program

Point_0()

Point_n()

read_inputs()

react()

write_outputs()

current state next state� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �

Fig. 2. Execution Structure

present A then emit B end;

pause;

present B then emit A end;

Actually, this analysis rejects some programs that are constructive like the
example shown on fig.1 where no static scheduling is possible without dupli-
cating some code: accepting this kind of programs would require exploring
in some way the whole state space and proving that for each state, there
exists a correct constructive reaction 4 . This fortunately concerns only very
few programs and most industrial examples do not belong to this category.

The class of programs accepted by our compiler is a superset of acyclic
Esterel programs, in the sense of [3].

6 Scheduling and Control Point Generation

The EG must be transformed into a Sequential Control Flow Graph (SCFG)
respecting the properties defined in §2.2. A partial order relation “<” be-
tween the EG nodes is defined by:

n < n′ ⇔ there exists a path going from n to n′

containing only LOn and Lorder links

We first search for a total order compatible with“<”. If a cycle between
two nodes is found, i.e. n < n′ and n′ < n, the program is rejected as non-
causal. If no cycle is found, there exists a total order between EG Nodes
and the EG can be transformed into a SCFG.

In order to construct efficient code, the EG is sliced into a set of control
points P. A control point can be seen as a thread of nodes that can always
be executed with the same order. Actually, P is a partition of the EG which
is compatible with the order relation ”<” and we note ñ the equivalence
class of node n. This partition has the following properties:
• each pause node starts a control point:

p1 6= p2 and ∃(n1, n2)/n1
σPauseOn−−−−−−→ p1 and n2

σPauseOn−−−−−−→ p2 ⇒ p̃1 6= p̃2

• we note n
seq−→ n′ if there exists a ”sequential” path between n and n′

4 the causality analysis of the Esterel V5 compiler explores this state space

11

Closse et al

composed of only LOn links. If two nodes belongs to the same control
point, they have a commun father:

ñ1 = ñ2 ⇒ ∃n/n
seq−→ n1 and n

seq−→ n2

• If two distinct control points have a sequential path to a commun node,
then this node is the start of a new control point (control point splitting):

ñ1 6= ñ2 and n1
σOn−−→ n3 and n2

σOn−−→ n3 ⇒ ñ3 6= ñ1 and ñ3 6= ñ2

• P is compatible with “ <′′. In other words, we construct a total order
relation “ �′′ on P such that n < n′ ⇒ ñ � ñ′

Control points must be as big as possible in order to minimize unnecessary
tests in the embedded code: P can be seen as a coarsest partition of EG
respecting the conditions described above.

Once P is constructed, it can be considered as a set of totally ordered
control points Pi, each point Pi being composed itsel of totally ordered
nodes which can be directly mapped on our execution structure (fig.2).
Yet, it does not correspond to any executable sequential code.

7 Code Generation

The last compiling step consists in transforming the SCFG composed of
the subgraph Pi into sequential code, avoiding any code duplication and
using a minimum number of guards. This step is not trivial but similar to
the classical problem of linearizing parallel code which has been very well
studied by J. Ferrante in [14] and probably close to the transformation of a
PDG into a SCFG described in [10].

An original algorithm has been developed to translate our SCFG into a
well structured and human-readable C-code (fig.4):
• After the EG has been partitioned in control points, LPauseOn, LOff ,

LPauseOff and LSuspend links can have as target only heads of control points
and are transformed into action nodes modifying the status of these con-
trol points. Bit vectors are used so as to merge action nodes together.

• LOn are transformed either into an action of a node on another control
point if source and target nodes do not belong to the same control point.
If source and target nodes belong to the same control point, the nodes are
just executed sequentially.

• Test nodes are transformed into if...then...else... constructs. As
the code that must be put in the then and else branches is not necessarily
found in sequence but can be interleaved with other nodes, boolean guards
must sometime be inserted. The difficulty consists in generating a code
with a minimum number of guards [14]. No goto are generated so that
our compiler is also able to produce code for languages that do not have
a goto construct like Java.

12

Closse et al

input S,I;

output O;

signal A,R in

every S do

await I;

weak abort

sustain R

when immediate A;

emit O;

||

loop

pause;pause;

present R then emit A end

end loop

end every

end signal

Root

emit R

nothing

emit O

nothing

R?

S?

I? A?

emit A

Pon

Pon

-Pon

-Pon

-Pon

-Pon

Pon

+Pon

Poff

+on

+on +on

on
+on

Pon

+off
+off

+off
+off

+off

>>

>>

Fig. 3. a small example and its EG

8 Example

So as to help comparison with [10], we have chosen the same example (fig.3)
that is is used in [10]. The behavior of this example is explained quite easily
by the EG.

At the first instant, local signals A and R are reset and the every con-
struct is activated for next instant. Then at each instant, if signal S is
present, the whole body of the construct is turned off (the LPauseOff links)
and the two parallel branches are activated for the next instant. The weak

abort construct can be recognized by the node testing signal A and turning
off the sustain construct (the node emitting signal R). The node testing R
(the present statement) activates both the node emitting A and the pause
starting the loop statement.

The sequentialization of the EG produces a C-code composed of 6 control
points (fig.4): point #1 contains nodes Root, Reset A and Reset R, point
#2 contains node S?, etc.

if (IsOn(#O))

PauseOn(#1);

if (IsOn(#1)) {
if (S) {

Off(#2 #3 #4 #5 #6);

PauseOn(#2 #5);

}
}
if (IsOn(#2)) {

if (I) {
On(#3 #6);

Off(#2);

}
}

if (IsOn(#3))

EMIT(R);

if (IsOn(#4)) {
if (R) {

EMIT(A);

}
PauseOn(#5);

}
if (IsOn(#5))

PauseOn(#4);

if (IsOn(#6)) {
if (A) {

EMIT(O);

PauseOff(#3);

Off(#6);

}
}
Current[] &= 0x01001010;

Current[] |= Next[];

Next[] = 0;

Signal[] = 0;

Fig. 4. C-code produced by Saxo-rt compiler

13

Closse et al

� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � �
� � �
� � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

	 	 	 	 	
	 	 	 	 	
	 	 	 	 	
	 	 	 	 	
	 	 	 	 	
	 	 	 	 	
	 	 	 	 	
	 	 	 	 	
	 	 	 	 	
	 	 	 	 	
	 	 	 	 	
	 	 	 	 	
	 	 	 	 	
	 	 	 	 	
	 	 	 	 	
	 	 	 	 	
	 	 	 	 	

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	

10

100

1000

10000

100000

1000000

tra
nsc

ad

ru
nner

je
u

atd
s

G
SM

tc
in

t

W
ris

tw
atc

h

C
horu

s

m
ca

200

cab in
e

g lo
balo

p t

U
m

ts

� � � � �
b erry_A� � � � �

� � � � � b erry
� � � � �

b erry_op t2

strlcc_fastbyte

edwards

Fig. 5. Reaction times

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

100

1000

10000

100000

10 00000

tra
ns

ca
d

ru
nn

er
je

u
atd

s
G

SM
tc

in
t

W
ris

tw
atc

h

Choru
s

m
ca

200

ca
bi

ne

glo
ba

lo
pt

� � � � �
berry_A� � � � �

� � � � � berry� � � � �
� � � � �

berry_opt2

strlcc_fastbyte

edwards

Fig. 6. Code+data sizes

9 Results and Comparative Performance Analysis

Experiments have been run to compare the performance of our compiler
Saxo-rt to that from the V3 automata compiler, the V5 boolean-equations
compiler [3] and S. Edwards’s EC compiler [10]. Except for the largest
examples for which it does not terminate, code produced by the boolean
equations compiler has been optimized by the blifopt tool based on the SIS
logic optimizer developed by Berkeley.

We used more or less the same benchmark that was used in [10]. Results
obtained on 11 benchmarks are sorted from small to bigger industrial size
examples. Fig.5 and fig.6 show the results obtained for these benchmarks
on a sparc processor with SUN C-compiler in terms of reaction time and
code size.

V3 compiler (automata compilation) does not terminates on very large
examples, due to state space explosion. Saxo-rt obtains reaction time
between 1.5 and 100 times better than boolean equations method (optimized
with blifopt). On the largest examples (mca200 and Chorus), we obtain
reaction time between 5 and 25 times better than Esterel V5 compiler while
keeping code size about 4 times smaller. Comparison with EC compiler
shows surprisingly similar results.

10 Conclusion

We have presented an original way of interpreting Esterel semantic into
a event graph. This graph is transformed by the Saxo-rt compiler in a
sequential control flow graph from which efficient sequential code is pro-
duced, enabling the use of Esterel on embedded systems with tight en-
ergy and memory constraints. On large examples, reaction speed obtained
with Saxo-rt is usually from 5 to 20 times better than with boolean equa-
tions compilation. The Saxo-rt compiler accepts any acyclic Esterel
programs and has been validated on several industrial prototypes. It has
now reached an industrial quality and is being integrated into the CAD tool
EsterelStudio, developed by Esterel Technologies.

Moreover, although we use a very different execution structure, the similar

14

Closse et al

results obtained by S. Edwards suggest that performance could be easily
improved by combining the advantage of the two compiling methods.

References

[1] N. Halbwachs, Synchronous programming of reactive systems, Kluwer
academic publication, 1993.

[2] G.Berry, G. Gonthier, The Esterel Synchronous Programming Language:
Design, Semantics, Implementation, Science of Computer Programming, vol.
19-2, pp. 87-152, 1992.

[3] G. Berry, The Esterel Primer, Ecole des Mines, Centre de Mathématiques
Appliquées, Sophia-Antipolis, http://www.esterel.org.

[4] G. Berry, The Foundations of Esterel, in Proof, Language and Interaction:
Essays in Honour of Robin Milner. G. Plotkin, C.Stirling and M. Tofte, editors,
MIT Press, Foundations of Computing Series, 2000

[5] G. Berry, The Constructive Semantic of Pure Esterel draft book available on
http://www.esterel.org

[6] N. Halbwachs, P. Caspi, P. Raymond, D. Pilaud, The synchronous data
flow programming language LUSTRE, Proceedings of the IEEE, vol. 79, n◦9,
septembre 1991.

[7] G. Gonthier, Sémantiques et modèles d’exécution des langages réactifs
synchrones: application à Esterel, Thèse de l’université de Paris-sud, centre
d’Orsay, mars 1988.

[8] F. Mignard, Compilation du langage Esterel en systèmes d’équations
booléennes, Thèse de l’Ecole des Mines de Paris, octobre 1994.

[9] S.A. Edwards, “Compiling Esterel into Sequential Code”, 7th International
Workshop on Hardware/Software Co-Design, CODES’99, Roma, Italy, May
1999.

[10] S.A. Edwards, “An Esterel Compiler for Large Control-Dominated Systems”,
to appear in IEEE Transationcs on Computer-Aided Design of Integrated
Circuits and Systems, 2002.

[11] V. Bertin, M. Poize, J. Pulou, “Une nouvelle Méthode de Compilation
pour le Langage Esterel”, Journées Thématiques Universités/Industries sur
l’Adéquation Algorithme-Archietecture pour les Applications Temps-Réel
Complexes, Lille, March 1999.

[12] D. Weil, V. Bertin, E. Closse, M. Poize, P. Venier, J. Pulou, Efficient
Compilation of Esterel for Real-Time Embedded Systems, Proceeding of
CASES’2000, pp. 2-8, San Jose, November 2000.

[13] E. Closse, M. Poize, J. Pulou, P. Venier, D. Weil, Saxo-rt: Efficient
Compilation of Esterel for Real-Time Embedded Systems, Proceeding of
IWACT’01, pp. 83-86, Bucarest, July 2001.

[14] J. Ferrante and M. Mace, ”On Linearizing Parallel Code”, in proceeding of
POPL85, NewOrleans, January, 1985

15

http://www.esterel.org

http://www.esterel.org

		Introduction

		Interpreting Esterel Semantic on a Sequential Execution Structure

		Esterel semantic

		Execution Structure

		Event Graph Characteristics

		Nodes

		Links

		Event Graph Construction

		nothing

		pause

		signal S in p end

		emit S

		present S then p else q end

		exit T

		trap T in p end

		p ; q

		p q

		suspend p when S

		loop p end

		Compatibility Analysis

		Scheduling and Control Point Generation

		Code Generation

		Example

		Results and Comparative Performance Analysis

		Conclusion

		References

