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Abstract. The complexity of biological regulatory networks calls for
the development of proper mathematical methods to model their struc-
tures and to give insight in their dynamical behaviours. One qualitative
approach consists in modelling regulatory networks in terms of logical
equations (using either Boolean or multi-level discretisation). Petri Nets
(PNs) offer a complementary framework to analyse large systems.

In this paper, we propose to articulate the logical approach with PNs.
We first revisit the definition of a rigourous and systematic mapping of
multi-level logical regulatory models into specific standard PNs, called
Multi-level Regulatory Petri Nets (MRPNs). In particular, we consider
the case of multiple arcs representing different regulatory effects from the
same source. We further propose a mapping of multi-level logical regu-
latory models into Coloured PNs, called Coloured Regulatory Petri Nets
(CRPNs). These CRPNs provide an intuitive graphical representation of
regulatory networks, relatively easy to grasp.

Finally, we present the PN translation and the analysis of a multi-level
logical model of the core regulatory network controlling the differentia-
tion of T-helper lymphocytes into Th1 and Th2 types.

1 Introduction

Most biological processes are spatially and temporally regulated by networks of
interactions between regulatory products and genes. To cope with the complexity
and characterise the dynamical properties of these genetic (regulatory) networks,
various formal approaches have been proposed (for a review, see [6]). The lack
of precise, quantitative information about the shape of regulatory functions or
about the values of involved parameters pleads for the development of qualitative
approaches. One qualitative approach consists in modelling regulatory networks
in terms of logical equations (using a Boolean or multi-level discretisation, [8,21]).
The development of logical models for various biological networks has already in-
duced interesting relationships between topological network features and specific
dynamical properties (e.g. the crucial roles of regulatory feedback circuits [22]).

The Petri net (PN) formalism offers a complementary framework to analyse
the dynamical properties of concurrent systems, either from a qualitative or a
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quantitative point of view (see [17] for an extensive introduction to PNs). Petri
nets have been successfully applied to the modelling and the analysis of metabolic
and signal transduction networks (e.g. [18,13,12]). As emphasised in [23], one can
draw extensive relationships between the traditional biochemical modelling and
the PN theory. In particular, the stoichiometry matrix of a metabolic network
corresponds to the PN incidence matrix. In this context, PN invariants are as-
sociated to conservation relations and flux modes (for a review of PN modelling
of biochemical networks, see [11]).

Published PN models of genetic networks are mostly quantitative models writ-
ten for particular systems, detailing the mechanisms related to transcription and
translation (as, for example in [15], where the authors employ hybrid PNs). Log-
ical regulatory networks consider a higher level of abstraction where the seman-
tics associated with the interactions between components varies, and regulatory
products are not consumed during the regulatory processes. We have previously
introduced systematic procedures to obtain standard PN models from logical
regulatory graphs (see [3] for the Boolean case, and [4] for the multi-level case
with no multiple arcs). In [5], Comet et al. also proposed a rewriting of logical
regulatory graphs into Coloured PNs comprising just one place and one transi-
tion. Their objective was to provide a mean to automatically generate correct
sets of logical parameters, given the topology of a regulatory graph and temporal
logic formulae expressing observed behaviours of the biological system.

Our proposal of a PN framework (CRPNs and MRPNs) for the modelling of reg-
ulatory networks opens the way for the use of standard PN tools, including model
checking techniques, to identify interesting dynamical properties, or to confront
models with available dynamical data (e.g. temporal gene expression profiles).

In this paper, after recalling the logical formalism basis, we reassess the map-
ping of multi-level logical regulatory models into standard PNs called Multi-level
Regulatory Petri Nets (MRPNs). Here, the main novelty consists in taking into
account non-monotonous regulatory effects through multiple arcs. Indeed, this
situation can arise in regulatory networks as demonstrated in Section 4. Next,
we briefly define a Coloured PN representation of logical regulatory graphs. The
resulting Coloured Regulatory Petri Nets (CRPNs) constitute an intuitive graph-
ical representation of regulatory networks, relatively easy to grasp by biologists.
In Section 4, we illustrate our approach with the PN representation and the
analysis of a multi-level logical model of the core regulatory network controlling
the differentiation of T-helper lymphocytes into Th1 and Th2 types.

2 Logical Regulatory Graphs

In this section, we revisit the definition of logical regulatory graphs, introducing
some additional notations which will be useful for the PN rewriting (see [21,22,2]
for further detail on the logical formalism).

A regulatory graph is a labelled directed graph where nodes represent genes
(or, more generally, regulatory components) and arcs (directed edges) repre-
sent interactions between genes. Let G = {g1, . . . , gn} be the set of genes (or
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nodes of the regulatory graph). For each gi ∈ G, we define its maximum ex-
pression level Maxi (Maxi ∈ N

∗), and xi denotes its current expression level
(xi ∈ {0, 1, . . . , Maxi}).

For each gene gi, Reg(i) denotes the set of its regulators, i.e.: gj ∈ Reg(i) iff
there exists an interaction from gj to gi in the regulatory graph. Note that a
regulatory graph may contain self-regulated genes.

Depending on its levels of expression, a gene gj ∈ Reg(i) may have distinct
regulatory effects on gene gi. This situation is represented by multiple arcs join-
ing gj to gi. Therefore, the specification of an interaction comprises (in addition
to its source and target) an interval of integers included in [1, Maxj ] defining
the range of the levels of the source for which the interaction is operating. Con-
sequently, a couple of integers (Si(j), mi(j)) is associated to each gj ∈ Reg(i),
where:

– Si(j) is the lowest expression level for which gj has a regulatory effect upon
gi. It verifies: 0 < Si(j) � Maxj ;

– mi(j) is the multiplicity of the arc from gj to gi, i.e. the number of interac-
tions from gj towards gi. It verifies: 0 < mi(j) � Maxj − Si(j) + 1.

Summing-up, if gj is a regulator of gi, either it regulates gi through a unique
interaction (mi(j) = 1), or through several interactions (mi(j) > 1). In this
case, a multiple arc connects gj to gi, composed by mi(j) simple arcs labelled
by integer intervals [sk, s′k], k = 1, . . . , mi(j), with,

– s1 = Si(j), s′mi(j)
= Maxj and ∪mi(j)

k=1 [sk, s′k] = [Si(j), Maxj ],
– for any k �= l, 1 � k, l � mi(j), [sk, s′k] ∩ [sl, s

′
l] = ∅.

For each gene gi, we define the set I(i), called input of gi, which contains
all the interactions towards gi in the regulatory graph and their corresponding
intervals: I(i) = {(gj, [sk, s′k]), gj ∈ Reg(i), k = 1, . . . , mi(j)}.

Remark 1. For all gi ∈ G we have:

– all its levels of expression are pertinent: mingk∈G /gi∈Reg(k) Sk(i) = 1 ,
– the indegree of the node gi is given by: #I(i) =

∑
gj∈Reg(i) mi(j),

– Reg(i) = I(i) if and only if all regulators of gi are the sources of simple arcs
towards gi: Reg(i) = I(i) ⇔ mi(j) = 1, ∀gj ∈ Reg(i).

For sake of conciseness, considering a set of interactions X ⊆ I(i), we write
“gj ∈ X” instead of “∃ [sk, s′k] ⊆ [1, Maxj ] such that (gj, [sk, s′k]) ∈ I(i)”.

Admissible sets X ⊆ I(i) as defined below correspond to possible combination
of interactions operating together upon gene gi.

Definition 1. A subset X of I(i) is said to be admissible if it does not contain
several interactions from the same regulator: gj ∈ X and gk ∈ X =⇒ gj �= gk.

Now, given X an admissible subset of I(i), it defines a partition of Reg(i):

Reg(i) = Reg(i)X ∪ Reg(i)
X

,
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Reg(i)X being the set of regulators of gi which are source of one interaction in X ,

and Reg(i)
X

the set of the other regulators: Reg(i)
X

= {gj ∈ Reg(i), gj �∈ X}.
When the expression levels of all the genes are given, one can determine the

operating interactions of the network and, for each gene, its relevant admissible
set of operating interactions. Then, the effects of these sets of interactions are
represented by logical parameters defined as follows.

Definition 2. For gi ∈ G, the application Ki associates a value Ki(X) in
[0, Maxi] to each admissible subset X of I(i). The value Ki(X), called logical
parameter, defines the level towards which gi tends when X is the set of operat-
ing incoming interactions. We denote K the set of all the applications Ki.

Thus, for each gene gi, the Ki(X)’s constitute parameters of the model as they
define the qualitative effects of all possible combinations of incoming interactions.
They are said logical because X ⊆ I(i) can be described by a conjunction of
conditions on the levels of expression of the regulators of gi.

Summarising, a logical regulatory graph is defined by three components:

– a set of nodes G = {g1, . . . , gn} with the maximum level Maxi ∈ N of each
gi;

– a set of labelled arcs I defined by the union of the sets of interactions tar-
geting the genes gi of G:

⋃
i=1,...,n I(i);

– a set of parameters K = {Ki(X), i = 1, . . . , n, X ⊆ I(i), X admissible }.
Note that the biologists commonly consider two types of interactions: activation
(respectively repression, or inhibition) has a positive (resp. negative) effect on the
targeted gene, i.e. induces an increase (resp. a decrease) of its level of expression.
However, an effective activatory or inhibitory regulation generally depends on
the level of cofactors. Indeed, as one gene may be regulated by several genes,
the regulatory effect of one of them may depend on the state of the others.
Therefore, in the sequel, we will not explicitly consider the sign of an interaction
which could be derived from the values of the logical parameters.

A state x of a regulatory graph (G, I,K) is a n-tuple (x1, . . . , xn) of the
expression levels of the n genes of G: x ∈

∏n
i=1[0, Maxi].

The (discrete) dynamics of the system can be represented by state transition
graphs, where nodes represent states, and arcs represent transitions between
states. In the sequel, we consider only asynchronous elementary transitions (for
each transition, only one variable value is changed by an unitary increase or
decrease). Thus, a state differs from its predecessor by exactly one component.

For each gene gi ∈ G, the application Ti associates to each state x of the
system the logical parameter Ki(X) to be considered in state x. The set X is
determined by the set of interactions which are operating upon gi in state x:

Ti(x) =
∑

X⊂I(i)

Ki(X)
∏

(gj ,[sk,s′
k])∈X

1[sk,s′
k](xj)

∏

gj∈Reg(i)
X

(
1 − 1[Si(j),Maxj ](xj)

)
,

(1)
where 1A is the indicator function of A: 1A(x) = 1 if x ∈ A, 0 otherwise.
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Now, the applications Ti (i = 1, . . . , n) allow us to formally define the dynam-
ics of the system. For any state x = (x1, . . . , xn), if xi �= Ti(x) (i = 1, . . . , n),
there is one transition (arc) in the state transition graph from state x to state
y defined by:

yj = xj for all j �= i, yi = xi + sign(Ti(x) − xi) ,

with, sign(a) = +1 if a > 0 and sign(a) = −1 if a < 0, for all a ∈ Z
∗.

For a given initial state, the corresponding state transition graph defines all
the possible trajectories of the system from the selected initial conditions. In
this graph, terminal strongly connected components correspond to attractors of
the system, i.e. sets of states in which the system dynamics is trapped (e.g.
cyclic behaviour or stable states). Therefore, it is interesting to determine such
structures, as well as, for each attractor, its basin of attraction (i.e. the maximal
set of states S such that all paths containing a state in S reach the attractor).

3 Multi-level Regulatory Petri Nets (MRPNs)

In this section, we define a systematic rewriting of logical regulatory networks
into PNs called Multi-level Regulatory Petri Nets (MRPNs). The previously
defined Boolean Regulatory Petri Nets (cf. [3]) are a special case of MRPNs.
In [4], we have introduced MRPNs and their application to the genetic switch
controlling the lysis-lysogeny decision in the bacteriophage lambda. But this
definition of MRPNs did not take into account the possible presence of multiple
arcs in the regulatory graph. Here, we reconsider the definition of MRPNs, to
handle multiple regulatory effects of one gene upon another.

Consider a regulatory graph where each gene gi has Maxi +1 significant levels
of expression and a current level xi ∈ {0, . . .Maxi}. Recall that I(i) is the set of
all possible incoming interactions towards gi.

– For all gene gi ∈ G, two (complementary) places are defined, denoted gi and
g̃i. The sum of their marking must always equal Maxi. More precisely, the
marking of place gi represents the current expression level of the correspond-
ing gene, and then gi has xi tokens, while g̃i has Maxi − xi tokens.

– For all parameter Ki(X) and all admissible set X ⊆ I(i) (i = 1, . . . , n), two
transitions are defined, denoted t+i,X and t−i,X , corresponding to an increase
or a decrease of the expression level of gi. Indeed, only three situations are
possible. When the current expression level is greater (resp. smaller) than
Ki(X), we allow an increase (resp. a decrease) of the gene level by one unit
at a time. The case where the current level equals Ki(X) is omitted in the
PN representation as it implies no change in the gene expression. Transitions
t+i,X and t−i,X are enabled when the interactions in X are operating and those
in I(i) \ X are not.
Therefore, #Reg(i) places are connected to t+i,X and t−i,X by test arcs (double
arcs which test the presence of a given number of tokens):
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Maxj − Si(j) + 1
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Fig. 1. Weighted arcs and places connected to transitions t+i,X and t−i,X

• for all (gj , [sk, s′k]) ∈ X , the condition sk � xj � s′k must hold (to ensure
that the interaction is operating): places gj and g̃j are connected to both
transitions with test arcs weighted sk and Maxj − s′k, respectively;

• for all gj ∈ Reg(i)
X

, the condition xj � Si(j)− 1 must hold (recall that
Si(j) denotes the lowest level for which gj has an effect upon gi): place g̃j

is connected to both transitions with a test arc weighted Maxj−Si(j)+1.
Transitions t+i,X and t−i,X are connected to gi and g̃i in the following way,
• transition t−i,X is enabled if xi � Ki(X) + 1 and its firing decreases

the level of gi. Therefore place gi is connected to t−i,X by an output arc
weighted Ki(X) + 1 and an input arc weighted Ki(X) (when enabled,
t−i,X removes one token from gi). Moreover, g̃i is connected to t−i,X by an
input arc (the firing of t−i,X adds the token removed from gi to g̃i);

• transition t+i,X is enabled if xi � Ki(X) − 1 and its firing increases
the level of gene gi. Therefore g̃i is connected to t+i,X by an output arc
weighted Maxi − Ki(X) + 1, and an input arc weighted Maxi − Ki(X)
(when enabled, t+i,X removes one token from g̃i). Moreover, gi is con-
nected to t+i,X by an input arc (the firing of t+i,X adds one token in gi).

The Figure 1 illustrates the connections between transitions t+i,X and t−i,X and
places gi, g̃i, gj and g̃j (for gj ∈ Reg(i)).

Remark 2. In the case of a self-regulator, (gi, [sk, s′k]) ∈ I(i), we have also:

sk � xi � s′k if (gi, [sk, s′k]) ∈ X , or xi � Si(i) − 1 if gi ∈ Reg(i)
X

.

3.1 MRPNs, Definition and Properties

The following definition provides the re-writing rules which define the MRPN
corresponding to a regulatory graph.

Definition 3. Given a multi-level logical regulatory graph, R = (G, I, K) and
an initial state x0 = (x0

1, . . . x
0
n), the associated Multi-level Regulatory Petri

Net N(R) = (P, T, Pre, Post,M0) is defined as follows:
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• P = G ∪ G̃ = {g1, g̃1, . . . , gn, g̃n} is the set of places,
• TK = {t+i,X , t−i,X , i = 1, . . . n, X ⊆ I(i) admissible} is the set of transitions,
• Pre : P × T → {0, . . .max} (with max = max{Maxi, i = 1, . . . , n}) is the

mapping defining weighted arcs from places to transitions,
• Post : T × P → {0, . . .max} is the mapping defining weighted arcs from

transitions to places,
• M0 is the initial marking defined by: M0(gi) = x0

i and M0(g̃i) = Maxi−x0
i .

For all gi ∈ G, Pre and Post are defined as follows:
1- Case gi �∈ I(i) (gi is not a self-regulator). For all admissible X ⊆ I(i),
consider the transitions t+i,X and t−i,X ; only the following terms have to be defined
(all the other terms being equal to zero):

∀(gj , [sk, s′k]) ∈ X , Pre(gj , t
α
i,X) = Post(tαi,X , gj) = sk

Pre(g̃j , t
α
i,X) = Post(tαi,X , g̃j) = Maxj − s′k

∀gj ∈ Reg(i)
X

Pre(g̃j , t
α
i,X)=Post(tαi,X , g̃j) = Maxj − Si(j) + 1

⎫
⎪⎬

⎪⎭
α∈{+,−}

(2)

Pre(gi, t
−
i,X) = Ki(X) + 1 Pre(g̃i, t

+
i,X) = Maxi − Ki(X) + 1

Post(t−i,X , gi) = Ki(X) Post(t+i,X , g̃i) = Maxi − Ki(X)
Post(t−i,X , g̃i) = 1 Post(t+i,X , gi) = 1 .

(3)

2- Case gi ∈ I(i) (gi is a self-regulator). For all admissible X ⊆ I(i), consider
the transitions t+i,X and t−i,X ; only the following terms have to be defined (all the
other terms being equal to zero):

• if (gi, [sk, s′k])∈X, let define μi =max{sk, Ki(X)+1}, λi =min{s′k, Ki(X)−1} ,

∀(gj , [sk, s′k]) ∈ X , j �= i, P re(gj , t
α
i,X)=Post(tαi,X , gj)= sk

Pre(g̃j , t
α
i,X)=Post(tαi,X , g̃j)= Maxj − s′k

∀gj ∈ Reg(i)
X

, P re(g̃j , t
α
i,X)=Post(tαi,X , g̃j)=Maxj−Si(j)+1

⎫
⎪⎬

⎪⎭
α∈{+,−}

(4)

Pre(gi, t
−
i,X) = μi Pre(gi, t

+
i,X) = sk

Post(t−i,X , gi) = μi − 1 Pre(g̃i, t
+
i,X) = Maxi − λi

Pre(g̃i, t
−
i,X) = Maxi − s′k Post(t+i,X , g̃i) = Maxi − λi − 1

Post(t−i,X , g̃i) = Maxi − s′k + 1 Post(t+i,X , gi) = sk + 1 .

(5)

• if gi ∈ Reg(i)
X

, let define νi = min{Si(i), Ki(X)},

∀(gj , [sk, s′k]) ∈ X , Pre(gj , t
α
i,X)= Post(tαi,X , gj)= sk

Pre(g̃j , t
α
i,X)= Post(tαi,X , g̃j)= Maxj − s′k

∀gj ∈Reg(i)
X

, j �= i, P re(g̃j , t
α
i,X)= Post(tαi,X , g̃j)=Maxj− Si(j)+ 1

⎫
⎪⎬

⎪⎭
α∈{+,−}

(6)
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Pre(gi, t
−
i,X) = Ki(X) + 1 Pre(g̃i, t

+
i,X) = Maxi − νi + 1

Pre(g̃i, t
−
i,X) = Maxi − Si(i) + 1 Post(t+i,X , g̃i) = Maxi − νi

Post(t−i,X , g̃i) = Maxi − Si(i) + 2 Post(t+i,X , gi) = 1
Post(t−i,X , gi) = Ki(X).

(7)

In the absence of self-regulation, equations (2) define the test arcs: for all
(gj , [sk, s′k]) ∈ X , the number of tokens in place gj must lay between sk and s′k;

and for all gj ∈ Reg(i)
X

the number of tokens in gj must be less than Si(j)− 1
(or the number of tokens in g̃j must be as least Maxj − Sj(i) + 1).

Equations (3, left), state that if gi contains at least Ki(X)+1 tokens, then t−i,X
is enabled and one token is removed from gi to be added to g̃i. Symmetrically,
equations (3, right) state that if the number of tokens in gi is less than Ki(X)−1,
then t+i,X is enabled (its firing removes one token from gi and adds one to g̃i).

In the case of a self-regulator, if (gi, [sk, s′k]) ∈ X equations (5, left) state that
if the marking of gi belongs to [sk, s′k] (the self-regulation is operating), and is
also greater than Ki(X) + 1, then t−i,X is enabled. Whereas if the marking of gi

belongs to [sk, s′k] and is smaller than Ki(X)−1, then t+i,X is enabled (equations

(5, right)). The case where gi ∈ Reg(i)
X

is symmetrical (cf. equations 7).
Recall that markings of complementary places together represent levels of

expression. They thus satisfy the condition introduced in the following definition.

Definition 4. Given a MRPN N(R), a valid marking M corresponds to a
state of the multi-level regulatory graph R = (G, I,K) and verifies:

∀gi ∈ G, M(gi) = Maxi −M(g̃i) . (8)

Property 1. Given a MRPN N(G, I,K) and a valid initial marking, any reachable
marking is still valid. Therefore, the MRPN is bounded: places gi and g̃i are
Maxi-bounded (for all gi in G).

The proof is straightforward. Moreover, the marking graph of the MRPN is
isomorphic to the state transition graph of the corresponding regulatory graph.
This property has been formally stated for the Boolean case in [3].

The MRPN associated to a logical regulatory graph R = (G, I,K) has 2#G
places and 2

∑
gi∈G 2#I(i) transitions. In most of the cases, this last number can

be significantly reduced applying the rules discussed in the following remarks.

Remark 3. The first reduction consists in avoiding all transitions which are never
enabled by construction (their enabling markings are not valid). As illustrated
in the Figure 2, for a gene gi and an admissible set X of incoming interactions,
transitions t+i,X and t−i,X are enabled for exclusive ranges of gi values ([infi, supi]
denotes the interval of possible values of the expression levels of gi). These ranges
can reduce to the empty set in some cases. This is easily seen in the absence of
self-loops, when parameter values are extremal (i.e. 0 or Maxi). Indeed in this
case [infi, supi] = [0, Maxi] and,
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– if Ki(X) = 0, we can omit transition t+i,X as equations (3,right) state that
t+i,X is enabled if g̃i contains Maxi − Ki(X) + 1 = Maxi + 1 tokens, and this
marking is not valid;

– if Ki(X) = Maxi, we can omit transition t−i,X as equations (3,left) state that
t−i,X is enabled if gi contains Ki(X)+1 = Maxi +1 tokens, and this marking
is not valid.

����������

����������

��������� ��	�

Fig. 2. Transitions t+i,X and t−i,X defined for each parameter Ki(X) are exclusive: if

xi � Ki(X) − 1, then t+i,X is enabled, whereas if xi � Ki(X) + 1, then t−i,X is enabled

The case where gi is a self-regulator is somewhat fastidious to describe, but
it follows the same principles. Let consider gene gi self-regulated. Then,

– if (gi, [sk, s′k]) ∈ X , then [infi, supi] = [sk, s′k] (with μi = max{sk, Ki(X) +
1}, λi = min{s′k, Ki(X) − 1} as in Definition 3), then,

• if Ki(X) = 0 then λi = −1 and we can omit transition t+i,X as equations
(5,right) state that t+i,X is enabled if g̃i contains Maxi − λi = Maxi + 1
tokens, and this marking is not valid;

• if Ki(X) = Maxi then μi = Maxi + 1 and we can omit transition t−i,X as
equations (5,left) state that t−i,X is enabled if gi contains μi = Maxi + 1
tokens, and this marking is not valid;

– if gi ∈ Reg(i)
X

, then the set of possible values of gi is [0, Maxi] \ [sk, s′k],
so that the interval in Figure 2 should be divided in two parts. Considering
νi = min{Si(i), Ki(X)} as in Definition 3,

• if Ki(X) = 0 then νi = 0 and we can omit transition t+i,X as equations
(7,right) state that t+i,X is enabled if g̃i contains Maxi−νi +1 = Maxi +1
tokens, and this marking is not valid;

• if Ki(X) = Maxi, we can omit transition t−i,X as equations (7,left) state
that t−i,X is enabled if gi contains Ki(X)+1 = Maxi +1 tokens, and this
marking is not valid.

Moreover, if gi is a self-regulator, both t+i,X and t−i,X can be omitted in the
two following cases:

– if (gi, [sk, s′k]) ∈ X and Ki(X) = sk = s′k = Maxi (in this case infi = Maxi,
the range of values enabling both transitions is empty),

– if gi ∈ Reg(i)
X

and Ki(X) = Si(i) − 1 = 0.

The second kind of reduction which can be performed is presented next.
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Remark 4. All admissible set X ⊆ I(gi) defines a logical formula which is a
conjunction of literals of the form [xj � sk] and not[xj � s′k] for all (gj , [sk, s′k]) ∈
X and not[xj � Sj(i)] for all gj ∈ Reg(i)

X
(i = 1, . . . , n). In general two

transitions are associated to such formula (excepting the reductions derived from
the previous remark).

Now, consider all the logical parameters having the same value x ∈ [0, Maxi].
They define a disjunction of conditions (the corresponding admissible sets X ⊆
I(gi) such that Ki(X) = x) under which gi should tend to level x. This disjunctive
formula can often be simplified. In a work in progress, we consider extensions of
Binary Decision Diagrams (introduced in [1]) to represent, for a given gene and
a given value, the set of logical parameters taking this value. This representation
can lead to a simplified disjunctive formula expressing the condition under which
gi should tend to x. This reduction implies a lower number of transitions in the
MRPN. Indeed, it is easy to verify that the number of transitions is at most twice
the number of terms in the reduced disjunctive formula.

Remarks 3 and 4 can lead to a significant reduction of the MRPN corresponding
to a logical regulatory graph. An illustration is provided in the Figure 6 in
Section 4. Observe that, in any case, the number of transitions is related to the
(reasonably low) indegrees of the genes in the logical regulatory graph.

3.2 Coloured Regulatory Petri Nets (CRPNs)

One drawback of the MRPNs is that they are not easily readable. This point has
motivated the use of Coloured PNs for the modelling of logical regulatory net-
works (for an introduction to Coloured PNs, see [14]). In addition to readability,
Coloured PNs are well suited for model checking techniques.

In the following definition, we specify the rewriting of a logical regulatory
graph R into a Coloured Regulatory Petri Net (CRPN).

Definition 5. Given a regulatory graph R = (G, I,K) and an initial state x0,
we define the Coloured Regulatory Petri Net C(R) = (Σ, P, T, A, C, G, E,x0) as
follows:

• Σ the finite set of colour sets: Σ = {[0, Maxi], i = 1, . . . , n}.
• P = {g1, . . . , gn} the set of places.
• C the color function associates to each place its expression domain (or colour

set): C : P → Σ, C(gi) = [0, Maxi].
• T = {T1, . . . , Tn} is the set of transitions.
• A ⊆ (P×T ∪ T×P ) is the set of arcs linking places and transitions; ∀Ti ∈ T ,

∀gj ∈ Reg(i), gj �= gi, (gj , Ti) ∈ A and (Ti, gj) ∈ A, (9)
(gi, Ti) ∈ A, (Ti, gi) ∈ A. (10)

Let denote •Ti = Reg(i) ∪ {gi} the set of input places of Ti.
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• E the arc expression function defined as follows: ∀Ti ∈ T ,

∀gj ∈ •Ti \ {gi}, E(gj , Ti) = E(Ti, gj) = xj , xj ∈ C(gj), (11)
E(gi, Ti) = xi, xi ∈ C(gi), (12)

E(Ti, gi) = xi + sign(Ti(x) − xi) , x ∈
∏

gk∈P

C(gk) . (13)

• G = {G1, . . . , Gn} is the set of guards; to each transition Ti is associated a
guard Gi, a Boolean function defined as follows:

∀x ∈
∏

gj∈P

C(gj), Gi(x) = [ Ti(x) �= xi ] . (14)

• The initial marking x0 = (x0
1, . . . , x

0
n) assigns to each place gi one token

x0
i ∈ C(gi) with x0

i being the value of gene gi in the initial state x0.

gk

g1

gi

xi + sign(Ti(x) − xi)

Reg(i)

xk

x1

xi
[xi �= Ti(x)]

Fig. 3. The CRPN structure representing the regulation of gene gi by its regulators

The arcs defined in (9) are test arcs, labelled by the current marking of the
places in Reg(i) \ {gi} (Equation 11); the input arc (gi, Ti) defined in (10) has
also xi as a label (Equation 12). The enabling of the transition Ti depends on
the current state of its input places •Ti and on the Boolean value of its guard
Gi. When enabled, the firing of Ti modifies the marking of place gi according
to Equation (1) through the arc (Ti, gi), gi expression takes the value xi + 1 or
xi − 1, depending on whether Ti(x) is greater or smaller than xi (Equation 13).

In (13) and (14), we could consider a projection of the state vector x on the
subset of places Reg(i) ∪ {gi}, as it is only necessary to consider the markings
of places in •Ti.

Note that when Ti(x) = xi, the guard of Ti is false. Hence, the stable states of
the regulatory network correspond to dead markings in the CRPN (in contrast
with [5] where a stable state is a marking which is its unique successor).

While Coloured PNs are more compact than the corresponding standard PNs,
these are amenable to more powerful analyses. Consequently, depending on the
questions to be addressed, one may preferably represent logical regulatory graphs
using one or the other formalism.

A procedure to recover a MRPN from a CRPN can be easily defined. It first
consists in applying the usual method to unfold Coloured PNs. The resulting
ordinary net can then be reduced in order to obtain a MRPN complying the
Definition 3.
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4 Qualitative Dynamical Modelling of Th-lymphocyte
Differentiation

4.1 Introducing Th-cell Differentiation

When human are challenged by a microbial infection, various cell types are
mobilized to protect vital functions and eliminate the pathogen. Among these
different cell populations, the Th lymphocytes play a crucial role in the regu-
lation of the immune response through the integration and excretion of specific
molecular signals (lymphokines) (the letters Th refer to the thymus, the organ
where Th cells maturate, and to the helping function of this cell population).
Depending on the challenge and on the activity of other cell lines, the virgin
T lymphocytes may differentiate into different subtypes (Th1 and Th2) charac-
terised by specific gene expression and lymphokine excretion patterns. On the
basis of an extensive analysis of the literature, L. Mendoza has recently proposed
a logical model encompassing the most crucial regulatory components and the
cross-interactions involved in these differentiative decisions [16].

Fig. 4. Logical regulatory graph for the network controlling Th differentiation de-
scribed in [16]. The nodes represent transcription regulatory factors (T-bet, GATA-3),
signaling transduction factors (STAT1, STAT4, STAT6, SOCS1, IRAK), lymphokines
(IFN-β, IFN-γ, IL-4, IL-12, IL-18), and lymphokine receptors (IFN-βR, IFN-γR, IL-
4R, IL-12R, IL-18R). Normal arrows represent activations, blunt arrows inhibitions.

The model of Mendoza is briefly described in the supplementary material
provided on the GINsim web site [25], including an XML (GINML) file containing
the definition of the logical regulatory graph, interaction intervals and parameter
values. This logical model can be analysed using the software suite GINsim,
which can be downloaded from the same url. GINsim provides an interface to
define logical regulatory graphs and to construct state transition graphs [9]. In
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Fig. 5. CRPN translation of the logical model of the network controlling Th differen-
tiation. Note that the topology of the regulatory graph given in Figure 4 can be easily
recovered from the CRPN.

particular, GINsim can be used to identify all the stable states of a system
(considering all possible initial conditions) and to check whether these states
can be reached from specific initial conditions.

Using the Definition 5, we first construct the CRPN associated with the logical
model defined by Mendoza (including parameter values and considering an initial
state corresponding to virgin Th cells). The resulting CRPN is shown in the
Figure 5. Each place of the CRPN of the Figure 5 corresponds to one element
of the original logical regulatory graph. The marking of a place represents the
level of expression (or protein activity) of the corresponding regulatory element.
Each place is fed by one transition, which encodes the logical function of the
corresponding regulatory element. A transition is further linked by test arcs to
each regulator of the corresponding component.

Alternatively, using the Definition 3, the same logical regulatory graph can be
rewritten as a MRPN, where each regulatory node is represented by two com-
plementary places. The logical level of a gene is then represented by the marking
of the reference place, while the number of tokens is constant for each pair of
complementary places. The transitions then correspond to relevant logical pa-
rameters. As mentioned in the previous section, this MRPN can also be obtained
by a proper deployment of the CRPN just described. The Figure 6 shows the
subnet of the MRPN corresponding to the regulation of IFN-γ and illustrates
the application of the reduction rules of Remarks 3 and 4.
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Fig. 6. Top: graph of the Figure 4 restricted to the INF-γ regulators. Middle: each
column corresponds to a specific parameter value given in the first row (0, 1, 2); row 2,
logical parameters for all admissible sets of interactions; row 3, simplified conditions
under which IFN-γ tends to the given values (cf. remark 4); row 4, transitions repre-
senting these conditions. The reduction rules of remarks 3 and 4 result in lowering the
number of transitions from 24 to 7. Bottom: the MRPN representing the regulations
of IFN-γ.
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At this point, we thus have two formally equivalent PN representations of a
single parametrised logical regulatory graph. The CRPN representation has the
advantage of graphical simplicity. Furthermore, standard CPN tools can be used
to perform simulations or even develop model checking approaches. In contrast,
although more difficult to grasp visually, the MRPN representation is amenable
to more extensive algebraic analyses. In the sequel, we briefly discuss the analysis
of the MRPN of the regulatory network controlling the Th differentiation. This
analysis has been performed using INA [24] (the INA and PNML files can be
downloaded from [25]).

4.2 Stable States and Their Biological Interpretation

Using a logical simulation tool (e.g. GINsim [9]) or constraint programming [7],
one can identify all existing stable states of a logical model (considering all
possible initial conditions). In the case of Mendoza’s model, four different logical
stable states have been readily identified, each corresponding to a specific cellular
differentiation state:

– the first stable state has all nodes at the level zero and corresponds to the
naive (or virgin) Th lymphocytes;

– the second stable state encompasses four nodes at level one: the interferon-γ
(IFN-γ) and its receptor, the signal transduction factors STAT1 and SOCS1,
and the transcription factor T-bet (all the other nodes are at level zero);

– the third stable state is identical to the second one, excepting that IFN-γ
and T-bet are at their highest levels (two);

– finally, the fourth stable state encompasses four nodes at level one: the
interleukin-4 and its receptor, as well as the signal transduction factor STAT6
and the transcription factor GATA3 (all the other nodes are at level zero).

The last stable state clearly corresponds to the Th2 differentiation state,
whereas the second and third stable states correspond to Th1 variants. The co-
existence of these two Th1 states accounts for different lymphokine dose effects
(IFN-γ) and synergic effects of IL12 and IL18, which favor Th1 polarisation.

This multistability property can be related to the presence of specific posi-
tive regulatory circuits (each involving an even number of negative interactions)
found in the original regulatory graph. As shown in [16], four circuits are playing
a crucial role in this process:

– the INF-γ pathway, including its receptor, STAT1, and T-bet, which in turn
regulates INF-γ expression;

– the IL-4 pathway, including its receptor, STA6, and GATA3, which in turn
regulates IL-4 expression;

– the positive circuit made of the cross-regulation between T-bet and GATA3;
– and finally the self-regulation of T-bet.

The two first positive circuits ensure a cohesive expression of all the regulatory
elements characteristic of the Th1 or Th2 cell populations, respectively. The third
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circuit ensures the mutual exclusion between these expression patterns. Finally,
the last circuit enables the differentiation of Th1 subtypes, characterised by
different qualitative levels of T-bet and IFN-γ.

Using INA, it is easy to check the stability of the corresponding markings in
our MRPN translation of Mendoza’s model. Furthermore, one can check their
reachability from specific initial conditions, e.g. for proper combinations of lym-
phokines (initially and transiently). To illustrate this point, let us consider three
situations reported in experimental articles (cf. citations in [16]):

– starting from an initial condition with all nodes at zero but in the presence
of a medium level of INF-γ, the system can reach the virgin state (early
extinction of IFN-γ signal) or the Th1 state characterized by medium level
of IFN-γ and T-bet;

– starting from the same initial condition but in the presence of a high level of
INF-γ, the system can reach the virgin state or two Th1 states, depending
on the duration of the IFN-γ signal;

– starting from the virgin state plus a combination of IL-12 and IL-18, the
system can reach the same three stable states as in the preceding situation;

– finally, starting from the virgin state in the presence of IL-4, the system can
reach the virgin state (early extinction of IL-4 signal) or the Th2 state.

5 Conclusions, Discussion and Prospects

We have presented a combined modelling approach encompassing two main
steps. First, the model specification is done in terms of a generic regulatory
graph, followed by its parameterisation, taking advantage of the flexibility of the
definition of the logical parameters. Next, the resulting parameterised regulatory
graph is translated into the Petri net formalism. In this respect, we have pro-
posed two formally equivalent rewritings, the first based on standard Petri nets
(MRPNs), the second based on Coloured Petri nets (CRPNs). Our approach has
been illustrated through the PN translation of a logical model of the core reg-
ulatory network controlling the differentiation of T lymphocytes into Th1 and
Th2 subtypes. We have shown that the derived CRPN and MRPN models allow
to fully recover the salient dynamical properties delineated in the original logical
model analysis, in particular the stable states and their reachability from given
initial conditions. Note that the current version of GINsim supports the defini-
tion of logical models and the construction of the state transition graphs [25].
A forthcoming version of the software, currently in development, will provide a
PN export functionality based on the rules defined in this paper.

The combination of the logical approach with the PN framework offers promis-
ing prospects for the modelling and analysis of complex regulatory systems. Con-
sequently, logical models become amenable to the numerous tools developed by
the PN community, including model checking techniques. MRPNs are somewhat
difficult to grasp but readily appropriate for algebraic analyses. In particular, it
is possible to identify dead markings (enabling no transition, they correspond to
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stable states of regulatory networks). The identification of livelocks (i.e. cycles
of transition firings in which the dynamics is trapped) is also relevant. In mark-
ing graphs, livelocks correspond to terminal strongly connected components of
more than one node. They represent cyclical attractors of the biological system
and can denote periodic behaviours (e.g. the cell cycle) or homeostasis (e.g. the
control of temperature in the cell). Attractors and their basins of attraction can
be identified applying classical graph theory algorithms on the marking graphs.
But such methods may be intractable when facing complex systems. Moreover,
it can be useful to derive general properties (independently of initial conditions).
Thus, one challenge consists in delineating structural properties of MRPNs (and
CRPNs), in order to derive specific theorems on induced dynamical features.
Taking inspiration from the logical approach (cf. [22]), we presently focus on
the characterization of the dynamical roles of regulatory circuits (cf. [19] for
some preliminary results in the Boolean case). This should ease the analysis of
large and complex regulatory systems, which remain difficult to explore through
systematic simulations. In addition, CRPNs offer an intuitive graphical repre-
sentation, and can still be readily used to perform simulations or to perform
model checking.

At this stage, the resulting marking graphs cover various (and often incom-
patible) temporal behaviours. In principle, the distinction between alternative
pathways can be forced through assumptions on transition delays or on priorities.
In this context, Stochastic PNs enable the representation of such assumptions
taking into account experimental noise.

In the future, this combined approach will be challenged through its appli-
cation to more complex regulatory networks, eventually combining genetic and
metabolic interactions (cf. [20] for a first step in this direction).
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